首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The effect of twelve weeks of composting on the mobility and bioavailability of cadmium in six composts containing sewage sludge, wood chips and grass was studied, along with the cadmium immobilization capacity of compost. Two different soils were used and Cd accumulation measured in above-ground oat biomass (Avena sativa L.). Increasing pH appears to be an important cause of the observed decreases in available cadmium through the composting process. A pot experiment was performed with two different amounts of compost (9.6 and 28.8 g per kg of soil) added into Fluvisol with total Cd 0.255 mg kg?1, and contaminated Cambisol with total Cd 6.16 mg kg?1. Decrease of extractable Cd (0.01 mol l?1 CaCl2) was found in both soils after compost application. The higher amount of compost immobilized an exchangeable portion of Cd (0.11 mol l?1 CH3COOH extractable) in contaminated Cambisol unlike in light Fluvisol. The addition of a low amount of compost decreased the content of Cd in associated above-ground oat biomass grown in both soils, while a high amount of compost decreased the Cd content in oats only in the Cambisol.  相似文献   

2.
In the present study, we investigated the effects of two bulking materials, Sphagnum peat and pine wood chips, on the early stages of biowaste composting in two pilot-scale processes. Emphasis was placed on studying the formation conditions of malodorous compost gases in the initial phases of the processes. The results showed that gas emission leaving an open windrow and a closed drum composting system contained elevated concentrations of fermentative microbial metabolites when acid Sphagnum peat (pH 3.2) was used as a bulking material. Moreover, the gas emission of the peat amended drum composter contained a high concentration of odour (up to 450,000 ou m?3 of air). The highest odour values in the outlet gas of peat amended composts coincided with the elevated concentrations of volatile organic compounds such as acetoin and buthanedion. We conclude that the acidifying qualities of composting substrates or bulking material may intensify odour emission from biowaste composts and prolong the early stages of the composting process.  相似文献   

3.
The effects of adding biosolids to a green waste feedstock (100% green waste, 25% v/v biosolids or 50% biosolids) on the properties of composted products were investigated. Following initial composting, 20% soil or 20% fly ash/river sand mix was added to the composts as would be carried out commercially to produce manufactured soil. Temperatures during composting reached 50 °C, or above, for 23 days when biosolids were included as a composting feedstock but temperatures barely reached 40 °C when green waste alone was composted. Addition of biosolids to the feedstock increased total N, EC, extractable NH4, NO3 and P but lowered pH, macroporosity, water holding capacity, microbial biomass C and basal respiration in composts. Additions of soil or ash/sand to the composts greatly increased the available water holding capacity of the materials. Principal component analysis (PCA) of PCR-DGGE 16S rDNA amplicons separated bacterial communities according to addition of soil to the compost. For fungal ITS-RNA amplicons, PCA separated communities based on the addition of biosolids. Bacterial species richness and Shannon’s diversity index were greatest for composts where soil had been added but for fungal communities these parameters were greatest in the treatments where 50% biosolids had been included. These results were interpreted in relation to soil having an inoculation effect and biosolids having an acidifying effect thereby favouring a fungal community.  相似文献   

4.
The production of compost and digestate from source-separated organic residues is well established in Europe. However, these products may be a source of pollutants when applied to soils. In order to assess this issue, composts, solid and liquid digestates from Switzerland were analyzed for heavy metals (Cd, Co, Cr, Cu, Ni, Pb and Zn) addressing factors which may influence the concentration levels: the treatment process, the composition, origin, particle size and impurity content of input materials, the season of input materials collection or the degree of organic matter degradation.Composts (n = 81) showed mean contents being at 60% or less of the legal threshold values. Solid digestates (n = 20) had 20–50% lower values for Cd, Co, Pb and Zn but similar values for Cr, Cu and Ni. Liquid digestates (n = 5) exhibited mean concentrations which were approximately twice the values measured in compost for most elements. Statistical analyses did not reveal clear relationships between influencing factors and heavy metal contents. This suggests that the contamination was rather driven by factors not addressed in the present study.According to mass balance calculations related to Switzerland, the annual loads to agricultural soils resulting from the application of compost and digestates ranged between 2% (Cd) and 22% (Pb) of total heavy metal loads. At regional scale, composts and digestates are therefore minor sources of pollution compared to manure (Co, Cu, Ni, Zn), mineral fertilizer (Cd, Cr) and aerial deposition (Pb). However, for individual fields, fertilization with compost or digestates results in higher heavy metal loads than application of equivalent nutrient inputs through manure or mineral fertilizer.  相似文献   

