首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
The photochemical behaviors of six non-ortho substituted PCB congeners, i.e., 3,4-DiCB, 3,5-DiCB, 3,3',5-TriCB, 3,4,5-TriCB, 3,3',4,5-TetraCB, and 3,4,4',5-TetraCB, irradiated at 254 nm in alkaline 2-propanol were investigated. Besides the determination of the photodechlorination pathways of these compounds, the presence of photorearrangement was observed in the case of 3, 4-DiCB with its products being identified. The results indicate that dechlorination is much more important than rearrangement during the process of PCB photolysis.  相似文献   

2.
The microbial dechlorination of seven kinds of polychlorinated biphenyls (PCBs) by anaerobic microorganisms from river sediment was investigated. Dechlorination rates were found to be affected by the chlorine level of PCB congeners; dechlorination rates decreased as chlorine levels increased. Dechlorination rates were fastest under methanogenic conditions and slowest under nitrate-reducing conditions. The addition of individual electron donors (acetate, pyruvate, and lactate) enhanced the dechlorination of PCB congeners under methanogenic and sulfate-reducing conditions but delayed the dechlorination of PCB congeners under nitrate-reducing conditions. PCB congener dechlorination also was delayed by the addition of various polycyclic aromatic hydrocarbons (PAHs) under three reducing conditions and by surfactants, such as brij30, triton SN70, and triton N101. The results suggest that methanogen, sulfate-reducing bacteria, and nitrate-reducing bacteria all are involved in the dechlorination of PCB congeners.  相似文献   

3.
The potential of a chlorophenol (CP)-adapted consortium to dechlorinate polychlorinated biphenyls (PCBs) in sewage sludge was investigated. Results show that dechlorination rates differed significantly depending on sludge source and PCB congener. Higher total solid concentrations in sewage sludge and higher concentrations of chlorine in PCB resulted in slower dechlorination rates. No significant difference was found for 2,3,4,5-CB dechlorination from pH 6.0 to pH 8.0; however, dechlorination did not occur at pH 9.0 during a 41-day incubation period. Results show that at concentrations of 1 to 10 mg/L, the higher the PCB concentration, the faster the dechlorination rate. In addition, dechlorination rates were in the following order: methanogenic conditions > sulfate-reducing conditions > denitrifying conditions. The addition of acetate, lactate, pyruvate, and ferric chloride decreased lag times and enhanced dechlorination; however, the addition of manganese dioxide had an inhibitory effect. Dechlorination rates were also enhanced by the addition of PCB congeners, including 2,3,4-CB, 2,3,4,5-CB and 2,3,4,5,6-CB in mixture. Overall results show that the CP-adapted consortium has the potential to enhance PCB dechlorination. The optimal dechlorination conditions presented in this paper may be used as a reference for feasibility studies of PCB removal from sludge.  相似文献   

4.
The objectives of the present research were (i) to report the mass balance of chlorine during pentachlorophenol (PCP) photodegradation and (ii) to reveal the photodegradation pathway experimentally with a theoretical proof based on the density functional theory (DFT). The chlorine of PCP was completely mineralized to produce chloride ions after 24h of UV irradiation. As intermediates, 2,3,5,6-tetrachlorophenol, 2,3,4,6-tetrachlorophenol and 2,5-dichlorophenol were identified. At least 80% of the chlorine balance during PCP photodegradation was accounted by PCP, these intermediates, and chloride ions. A DFT calculation showed differences in the C-Cl bond dissociation energy level and the positions of respective PCP molecular and the PCP intermediates. The dechlorination intermediates predicted using the calculated C-Cl bond dissociation energy were consistent with those experimentally confirmed, indicating the feasibility of this theoretical method in predicting the dechlorination pathway.  相似文献   

5.
The effect of acclimating anaerobic granules from commercial bioreactors with different carbon/electron sources on their ability to reductively dechlorinate a tri-(2,3,4-CB) and heptachlorobiphenyl (2,2',3,3',4,5,6-CB) was studied. The anaerobic granules were first grown in upflow anaerobic sludge blanket (UASB) reactors fed with two different mixtures of carbon/electron sources, i.e., propionate/butyrate/methanol and formate/methanol. Differences in dechlorination patterns for 2,2',3,3',4,5,6-CB were observed in batch experiments inoculated with granules from these two sets of UASB reactors. Variation of the carbon/electron source, during the dechlorination process, had no effect on the dechlorination pathway, but the extents and rates of dechlorination were highest for ethanol and formate and lowest for pyruvate fed batches. Pre-acclimation of different anaerobic sludges to polychlorinated biphenyls (PCBs) shortened the lag period, but did not influence the PCB dechlorination pathway. This is the first time that similar acclimation conditions for several anaerobic microbial communities prior to inoculation were reported to yield similar substrate specificities for the reductive dechlorination of specific PCB congeners. This research demonstrates a successful strategy for the development of biocatalysts to serve as the inoculum of partially decontaminated sites in order to provide microorganisms with specificities complementary to those of naturally occurring dechlorinators.  相似文献   

