首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Residues from forest-industry wastewater-treatment systems are treated as waste at many pulp and paper mills. These organic substances have previously been shown to have potential for production of large quantities of biogas. There is concern, however, that the process would require expensive equipment because of the slow degradation of these substances. Pure non-fibrous sludge from forest industry showed lower specific methane production during mesophilic digestion for 19 days, 53 ± 26 Nml/g of volatile solids as compared to municipal sewage sludge, 84 ± 24 Nml/g of volatile solids. This paper explores the possibility of using anaerobic co-digestion with municipal sewage sludge to enhance the potential of methane production from secondary sludge from a pulp and paper mill. It was seen in a batch anaerobic-digestion operation of 19 days that the specific methane production remained largely the same for municipal sewage sludge when up to 50% of the volatile solids were replaced with forest-industry secondary sludge. It was also shown that the solid residue from anaerobic digestion of the forest-industry sludge should be of suitable quality to use for improving soil quality on lands that are not used for food production.  相似文献   

2.
In this study, the combustion and pyrolysis processes of three sewage sludge were investigated. The sewage sludge came from three wastewater treatment plants.Proximate and ultimate analyses were performed. The thermal behaviour of studied sewage sludge was investigated by thermogravimetric analysis with mass spectrometry (TGA-MS). The samples were heated from ambient temperature to 800 °C at a constant rate 10 °C/min in air (combustion process) and argon flows (pyrolysis process). The thermal profiles presented in form of TG/DTG curves were comparable for studied sludges. All TG/DTG curves were divided into three stages. The main decomposition of sewage sludge during the combustion process took place in the range 180–580 °C with c.a. 70% mass loss. The pyrolysis process occurred in lower temperature but with less mass loss. The evolved gaseous products (H2, CH4, CO2, H2O) from the decomposition of sewage sludge were identified on-line.  相似文献   

3.
The drivers for increasing incineration of sewage sludge and the characteristics of the resulting incinerated sewage sludge ash (ISSA) are reviewed. It is estimated that approximately 1.7 million tonnes of ISSA are produced annually world-wide and is likely to increase in the future. Although most ISSA is currently landfilled, various options have been investigated that allow recycling and beneficial resource recovery. These include the use of ISSA as a substitute for clay in sintered bricks, tiles and pavers, and as a raw material for the manufacture of lightweight aggregate. ISSA has also been used to form high density glass–ceramics. Significant research has investigated the potential use of ISSA in blended cements for use in mortars and concrete, and as a raw material for the production of Portland cement. However, all these applications represent a loss of the valuable phosphate content in ISSA, which is typically comparable to that of a low grade phosphate ore. ISSA has significant potential to be used as a secondary source of phosphate for the production of fertilisers and phosphoric acid. Resource efficient approaches to recycling will increasingly require phosphate recovery from ISSA, with the remaining residual fraction also considered a useful material, and therefore further research is required in this area.  相似文献   

4.
Environment-friendly treatment of sewage sludge has become tremendously important. Conversion of sewage sludge into energy products by environment-friendly conversion process, with its energy recovery and environmental benefits, is being paid significant attention. Direct liquefaction of sewage sludge into bio-oils with supercritical water (SCW) was therefore put forward in this study, as de-water usually requiring intensive energy input is not necessary in this direct liquefaction. Supercritical water may act as a strong solvent and also a reactant, as well as catalyst promoting reaction process. Experiments were carried out in a self designed high-pressure reaction system with varying operating conditions. Through orthogonal experiments, it was found that temperature and residence time dominated on bio-oil yield compared with other operating parameters. Temperature from 350 to 500 °C and reaction residence time of 0, 30, 60 min were accordingly investigated in details, respectively. Under supercritical conversion, the maximum bio-oil yield could achieve 39.73%, which was performed at 375 °C and 0 min reaction residence time. Meanwhile, function of supercritical water was concluded. Fuel property analysis showed the potential of bio-oil application as crude fuel.  相似文献   