5.
Rice hulls and sawdust are two common C-rich wastes derived from rice and timber agro-industries in subtropical NE Argentina. An alternative to the current management of these wastes (from bedding to uncontrolled burning) is composting. However, given their C-rich nature and high C/N ratio, adequate composting requires mixing with a N-rich waste, such as poultry manure. The effect of different proportions of poultry manure, rice hulls and/or sawdust on composting efficiency and final compost quality was studied. Five piles were prepared with a 2:1 and 1:1 ratio of sawdust or rice hulls to poultry manure, and 1:1:1 of all three materials (V/V). Different indicators of compost stability and quality were measured. Thermophilic phase was shorter for piles with rice hulls than for piles with sawdust (60 days vs. 105 days). Time required for stability was similar for both C-rich wastes (about 180 days). Characteristics of final composts were: pH 5.8–7.2, electrical conductivity 2.5–3.3 mS/cm, organic C 20–26%, total N 2.2–2.9%, lignin 19–22%, total Ca 18–24 g/kg, and extractable P 6–8 g/kg, the latter representing 60% of total P. Nitrogen conservation was high in all piles, especially in the one containing both C-rich wastes. Piles with sawdust were characterized by high total and available N, while piles with only rice hulls had higher Si, K and pH. Extractable P was higher in 1:1 piles, and organic C in 2:1 piles.  相似文献   

6.
In this study we observed the production of volatile fatty acids (VFAs) during the composting process of compost heaps in two different bioreactors (open and closed) at three different depths (0, 40 and 80 cm). The compost was prepared as a mixture of bio-waste, horse manure, grass and sawdust to ensure sufficient pH conditions in compost heaps. VFA contents in the composting materials were analysed weekly over 14–119 d. The degradation process was monitored, along with temperature, pH, total organic carbon, oxidizable carbon and mono- and oligosaccharides. VFA contents were evaluated with regard to the depth of the sample site in the compost heap and to conditions in the bioreactors. The maximum VFA occurrence was observed during the first 35 d; acetic and propionic acids in particular were determined to occur in each sample. Considerable variations in their formation and elimination were observed in the two bioreactors as well as at the various depths in the compost heaps. Significant correlations were found between individual VFAs, as well as between VFA concentrations and organic carbon contents.  相似文献   

7.
Anaerobic digestion is a waste treatment method which is of increasing interest worldwide. At the end of the process, a digestate remains, which can gain added value by being composted. A study was conducted in order to investigate microbial community dynamics during the composting process of a mixture of anaerobic digestate (derived from the anaerobic digestion of municipal food waste), green wastes and a screened compost (green waste/kitchen waste compost), using the COMPOCHIP microarray. The composting process showed a typical temperature development, and the highest degradation rates occurred during the first 14 days of composting, as seen from the elevated CO2 content in the exhaust air. With an exception of elevated nitrite and nitrate levels in the day 34 samples, physical–chemical parameters for all compost samples collected during the 63 day process indicated typical composting conditions. The microbial communities changed over the 63 days of composting. According to principal component analysis of the COMPOCHIP microarray results, compost samples from the start of the experiment were found to cluster most closely with the digestate and screened compost samples. The green waste samples were found to group separately. All starting materials investigated were found to yield fewer and lower signals when compared to the samples collected during the composting experiment.  相似文献   