6.
A method for a photochemically induced mineralization of CCl4 is described in which use is made of reductive radicals. The UVC-photolysis (254 nm) of H2O2 added to aqueous solutions of CCl4 is leading to the homolysis of the oxidant yielding hydroxyl radicals (HO) that subsequently react with added methanol to generate hydroxymethyl radicals (CH2OH). The latter radicals initiate mineralization of CCl4 by reductive C-Cl bond splitting. CHCl3, C2Cl4 and C2Cl6 were found as reaction intermediates, but are quantitatively depleted in a parallel oxidative reaction manifold leading to mineralization. Carbon dioxide radical anion, CO2(-), an intermediate in the mineralization pathway of methanol, is also shown to initiate the mineralization of CCl4 by reductive dechlorination. A reaction mechanism is proposed and validated with computer simulations of all the experimental results.  相似文献   

7.
The photochemical behaviour of chlorophenols is different to that of non-halogenated phenols. In the former, the first step is a C-Cl bond scission, which is not influenced by oxygen. Chlorine is converted into hydrochloric acid. For monochlorophenols, the position of the chlorine on the ring strongly influences the transformation. In the molecular form, 2-chlorophenol is converted into pyrocatechol. In the anionic form however, it is reduced in a cyclopentadienic acid which dimerizes according to a Diels-Alder reaction. The irradiation of 3-chlorophenol leads to resorcinol whatever the pH. This would appear to suggest a photohydrolysis mechanism. With 4-chlorophenol, the photochemical conversion is not so specific. Hydroquinone is formed (mainly in aerated solution), along with polyphenolic oligomers. A radical mechanism is proposed.  相似文献   

8.
Yamada S  Kishita S  Nakai S  Takada M  Hosomi M 《Chemosphere》2008,73(6):1005-1010
Polychlorodibenzothiophenes (PCDTs) are sulfur analogues of polychlorodibenzofurans (PCDFs) and have been detected in environmental samples. We used density functional theory calculations (Gaussian 98W) to predict the photodechlorination pathways of octachlorodibenzothiophene (OCDT) and octachlorodibenzofuran (OCDF) in hexane, and we compared the predicted pathways with those observed during UV irradiation experiments. OCDT and OCDF were observed to degrade through first-order dechlorination processes, and the rate constant for OCDT was less than one-third that for OCDF. The main experimental photodechlorination pathways of OCDT and OCDF led to hexachlorinated and tetrachlorinated congeners, respectively; that is, the photodechlorination pathway of OCDT differed from that of OCDF. On the assumption that the dechlorination mechanisms involved radical reactions, we used DFT calculations to estimate bond-dissociation energies and single-point energies of OCDT and OCDF and their dechlorinated congeners, and we used the resulting information, along with hypotheses regarding the rate-controlling step of the degradations, to predict theoretical degradation pathways. We propose that reaction of dechlorinated radicals with a hydrogen donor was the rate-controlling step for OCDT and that C-Cl bond dissociation by UV light was the rate-controlling step for OCDF.  相似文献   

9.
Lin C  Chang TC 《Chemosphere》2007,66(6):1003-1011
A reaction mixture containing DDT (1,1,1-trichloro-2,2-bis(p-chlorophenyl)ethane), methylene green (as the photosensitizer), and triethylamine (as the electron donor) in acetonitrile:water (1:1) was irradiated by an ordinary 150-W GE-Miser spotlight to facilitate visible-light photosensitized DDT dehalogenation. The intermediates and reaction products were identified by GC/MS (gas chromatography/mass spectrometer) and NMR (nuclear magnetic resonance). The photosensitized dehalogenation method partially degraded DDT via an electron transfer relay mechanism. Results indicate that DDT lost about three chlorines after a total of 19 days of irradiation. Aliphatic chlorines were found to be removed easier than aromatic chlorines. Various types of reductants were compared for electron donation efficiency, and photosensitizer concentration was optimized for our reaction system. In most cases, clean and simple dechlorinated products were observed. The proposed photosensitized reduction was coexisted with a thermal elimination effect for the first chlorine removal of DDT, and the photosensitized electron transfer reduction was shown to be the dominating mechanism responsible for further dechlorination after the initial stage. A sequential dechlorination pathway was proposed, with each successive dehalogenation, the reaction proceeds more slowly. The results have shown the feasibility of utilizing visible light, nontoxic dyes and electron donors to render a toxic compound less toxic and to enhance the natural carbon regeneration rates.  相似文献   

