首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
● A cellphone-based colorimetric multi-channel sensor for in-field detection. ● A universal colorimetric detection platform in the absorbance range of 400–700 nm. ● Six-fold improvement of sensitivity by introducing a transmission grating. ● Quantifying multiple water quality indexes simultaneously with high stability. The development of colorimetric analysis technologies for the commercial cellphone platform has attracted great attention in environmental monitoring due to the low cost, high versatility, easy miniaturization, and widespread ownership of cellphones. This work demonstrates a cellphone-based colorimetric multi-channel sensor for quantifying multiple environmental contaminants simultaneously with high sensitivity and stability. To improve the sensitivity of the sensor, a delicate optical path system was created by using a diffraction grating to split six white beams transmitting through the multiple colored samples, which allows the cellphone CMOS camera to capture the diffracted light for image analysis. The proposed sensor is a universal colorimetric detection platform for a variety of environmental contaminants with the colorimetry assay in the range of 400–700 nm. By introducing the diffraction grating for splitting light, the sensitivity was improved by over six folds compared with a system that directly photographed transmitted light. As a successful proof-of-concept, the sensor was used to detect turbidity, orthophosphate, ammonia nitrogen and three heavy metals simultaneously with high sensitivity (turbidity: detection limit of 1.3 NTU, linear range of 5–400 NTU; ammonia nitrogen: 0.014 mg/L, 0.05–5 mg/L; orthophosphate: 0.028 mg/L, 0.1–10 mg/L; Cr (VI): 0.0069 mg/L, 0.01–0.5 mg/L; Fe: 0.025 mg/L, 0.1–2 mg/L; Zn: 0.032 mg/L, 0.05–2 mg/L) and reliability (relative standard deviations of six parallel measurements of 0.37%–1.60% and recoveries of 95.5%–106.0% in surface water). The miniature sensor demonstrated in-field sensing ability in environmental monitoring, which can be extended to point-of-care diagnosis and food safety control.  相似文献   

2.
● Electroconductive RGO-MXene membranes were fabricated. ● Wettable membrane channels were established between RGO and MXene nanosheets. ● Hydrophilic MXene reduces the resistance of water entering the membrane channels. ● Water permeance of RGO-MXene membrane is 16.8 times higher than that of RGO membrane. ● Electro-assistance can enhance the dye rejection performance of RGO-MXene membrane. Reduced graphene oxide (RGO) membranes are theoretically more conducive to the rapid transport of water molecules in their channels compared with graphene oxide (GO) membranes, as they have fewer oxygen-containing functional groups and more non-oxidized regions. However, the weak hydrophilicity of RGO membranes inhibits water entry into their channels, resulting in their low water permeability. In this work, we constructed wettable RGO-MXene channels by intercalating hydrophilic MXene nanosheets into the RGO membrane for improving the water permeance. The RGO-MXene composite membrane exhibits high pure water permeance of 62.1 L/(m2·h·bar), approximately 16.8 times that of the RGO membrane (3.7 L/(m2·h·bar)). Wettability test results and molecular dynamics simulations suggest that the improved water permeance results from the enhanced wettability of RGO-MXene membrane and increased rate of water molecules entering the RGO-MXene channels. Benefiting from good conductivity, the RGO-MXene membrane with electro-assistance exhibits significantly increased rejection rates for negatively charged dyes (from 56.0% at 0 V to 91.4% at 2.0 V for Orange G) without decreasing the permeate flux, which could be attributed to enhanced electrostatic repulsion under electro-assistance.  相似文献   

3.
● V-shaped substrate was obtained for SERS analysis of microplastics (diameter ≈ 1 μm). ● Enhancement factor of V-shaped substrate can reach 20 in microplastics detection. ● V-shaped nanopore array can bring additional volume enhancement. ● V-shaped substrate was more economic in application compared to Klarite substrate. Research on the microplastics (MPs) is developing towards smaller size, but corresponding methods for the rapid and accurate detection of microplastics, especially nanoplastics still present challenge. In this work, a novel surface and volume enhanced Raman spectroscopy substrate was developed for the rapid detection of microplastic particles below 5 μm. The gold nanoparticles (NPs) were deposited onto the surface and into the V-shaped nanopores of anodized aluminum oxide (AAO) through magnetron sputtering or ion sputtering, and then AuNPs@V-shaped AAO SERS substrate was obtained and studied for microplastic detection. SERS performance of AuNPs@V-shaped AAO SERS substrate was evaluated through the detection of polystyrene and polymethyl methacrylate microspheres. Results indicated that individual polystyrene sphere with a diameter of 1 μm can be well detected on AuNPs@V-shaped AAO SERS substrate, and the maximum enhancement factor (EF) can reach 20. In addition, microplastics in ambient atmospheric samples were collected and tested to verify the effectiveness of the AuNPs@V-shaped AAO SERS substrate in the real environment. This study provides a rapid, economic and simple method for detecting and identifying microplastics with small size.  相似文献   

4.
● Greenhouse gas mitigation by biomass-based CO2 utilization with a Fe cycle system. ● The system including hydrothermal CO2 reduction with Fe and Fe recovery by biomass. ● The reduction potential quantified by experiments, simulations, and an ex-ante LCA. ● The greatest GHG reduction potential is −34.03 kg CO2-eq/kg absorbed CO2. ● Ex-ante LCA supports process optimization to maximize GHG reduction potential. CO2 utilization becomes a promising solution for reducing anthropogenic greenhouse gas (GHG) emissions. Biomass-based CO2 utilization (BCU) even has the potential to generate negative emissions, but the corresponding quantitative evaluation is limited. Herein, the biomass-based CO2 utilization with an iron cycle (BCU-Fe) system, which converts CO2 into formate by Fe under hydrothermal conditions and recovers Fe with biomass-derived glycerin, was investigated. The GHG reduction potential under various process designs was quantified by a multidisciplinary method, including experiments, simulations, and an ex-ante life-cycle assessment. The results reveal that the BCU-Fe system could bring considerable GHG emission reduction. Significantly, the lowest value is −34.03 kg CO2-eq/kg absorbed CO2 (−2.44 kg CO2-eq/kg circulated Fe) with the optimal yield of formate (66%) and Fe (80%). The proposed ex-ante evaluation approach not only reveals the benefits of mitigating climate change by applying the BCU-Fe system, but also serves as a generic tool to guide the industrialization of emerging carbon-neutral technologies.  相似文献   