8.
Emergency mortality composting associated with a disease outbreak has special requirements to reduce the risks of pathogen survival and disease transmission. The most important requirements are to cover mortalities with biosecure barriers and avoid turning compost piles until the pathogens are inactivated. Temperature is the most commonly used parameter for assessing success of a biosecure composting process, but a decline in compost core temperature does not necessarily signify completion of the degradation process. In this study, gas concentrations of volatile organic compounds (VOCs) produced inside biosecure swine mortality composting units filled with six different cover/plant materials were monitored to test the state and completion of the process. Among the 55 compounds identified, dimethyl disulfide, dimethyl trisulfide, and pyrimidine were found to be marker compounds of the process. Temperature at the end of eight weeks was not found as an indicator of swine carcass degradation. However, gas concentrations of the marker compounds at the end of eight weeks were found to be related to carcass degradation. The highest gas concentrations of the marker compounds were measured for the test units with the lowest degradation (highest respiration rates). Dimethyl disulfide was found to be the most robust marker compound as it was detected from all composting units in the eighth week of the trial. Concentration of dimethyl disulfide decreased from a range of 290–4340 ppmv to 6–160 ppbv. Dimethyl trisulfide concentrations decreased to a range of below detection limit to 430 ppbv while pyrimidine concentrations decreased to a range of below detection limit to 13 ppbv.  相似文献   

9.
To assess the environmental quality of compost, it is insufficient to use only total metal concentration. Therefore in this study, the stability of metals in compost and the environmental risk they pose were assessed by three indices that have been proposed for soils or sediments: the IR, the RAC and the MRI. In mature composts, the highest bonding intensity was for Ni (0.79 < IR < 0.93), then for Cu (0.56 < IR < 0.65) and Pb (0.55 < IR < 0.73), and the lowest for Zn (0.19 < IR < 0.25). Although, both the IR and the RAC are useful indices for evaluating the mobility of metals, they do not take into account their toxicity. Therefore, the overall classification of compost should also include the MRI, at which metal toxicity from the most available fractions is considered. Based on the MRI ranged between 10.0 and 11.6, all composts evaluated posed a low risk.  相似文献   

10.
Various parameters were measured during a 90-day composting process of coffee husk with cow dung (Pile 1), with fruit/vegetable wastes (Pile 2) and coffee husk alone (Pile 3). Samples were collected on days 0, 32 and 90 for chemical and microbiological analyses. C/N ratios of Piles 1 and 2 decreased significantly over the 90 days. The highest bacterial counts at the start of the process and highest actinobacterial counts at the end of the process (Piles 1 and 2) indicated microbial succession with concomitant production of compost relevant enzymes. Denaturing gradient gel electrophoresis of rDNA and COMPOCHIP microarray analysis indicated distinctive community shifts during the composting process, with day 0 samples clustering separately from the 32 and 90-day samples. This study, using a multi-parameter approach, has revealed differences in quality and species diversity of the three composts.  相似文献   

11.
Despite the long-time application of organic waste derived composts to crops, there is still no universally accepted index to assess compost maturity and stability. The research presented in this article investigated the suitability of seven types of seeds for use in germination bioassays to assess the maturity and phytotoxicity of six composts. The composts used in the study were derived from cow manure, sea weeds, olive pulp, poultry manure and municipal solid waste. The seeds used in the germination bioassays were radish, pepper, spinach, tomato, cress, cucumber and lettuce. Data were analyzed with an analysis of variance at two levels and with pair-wise comparisons. The analysis revealed that composts rendered as phytotoxic to one type of seed could enhance the growth of another type of seed. Therefore, germination indices, which ranged from 0% to 262%, were highly dependent on the type of seed used in the germination bioassay. The poultry manure compost was highly phytotoxic to all seeds. At the 99% confidence level, the type of seed and the interaction between the seeds and the composts were found to significantly affect germination. In addition, the stability of composts was assessed by their microbial respiration, which ranged from approximately 4 to 16 g O2/kg organic matter and from 2.6 to approximately 11 g CO2–C/kg C, after seven days. Initial average oxygen uptake rates were all less than approximately 0.35 g O2/kg organic matter/h for all six composts. A high statistically significant correlation coefficient was calculated between the cumulative carbon dioxide production, over a 7-day period, and the radish seed germination index. It appears that a germination bioassay with radish can be a valid test to assess both compost stability and compost phytotoxicity.  相似文献   