5.
The treatment and disposal of sewage sludge are significant environmental problems in China. The reuse of sewage sludge for fuel could be an effective solution. The aim of this study was to characterize the behavior of sludge-derived fuel during combustion by a thermogravimetric method. The combustion profiles obtained showed four obvious weight loss regions. The results of dynamics analysis showed that first-order reactions together with Arrhenius’ law explained reasonably well the different stages of weight loss in the samples. Three temperature regions (162–327 °C, 367–445 °C, and 559–653 °C for sawdust and 162–286 °C, 343–532 °C, and 609–653 °C for coal) in each derivative thermogravimetry (DTG) curve corresponded well with the Arrhenius equation. The reactivity of sludge was lower than that of samples containing sawdust, but higher than that of coal-containing samples. These data demonstrate that sludge-derived fuel has better combustion characteristics than sludge, sawdust, or coal.  相似文献   

6.
This paper investigates the potential of converting sewage sludge into a useful product, namely carboxylic acids. To potentially enhance acid yields, the effect of pretreatment using 0.3 g lime/g dry biomass and water at 100 °C for 10–240 min was studied. The pretreated sludges were anaerobically fermented to mixed-acids using a mixed culture of microorganisms; methanogens were suppressed using iodoform. Batch fermentations were performed at 55 °C using ammonium bicarbonate buffer. The first batch experiments compared treated and untreated sludge as the only substrate. The second batch experiments used a mixture of sludge plus lime-treated bagasse (20:80 by weight). Analysis of liquor shows that the pretreatment were effective in solubilizing constituent compounds of sewage sludge. Nitrogen content and carboxylic acids increased with increasing pretreatment time. However, the soluble sugars peaked at 60 min, and then decreased with longer pretreatment time, showing that the solubilised sugars were undergoing intermolecular reactions, such as Maillard reactions. Fermentation experiments were a good indicator of the biodegradability of the pretreated sludges. Results clearly showed that lime-treating sludge, using even the minimum pretreatment time (10 min), negatively impacted acid production. The likely causes of this observation are attributed to the production of recalcitrant complexes and toxic compounds. Batch fermentation of untreated sludge yielded 0.34 g total acids/g VS fed, whereas sludge with 240-min lime pretreatment yielded only 0.20 g total acids/g VS fed. Co-fermentation of untreated sludge with pretreated bagasse gave a yield of 0.23 g total acids/g VS fed.  相似文献   

7.
Pyrolysis of sewage sludge was studied in a free-fall reactor at 1000–1400 °C. The results showed that the volatile matter in the sludge could be completely released to gaseous product at 1300 °C. The high temperature was in favor of H2 and CO in the produced gas. However, the low heating value (LHV) of the gas decreased from 15.68 MJ/N m3 to 9.10 MJ/N m3 with temperature increasing from 1000 °C to 1400 °C. The obtained residual solid was characterized by high ash content. The energy balance indicated that the most heating value in the sludge was in the gaseous product.  相似文献   

8.
The aim of this study is to characterize different types of source selected organic fraction of municipal solid waste (SS-OFMSW) in order to optimize the upgrade of a sewage sludge anaerobic digestion unit by codigestion. Various SS-OFMSW samples were collected from canteens, supermarkets, restaurants, households, fruit–vegetable markets and bakery shops. The substrates characterization was carried out getting traditional chemical–physical parameters, performing elemental analysis and measuring fundamental anaerobic digestion macromolecular compounds such as carbohydrates, proteins, lipids and volatile fatty acids. Biochemical methane potential (BMP) tests were conducted at mesophilic temperature both on single substrates and in codigestion regime with different substrates mixing ratios. The maximum methane yield was observed for restaurant (675 NmlCH4/gVS) and canteens organic wastes (571 and 645 NmlCH4/gVS). The best codigestion BMP test has highlighted an increase of 47% in methane production respect sewage sludge digestion.  相似文献   