10.
Chen IM  Chang FC  Wang YS 《Chemosphere》2001,45(2):223-229
To understand the dechlorination ability of chlorobenzenes (CBs) and polychlorinated biphenyls (PCBs) by untamed microorganisms under anaerobic condition and to correlate gas chromatographic properties with the occurrence of reductive dechlorination, introduction of CBs and PCBs in the culture medium inoculated with microorganisms from sludge and sediment, respectively, were performed. Three kinds of culture media preparing from sludge, river water and a synthetic medium were used in the experiments. HCB was degraded to 1,3,5-trichlorobenzene (1,3,5-TCB) and 1,3-dichlorobenzene (1,3-DCB) in both sludge medium and synthetic medium with inoculated microorganisms. Three PCB congeners including 2,3,4-, 3,4,5- and 2,3,4,5-CBp (chlorinated biphenyl) were not found to be dechlorinated in the river water medium with inoculation culture but to be dechlorinated in the synthetic medium. MNDO methodology was used to compute theoretical dechlorination reaction heats and GC-ECD techniques were used to estimate chromatographic data of CB and PCB congeners. Both CB and PCB congeners showed that dechlorination by untamed microorganisms under anaerobic mixed cultures were more likely to occur when larger amounts of energy were released and greater deltaln RRT value between the parent congener and the daughter product was observed. Deltaln RRT provided a more precise information on the singularity of PCBs ortho-dechlorination in an aspect of thermodynamic favorable rule.  相似文献   

11.
Yamada S  Naito Y  Takada M  Nakai S  Hosomi M 《Chemosphere》2008,70(4):731-736
Experimentally determined photodegradation pathways of hexachlorobenzene (HCB), a chlorinated aromatic compound, in hexane, 2-propanol (IPA), and methanol were compared with those predicted by quantum chemical calculation based on density functional theory (DFT), and the adequacy of the prediction method was evaluated. The experimental main degradation pathways of HCB were virtually the same for the three solvents and also agreed with the predicted main degradation pathways. In the DFT method, the main degradation product was the dechlorinated benzene at the position where the C-Cl bond was predicted to have the lowest bond dissociation energy. This result suggested that the photodechlorination pathways of chlorinated aromatic compounds could be predicted by comparing the bond dissociation energies calculated with the DFT method.  相似文献   

12.
Gao X  Wang W  Liu X 《Chemosphere》2008,71(6):1093-1099
The dechlorination of HCB was carried out under low-temperature and oxygen deficient conditions on different solid supports such as SiO(2), CaO, CaSiO(3), cement and treated fly ash (tFA). All the tested supports except SiO(2) showed a HCB dechlorination potential. The dechlorination efficiencies (D(1)) of HCB by CaO, CaSiO(3), tFA and cement reached 64.62%, 76.15%, 79.97% and 32.21% at 350 degrees C for 4h, respectively. It was thought electrons in the vacancies originated from the unsaturated metallic ions and O(2-) on the crystal surfaces made the D(1) different between SiO(2), CaO and CaSiO(3). Comparing the D(1) by tFA and cement, the high dechlorination potential of tFA was due to the more free electrons from the crystal defects and the transition metals, and the more active points for the gas-solid phase reaction, which both had positive effects on dechlorination reaction. The effect of Cu addition (0.2-5.0%) on HCB dechlorination might result from the Ullmann coupling which was not notable in enhancing the dechlorination reaction. From the study, we can draw the conclusion that the dechlorination potential mainly depends on the support characteristic rather than the transition metal content. Based on this study and previous references, the dechlorination/polymerization induced by the electron transfer mode was thought to be the dominant pathway while the hydrogen transfer mode was minor. The electron was originated from the crystal defects or induced by transition metals, and the dissociation of a chloride ion happened forming a radical, and then the polymerization of radicals led to the formation of high-molecular-weight compounds which seemed to cause the material imbalance.  相似文献   