12.
Swine manure was subjected to laboratory scale composting in order to quantify bioaerosols, i.e., airborne culturable bacteria and endotoxin, in the exhaust gas, which provided details on the effect of temperature on bacterial emissions. The concentration of airborne bacteria reached 31,250 colony-forming units (CFU)/m3 during the thermophilic stage of composting, and positively correlated with the temperature profile of the compost pile. Initially, the endotoxin concentration was 1820 endotoxin units (EU)/m3, but it decreased exponentially as the composting process proceeded. The temperature can be an excellent indicator of bacterial emissions during the composting process, indicating that the composting process requires a consistently high temperature to ensure sanitization of both compost and bacterial emissions. The cumulative emission data showed that emission factors was 11.2?13.5 CFU/g dry swine manure and that of endotoxin was 0.5?0.9 EU/g dry swine manure. The bacterial diversity in the bioaerosol was analyzed by polymerase chain reaction-denaturing gradient gel electrophoresis, revealing the presence of various gram-negative bacterial consortia.  相似文献   

13.
Uncontrolled deposition of waste from animal farms is a common practice in south-western Nigeria, and the presence of heavy metals in soil constitutes environmental and health hazards by polluting the soil, ground water, adjoining streams and rivers. The study investigated the profile distribution of Mn, Pb, Cd, Zn, Fe, Cu, Ni and Cr in some tropical Alfisols in south-western Nigeria after nine years disposal of animal wastes. The amount of these metals in the soil horizons was high enough to cause health and phytotoxic risks. All the metals except Zn and Cr increased down the profile, while Mn, Pb, Cd, Fe, Cu and Ni accumulated at 80–120 cm depth. The increment of these metals at this depth over the top soil were 26%, 143%, 72%, 47%, 328% for Mn, Pb, Cd, Cu and Ni, respectively. It thus, shows their mobility and the possibility of polluting ground water. The Mn content at the poultry and cattle waste sites increased by 127% and 25%, respectively over the control, while that of cattle and swine dump site for Cd content were 9.82 and 15.63 mg kg?1, respectively. Lead content also increased by 8.52 and 5.25 mg kg?1, respectively.There was the accumulation of Zn and Cu at the swine dump site while the cattle dump site had the highest amounts of nickel and chromium. The least amount of Fe was recorded at the swine waste dump site. The reduction in organic matter with depths together with the reduced pH might have favored the mobility of the metals. The ranking of pollution among the sites was poultry > swine > cattle > sheep and could be due to the type of ration fed, the vaccination programmes, sanitation programmes and other management practices.  相似文献   

14.
Irrigation of willow and poplar short-rotation coppice with landfill leachate is an increasingly interesting treatment option. Minimal leaching to groundwater and disturbance to plant growth must be ensured, but in such systems, where various site-specific factors interact, a case-specific approach is needed to determine potential hazards. This paper compares the effect of leachate irrigation on willow grown in clay lysimeters and poplar grown in sand lysimeters. Leachate irrigation increased willow biomass production, but not that of poplar. Near-zero nitrate-N concentrations were found in drainage water for both species after 2 years of irrigation. Ability to retain total N and P, and TOC was relatively high for willow, taking into account the large amounts supplied, and better than for poplar. To reduce environmental risks the irrigation load should be reduced, but if leachate concentrations are reduced, the irrigation load can be as high as 6 mm/day.  相似文献   

15.
A pilot-scale trial of four months was conducted to investigate the responses of heavy metal and nutrient to composting animal manure spiked with mushroom residues with and without earthworms. Results showed that earthworm activities accelerated organic matter mineralization (e.g. reduction in C/N ratio, increase in total concentrations of N, P, K) and humification (e.g. increase in humic acid concentration, humification ratio and humification index). Despite composting increased total heavy metal (i.e. As, Pb, Cu, Zn) concentrations irrespective of earthworm, the availability of heavy metals extracted by DTPA significantly (P < 0.05) decreased particularly in treatments with earthworms introduced. The shift from available to unavailable fractions of heavy metals was either due to earthworm bioaccumulation, as indicated by total heavy metal concentrations being higher in earthworm tissues, or due to the formation of stable metal-humus complexes as indicated by the promotion of humification. Our results suggest that vermicomposting process could magnify the nutrient quality but relieve the heavy metals risk of agricultural organic wastes.  相似文献   