9.
Time domain reflectometry (TDR) is a prospective measurement technology for moisture content of sewage sludge composting material; however, a significant dependence upon temperature has been observed. The objective of this study was to assess the impacts of temperature upon moisture content measurement and determine if TDR could be used to monitor moisture content in sewage sludge compost across a range of temperatures. We also investigated the combined effects of temperature and conductivity on moisture content measurement. The results revealed that the moisture content of composting material could be determined by TDR using coated probes, even when the measured material had a moisture content of 0.581 cm3 cm?3, temperature of 70 °C and conductivity of 4.32 mS cm?1. TDR probes were calibrated as a function of dielectric properties that included temperature effects. When the bulk temperature varied from 20 °C to 70 °C, composting material with 0.10–0.70 cm3 cm?3 moisture content could be measured by TDR using coated probes, and calibrations based on different temperatures minimized the errors.  相似文献   

10.
The anaerobic digestion of municipal sewage sludge (SS) with swine manure (SM) and poultry manure (PM) was undertaken. It was found that a mixture of sewage sludge with a 30% addition of swine manure gave around 400 dm3/kgVS of biogas, whereas the maximal biogas yield from ternary mixture (SS:SM:PM = 70:20:10 by weight) was only 336 dm3/kgVS. An inhibition of methanogenesis by free ammonia was observed in poultry manure experiments. The anaerobic digestion was inefficient in pathogen inactivation as the reduction in the number of E. coli an Enterobacteriaceae was only by one logarithmic unit. A substantial portion of pathogens was also released into the supernatant.  相似文献   

11.
About 20 million tonnes of sludge (with 80% moisture content) is discharged by the sewage treatment plants per year in China, which, if not treated properly, can be a significant source of greenhouse gases (GHGs) emissions. Anaerobic digestion is a conventional sewage sludge treatment method and will continue to be one of the main technologies in the following years. This research has taken into consideration GHGs emissions from typical processes of sludge thickening + anaerobic digestion + dewatering + residue land application in China. Fossil CO2, biogenic CO2, CH4, and avoided CO2 as the main objects is discussed respectively. The results show that the total CO2-eq is about 1133 kg/t DM (including the biogenic CO2), while the net CO2-eq is about 372 kg/t DM (excluding the biogenic CO2). An anaerobic digestion unit as the main GHGs emission source occupies more than 91% CO2-eq of the whole process. The use of biogas is important for achieving carbon dioxide emission reductions, which could reach about 24% of the total CO2-eq reduction.  相似文献   

12.
To simulate the substrate degradation kinetics of the composting process, this paper develops a mathematical model with a first-order reaction assumption and heat/mass balance equations. A pilot-scale composting test with a mixture of sewage sludge and wheat straw was conducted in an insulated reactor. The BVS (biodegradable volatile solids) degradation process, matrix mass, MC (moisture content), DM (dry matter) and VS (volatile solid) were simulated numerically by the model and experimental data. The numerical simulation offered a method for simulating k (the first-order rate constant) and estimating k20 (the first-order rate constant at 20 °C). After comparison with experimental values, the relative error of the simulation value of the mass of the compost at maturity was 0.22%, MC 2.9%, DM 4.9% and VS 5.2%, which mean that the simulation is a good fit. The k of sewage sludge was simulated, and k20, k20s (first-order rate coefficient of slow fraction of BVS at 20 °C) of the sewage sludge were estimated as 0.082 and 0.015 d?1, respectively.  相似文献   

13.
The UK Water Industry currently generates approximately 800 GW h pa of electrical energy from sewage sludge. Traditionally energy recovery from sewage sludge features Anaerobic Digestion (AD) with biogas utilisation in combined heat and power (CHP) systems. However, the industry is evolving and a number of developments that extract more energy from sludge are either being implemented or are nearing full scale demonstration. This study compared five technology configurations: 1 – conventional AD with CHP, 2 – Thermal Hydrolysis Process (THP) AD with CHP, 3 – THP AD with bio-methane grid injection, 4 – THP AD with CHP followed by drying of digested sludge for solid fuel production, 5 – THP AD followed by drying, pyrolysis of the digested sludge and use of the both the biogas and the pyrolysis gas in a CHP.The economic and environmental Life Cycle Assessment (LCA) found that both the post AD drying options performed well but the option used to create a solid fuel to displace coal (configuration 4) was the most sustainable solution economically and environmentally, closely followed by the pyrolysis configuration (5). Application of THP improves the financial and environmental performance compared with conventional AD. Producing bio-methane for grid injection (configuration 3) is attractive financially but has the worst environmental impact of all the scenarios, suggesting that the current UK financial incentive policy for bio-methane is not driving best environmental practice. It is clear that new and improving processes and technologies are enabling significant opportunities for further energy recovery from sludge; LCA provides tools for determining the best overall options for particular situations and allows innovation resources and investment to be focused accordingly.  相似文献   