13.
Winchell LJ  Novak PJ 《Chemosphere》2008,71(1):176-182
Polychlorinated biphenyls (PCBs) are toxic compounds ubiquitously distributed in ecosystems. Microbial attenuation of these contaminants is a potential means of remediation. Two promising microbial PCB remediation technologies, biostimulation and bioaugmentation, were investigated in different sediments. Biostimulation experiments in which electron donor was supplied (H2 via elemental iron, Fe(0)) resulted in only a marginal improvement in the dechlorination of amended 2,3,4,5-tetrachlorobiphenyl (2,3,4,5-CB), likely because of an inadequate population of indigenous H2-utilizing dechlorinators. Extensive dechlorination was observed, however, after bioaugmenting microcosms with a PCB-dechlorinating enrichment culture. Dechlorination of 2,3,4,5-CB began prior to the 20th day of incubation and proceeded to 2-chlorobiphenyl. This extensive dechlorination activity was maintained in both sediments over 70d at 10 and 25 degrees C. This research demonstrates that although past studies of biostimulation were promising, a great deal must be known about the PCB-dechlorinating organisms present before successful biostimulation is expected. Bioaugmentation, however, appears to be a promising PCB remediation strategy and should be further pursued.  相似文献   

14.
The complete dechlorination of PCB liquid Delor 103 (42.6% Cl) to biphenyl has been effected in toluene with sodium dihydridobis(2-methoxyethoxo)aluminate (SDMA) in the presence of catalytic amounts of Ni(II) and Co(II) 2,4-pentanedionates at elevated temperatures. Changes in PCB congeners distribution during dechlorination were monitored by GC(ECD) and GC/MS, and the scheme of their transformation was proposed on the basis of site selectivity observed. A kinetic analysis of the reaction is presented.  相似文献   

15.
A study was conducted to explore some of the basic processes of polychlorinated biphenyl (PCB) destruction by a new technology termed electrochemical peroxidation process (ECP). ECP represents an enhancement of the classic Fenton reaction (H2O2 + Fe2+) in which iron is electrochemically generated by steel electrodes. Focus was on the extent of adsorption of a mixture of Aroclor 1248 on steel electrodes in comparison to iron filings. Commercially available zero-valent iron filings rapidly adsorbed PCBs from an aqueous solution of Aroclor 1248. Within 4 h, all the PCBs were adsorbed at 1%, 5%, and 10% Fe0 (w/v) concentrations. Little difference in adsorption was found between acidic (2.3) and unamended solutions (pH 5.5), even though significant differences in iron oxidation state and Fe2+ concentrations were measured in solution. PCB adsorption also occurs on steel electrodes regardless of the pH or electric current applied (AC or DC), suggesting the combination of oxidizing (free radical-mediated reactions) and reducing (dechlorination reactions) iron-mediated degradation pathways may be possible. Extraction of the iron powder after 48 h of contact time yielded the progressive recovery of biphenyl with increasing Fe mass(from 0.4% to 3.5%) and changes of the PCB congener-specific pattern as a consequence of dechlorination. A variety of daughter congeners similar to those accumulated during anaerobic microbial dechlorination of Aroclor 1248 in contaminated sediments indicate preferential removal of meta- and para-chlorines.  相似文献   

16.
Mediated electrochemical reduction was applied to the dechlorination of polychlorinated biphenyls (PCBs) in tetra-n-butylammonium perchlorate/dimethylformamide solution. Rapid and complete dechlorination was possible with biphenyl or naphthalene as the mediator, whereas the reaction was much slower with anthracene or 9,10-diphenylanthracene. The reaction rate was so high with naphthalene or biphenyl radical anion that differences in reactivity could not be observed between congeners. Side reactions, other than biphenyl formation, could occur depending upon the mediators and the substrates, but contributed less than 10% of the total products in the case of naphthalene-mediated dechlorination. Almost all chloride ion formed in the dechlorination remained in the cathode solution. The order of the reaction was determined to be 0.5 for the substrate and 1 for the mediator (naphthalene) in the dechlorination of 2-chlorobiphenyl; identical to results for the mediated dechlorination of 1-chloronaphthalene. The reaction rate in practical PCB dechlorination could be estimated with the use of the initial concentration of the mediator and chlorine content of the solution provided that the problem of the deactivation of the electrode surface could be solved.  相似文献   