16.
Three reactors, ordinary, greenhouse, and solar, were constructed and tested to compare their impacts on the composting of municipal sewage sludge. Greenhouse and solar reactors were designed to evaluate the use of solar energy in sludge composting, including their effects on temperature and compost quality. After 40 days of composting, it was found that the solar reactor could provide more stable heat for the composting process. The average temperature of the solar reactor was higher than that of the other two systems, and only the solar reactor could maintain the temperature above 55 °C for more than 3 days. Composting with the solar reactor resulted in 31.3% decrease in the total organic carbon, increased the germination index to 91%, decreased the total nitrogen loss, and produced a good effect on pot experiments.  相似文献   

17.
The effects of additives such as apple pomace, bentonite and calcium superphosphate on swine manure composting were investigated in a self-built aerated static box (90 L) by assessing their influences on the transformation of nitrogen, carbon, phosphorous and compost maturity. The results showed that additives all prolonged the thermophilic stage in composting compared to control. Nitrogen losses amounted to 34–58% of the initial nitrogen, in which ammonia volatilization accounted for 0.3–4.6%. Calcium superphosphate was helpful in facilitating composting process as it significantly reduced the ammonia volatilization during thermophilic stage and increased the contents of total nitrogen and phosphorous in compost, but bentonite increased the ammonia volatilization and reduced the total nitrogen concentration. It suggested that calcium superphosphate is an effective additive for keeping nitrogen during swine manure composting.  相似文献   

18.
19.
Composting is considered to be a primary treatment method for livestock manure and rice straw, and high degree of maturity is a prerequisite for safe land application of the composting products. In this study pilot-scale experiments were carried out to characterize the co-composting process of livestock manure with rice straw, as well as to establish a maturity evaluation index system for the composts obtained. Two pilot composting piles with different feedstocks were conducted for 3 months: (1) swine manure and rice straw (SM–RS); and (2) dairy manure and rice straw (DM–RS). During the composting process, parameters including temperature, moisture, pH, total organic carbon (TOC), organic matter (OM), different forms of nitrogen (total, ammonia and nitrate), and humification index (humic acid and fulvic acid) were monitored in addition to germination index (GI), plant growth index (PGI) and Solvita maturity index. OM loss followed the first-order kinetic model in both piles, and a slightly faster OM mineralization was achieved in the SM–RS pile. Also, the SM–RS pile exhibited slightly better performance than the DM–RS according to the evolutions of temperature, OM degradation, GI and PGI. The C/N ratio, GI and PGI could be included in the maturity evaluation index system in which GI > 120% and PGI > 1.00 signal mature co-composts.  相似文献   

20.
Small scale co-composting of faecal matter from dry toilet systems with shredded plant material and food waste was investigated in respect to heat development and deactivation of faecal indicators under tropical semiarid conditions. Open (uncovered) co-composting of faecal matter with shredded plant material alone did not generate temperatures high enough (<55 °C) to reduce the indicators sufficiently. The addition of food waste and confinement in chambers, built of concrete bricks and wooden boards, improved the composting process significantly. Under these conditions peak temperatures of up to 70 °C were achieved and temperatures above 55 °C were maintained over 2 weeks. This temperature and time is sufficient to comply with international composting regulations. The reduction of Escherichia coli, Enterococcus faecalis and Salmonella senftenberg in test containment systems placed in the core of the compost piles was very efficient, exceeding 5 log10-units in all cases, but recolonisation from the cooler outer layers appeared to interfere with the sanitisation efficiency of the substrate itself. The addition of a stabilisation period by extending the composting process to over 4 months ensured that the load of E. coli was reduced to less than 103 cfu?g and salmonella were undetectable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号