14.
The feasibility of adding crude glycerol from the biodiesel industry to the anaerobic digesters treating sewage sludge in wastewater treatment plants was studied in both batch and continuous experiments at 35 °C. Glycerol addition can boost biogas yields, if it does not exceed a limiting 1% (v/v) concentration in the feed. Any further increase of glycerol causes a high imbalance in the anaerobic digestion process. The reactor treating the sewage sludge produced 1106 ± 36 ml CH4/d before the addition of glycerol and 2353 ± 94 ml CH4/d after the addition of glycerol (1% v/v in the feed). The extra glycerol-COD added to the feed did not have a negative effect on reactor performance, but seemed to increase the active biomass (volatile solids) concentration in the system. Batch kinetic experiments showed that the maximum specific utilization rate (μmax) and the saturation constant (KS) of glycerol were 0.149 ± 0.015 h?1 and 0.276 ± 0.095 g/l, respectively. Comparing the estimated values with the kinetics constants for propionate reported in the literature, it can be concluded that glycerol uptake is not the rate-limiting step during the process.  相似文献   

15.
The results presented in this paper are part of a project aimed at designing an original solution for the treatment of used disposable diapers permitting the recycling of materials and the recovery of energy. Diapers must be collected separately at source and transported to an industrial facility to undergo special treatment which makes it possible to separate plastics and to recover a biodegradable fraction (BFD) made up mainly of cellulose. The methane yield of BFD was measured and found to be 280 ml CH4/g VSfed on average. 150 kg of dry BFD can be retrieved from the treatment of one ton of used disposable diapers, representing an energy potential of about 400 kW h of total energy or 130 kW h of electricity. As the treatment process for used diapers requires very high volumes of water, the setting up of the diaper treatment facility at a wastewater treatment plant already equipped with an anaerobic digester offers the advantages of optimizing water use as well as its further treatment and, also, the anaerobic digestion of BFD. The lab-scale experiments in a SBR showed that BFD co-digestion with sewage sludge (38% BFD and 62% waste activated sludge on volatile solids basis) was feasible. However, special attention should be paid to problems that might arise from the addition of BFD to a digester treating WAS such as insufficient mixing or floating particles leading to the accumulation of untreated solids in the digester.  相似文献   

16.
This study presents a systematic comparison and evaluation of sewage sludge pre-treatment by mechanical and thermal techniques. Waste activated sludge (WAS) was pre-treated by separate full scale Thermo-Pressure-Hydrolysis (TDH) and ball milling facilities. Then the sludge was processed in pilot-scale digestion experiments. The results indicated that a significant increase in soluble organic matter could be achieved. TDH and ball milling pre-treatment could offer a feasible treatment method to efficiently disintegrate sludge and enhance biogas yield of digestion. The TDH increased biogas production by ca. 75% whereas ball milling allowed for an approximately 41% increase. The mechanisms of pre-treatment were investigated by numerical modeling based on Anaerobic Digestion Model No. 1 (ADM1) in the MatLab/SIMBA environment. TDH process induced advanced COD-solubilisation (CODsoluble/CODtotal = 43%) and specifically complete destruction of cell mass which is hardly degradable in conventional digestion. While the ball mill technique achieved a lower solubilisation rate (CODsoluble/CODtotal = 28%) and only a partial destruction of microbial decay products. From a whole-plant prospective relevant release of ammonia and formation of soluble inerts have been observed especially from thermal hydrolysis.  相似文献   