17.
A mixed culture capable of supplying its energy requirements by the oxidation of zero-valent iron (Fe0) and concomitant reduction of chlorinated ethenes was established. The culture contained Dehalococcoides species as determined by polymerase chain reaction (PCR) with genus specific primers. The use of a newly designed ARDRA procedure and subsequent sequencing revealed the presence of two Dehalococcoides strains, one closely related to Dehalococcoides ethenogenes strain 195, a bacterium respiring with chlorinated ethenes, and one closely related to strain CBDB1 a chlorobenzene and dioxin dehalogenating anaerobe. The mixed culture was used to study dechlorination of tetrachloroethene (PCE) to ethene in the presence of Fe0. Whereas abiotic transformation of PCE by Fe0 led to incomplete dechlorination, the mixed culture mediated fast and complete dechlorination of PCE to ethene with Fe0 as electron donor. Compared to cultures with hydrogen added as electron donor, cultures with Fe0 as electron donor showed the same or higher rates of PCE dechlorination. Growth of the Dehalococcoides strains in the mixed culture is linked to the presence of Fe0 as electron donor and PCE as electron acceptor demonstrating that Dehalococcoides spp. play a pivotal role in the dechlorination of chlorinated ethenes in Fe0 systems.  相似文献   

18.
Chen IM  Chang FC  Hsu MF  Wang YS 《Chemosphere》2001,43(4-7):649-654
A comparison was made of reductive dechlorination occurrences of polychlorinated biphenyls (PCBs) by microorganisms collected from contaminated sediments including Er-Jen River (Tainan, Taiwan), Hudson River (Ft. Edward, NY), Silver Lake (Pittsfield, MA) and Puget Sound (Washington State). Comparisons was made in terms of chromatographic data (referring to the biological activity, including microbial availability) and thermodynamic data (demonstrating the selectivity of anaerobic microorganisms in the dechlorination of chlorinated compounds). Chromatographic data was established in terms of difference in relative retention time (delta ln RRT) and thermodynamic data was estimated as heat of reaction (delta H(r)0). Both were calculated and correlated to occurrences of dechlorination reactions. Observed dechlorination reactions for individually introducing PCB congener had delta ln RRT levels measured as >0.47 (Er-Jen River), >0.29 (Hudson River), >0.36 (Silver Lake) and >0.45 (Puget Sound, for Aroclor 1254 dechlorination). Critical of delta H(r)0 and delta ln RRT values showed that Hudson River and Silver Lake microorganisms were capable of dechlorinating PCBs through reactions with larger H(r)0 value (lower levels of released energy) and smaller delta ln RRT value compared with those found in Er-Jen River and Puget Sound sediments. Differences in the critical delta ln RRT values of these sediments may be due to differences in their levels of PCB contamination.  相似文献   

19.
Persistent organic pollutants such as polychlorinated biphenyls (PCBs) are associated with detrimental health outcomes including cardiovascular diseases. Remediation of these compounds is a critical component of environmental policy. Although remediation efforts aim to completely remove toxicants, little is known about the effects of potential remediation byproducts. We previously published that Fe/Pd nanoparticles effectively dechlorinate PCB 77 to biphenyl, thus eliminating PCB-induced endothelial dysfunction using primary vascular endothelial cells. Herein, we analyzed the toxic effects of PCB congener mixtures (representative mixtures of commercial PCBs based on previous dechlorination data) produced at multiple time points during the dechlorination of PCB 77 to biphenyl. Compared with pure PCB 77, exposing endothelial cells to lower chlorinated PCB byproducts led to improved cellular viability, decreased superoxide production, and decreased nuclear factor kappa B activation based on duration of remediation. Presence of the parent compound, PCB 77, led to significant increases in mRNA and protein inflammatory marker expression. These data implicate that PCB dechlorination reduces biological toxicity to vascular endothelial cells.  相似文献   

20.
Brahushi F  Dörfler U  Schroll R  Munch JC 《Chemosphere》2004,55(11):1477-1484
The reductive dechlorination and behaviour of 14C-hexachlorobenzene (HCB) was investigated in an arable soil. The activity of the native anaerobic microbial communities could be induced by saturating the soil with water. Under these conditions high rates of dechlorination were observed. After 20 weeks of incubation only 1% of the applied 14C-HCB could be detected in the fraction of extractable residues. Additional organic substances, like wheat straw and lucerne straw, however considerably delayed and reduced the dechlorination process in the soil. The decline of HCB was not only caused by dechlorination but also by the formation of non-extractable residues, whereby their amounts varied with time depending on the experimental conditions. Several dechlorination products were detected, indicating the following main HCB transformation pathway: HCB → PCB → 1,2,3,5-TeCB → 1,3,5-TCB → 1,3-DCB, with 1,3,5-TCB as main intermediate dechlorination product. The other TeCB-, TCB- and DCB-isomers were also detected in low amounts, showing the presence of more than one dechlorination pathway. Since the methane production rates were lowest when the dechlorination rates were highest, it can be assumed that methanogenic bacteria were not involved in the dechlorination process of HCB. The established 14C-mass balances show, that with increasing dechlorination and incubation times, the 14C-recoveries decreased.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号