17.
Combustion of two semi-dried sewage sludges in a 110 mm has been characterized in terms of particulate and gaseous emissions. Sludges differed in that they had been conditioned – at the flocculation stage of wastewater treatment – either with Ca-based inorganics or with polyelectrolytes. Combustion was efficient for both sewage sludges under all the operating conditions tested. Significant differences have instead been observed between the two types of sewage sludges as regards particulate and macro-pollutant gaseous emissions (SO2, NOx). NOx formation is significantly influenced by ash accumulation inside the bed only when sewage sludge conditioned with Ca-based inorganics is fired. The time-resolved profiles of NOx concentration and the mass flow rate of the elutriated fines have been worked out to evaluate the fuel nitrogen yield to NOx as a function of ash accumulated inside the bed divided by the air mass feed rate. Experimental results have been compared with data present in literature.  相似文献   

18.
This work presents the use of two composts as filter media for the treatment by biofiltration of odors emitted during the aerobic composting of a mixture containing sewage sludge and yard waste. The chemical analysis of the waste gas showed that the malodorous compounds at trace level were the reduced sulfur compounds (RSCs) which were dimethyl sulfide (Me2S), methanethiol (MeSH) and hydrogen sulfide (H2S). Laboratory tests for biofiltration treatment of RSCs were performed in order to compare the properties of two filter media, consisted of a mature compost with yard waste (YW) and a mixture of mature compost with sewage sludge and yard waste (SS/YW). The maximum elimination capacity (EC) values obtained with the YW mature compost as packing material were 12.5 mg m?3 h?1 for H2S, 7.9 mg m?3 h?1 for MeSH and 34 mg m?3 h?1 for Me2S, and the removal efficiency decreased in the order of: H2S > MeSH > Me2S. Moreover, the YW compost filter medium had a better behavior than the filter medium based on SS/YW in terms of acclimation of the microbial communities and moisture content. According to these results, a YW mature compost as packing material for an industrial biofilter were designed and this industrial biofilter was found effective under specified conditions (without inoculation and addition of water). The results showed that the maximum EC value of RSCs was 935 mg m?3 h?1 (100% removal efficiency, RE) for an inlet loads (IL) between 0 and 1000 mg m?3 h?1. Thus, YW compost medium was proven efficient for biofiltration of RSCs both at laboratory and industrial scale.  相似文献   

19.
In this paper an original energy recovery method from composting is analyzed. The integrated system exploits the heat available from the aerobic biochemical process in order to support the drying of sewage sludge, using a specific solar greenhouse. The aim is to tackle the problem of organic waste treatment, with specific regard to food waste. This is done by optimizing the energy consumption of the aerobic process of composting, using the heat produced to solve a second important waste management problem such as the sewage waste treatment. Energy and mass balances are presented in a preliminary feasibility study. Referring to a composting plant with a capacity of 15,000 t/y of food waste, the estimation of the power from recovered heat for the entire plant resulted about 42 kW. The results demonstrated that the energy recoverable can cover part of the heat necessary for the treatment of sludge generated by the population served by the composting plant (in terms of food waste and green waste collection). The addition of a renewable source such as solar energy could cover the residual energy demand. The approach is presented in detail in order for it to be replicated in other case studies or at full scale applications.  相似文献   

20.
A new method to simplify calculation the kinetics model is applied to sewage sludge pyrolysis based on the assumption that volatile run out as soon as it formed and during temperature arising process in this study. Difference method widely used to solve math problems is conducted to calculate kinetics parameters. Pyrolysis experiments are carried out at heating rates of 10, 15, 20, and 50 °C/min. All the TG curves are divided into three parts which are beginning decomposition temperature range, main decomposition temperature range, and final decomposition temperature range. The second one is employed to determine the parameters for more than 70% of the total mass loss occurs in this range. According to the developed method, the react order, reaction energy and pre-exponential factor are obtained, which are in the range of 3.9–4.1, 82.3–109.2 kJ/mol and 7.7 × 106–2.8 × 109/min, respectively, which are in the range of that reported previously. As a comparison experimental data with calculated data, the well fitting results indicate that this method is appropriate for simulating sludge pyrolysis kinetics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号