5.
● Medium poly Al salts dominated the PAC residual salts with a rational dosage. ● Settlement flocculation effect under medium poly Al salts showed a better trend. ● Complex of medium poly Al salts and enzymes promoted cell activity. ● Medium poly Al salts were beneficial to the effluent indexes. With the widespread introduction of pre-coagulation prior to the biological unit in various industrial wastewater treatments, it is noteworthy that long-term accumulation of residual coagulants has certains effect on both micro and macro characteristics of activated sludge (AS). In this study, the morphology distributions of residual aluminum salts (RAS) and their effects on the removal efficiency of AS were investigated under different PAC concentrations. The results showed that the dominance of medium polymeric RAS, formed under an appropriate PAC dose of 20 mg/L enhanced the hydrophobicity, flocculation, and sedimentation performances of AS, as well as the enzymatic activity in cells in the sludge system, improving the main pollutants removal efficiency of the treatment system. Comparatively the species composition with monomer and dimer / high polymer RAS as the overwhelming parts under an over-dosed PAC concentration of 55 mg/L resulted in excessive secretion of EPS with loose flocs structure and conspicuous inhibition of cellular activity, leading to the deterioration of physico-chemical and biological properties of AS. Based on these findings, this study can shed light on the role of the RAS hydrolyzed species distributions, closely relevant to Al dosage, in affecting the comprehensive properties of AS and provide a theoretical reference for coagulants dosage precise control in the pretreatment of industrial wastewater.  相似文献   

6.
● A novel nonpolar super-aligned carbon nanotube (SACNT) membrane was prepared. ● SACNT membranes achieved smoother and more uniform structures. ● SACNT membranes have inert chemistry and unique nonpolar wetting feature. ● SACNT membranes exhibit superior separation and antifouling capabilities. ● SACNT membranes achieved superior oil/water separation efficiency. Membrane separation technology has made great progress in various practical applications, but the unsatisfactory separation performance of prevailing membrane materials hampers its further sustainable growth. This study proposed a novel nonpolar super-aligned carbon nanotube (SACNT) membrane, which was prepared with a layer-by-layer cross-stacking method. Through controlling the number of stacked SACNT layers, three kinds of SACNT membranes (SACNT_200, SACNT_300, and SACNT_400) were prepared. Systematic characterizations and filtration tests were performed to investigate their physico-chemical properties, surface wetting behavior, and filtration performance. Compared with two commercial membranes (Com_0.22 and Com_0.45), all the SACNT membranes achieved smoother and more uniform structures. Due to the hexagonal graphene structure of CNTs, the surface chemistry of the SACNT membranes is simple and inert, thereby potentially eliminating the covalent-bonding-induced membrane fouling. Besides, the SACNT membranes exhibited a typical nonpolar wetting behavior, with high contact angles for polar liquids (water: ~124.9°–126.5°; formamide: ~80.0°–83.9°) but low contact angles for nonpolar diiodomethane (~18.8°–20.9°). This unique nonpolar feature potentially leads to weak interactions with polar substances. Furthermore, compared with the commercial membranes, the SACNT membranes obtained a significantly higher selectivity while achieving a comparable or higher permeability (depending on the number of stacked layers). Moreover, the SACNT membranes exhibited superior separation performance in various application scenarios, including municipal wastewater treatment (> 2.3 times higher cleaning efficiency), electro-assistant fouling inhibition (or even self-cleaning), and oil/water separation (> 99.2 % of separation efficiency), suggesting promising application prospects in various fields.  相似文献   

7.
● High fluorine is mainly HCO3·Cl-Na and HCO3-Na type. ● F decreases with the increase of depth to water table. ● High fluoride is mainly affected by fluorine-containing minerals and weak alkaline. ● Fluorine pollution is mainly in the north near Laizhou Bay (wet season > dry season). ● Groundwater samples have a high F health risk (children > adults). Due to the unclear distribution characteristics and causes of fluoride in groundwater of Mihe-Weihe River Basin (China), there is a higher risk for the future development and utilization of groundwater. Therefore, based on the systematic sampling and analysis, the distribution features and enrichment mechanism for fluoride in groundwater were studied by the graphic method, hydrogeochemical modeling, the proportionality factor between conventional ions and factor analysis. The results show that the fluorine content in groundwater is generally on the high side, with a large area of medium-fluorine water (0.5–1.0 mg/L), and high-fluorine water is chiefly in the interfluvial lowlands and alluvial-marine plain, which mainly contains HCO3·Cl-Na- and HCO3-Na-type water. The vertical zonation characteristics of the fluorine content decrease with increasing depth to the water table. The high flouride groundwater during the wet season is chiefly controlled by the weathering and dissolution of fluorine-containing minerals, as well as the influence of rock weathering, evaporation and concentration. The weak alkaline environment that is rich in sodium and poor in calcium during the dry season is the main reason for the enrichment of fluorine. Finally, an integrated assessment model is established using rough set theory and an improved matter element extension model, and the level of groundwater pollution caused by fluoride in the Mihe-Weihe River Basin during the wet and dry seasons in the Shandong Peninsula is defined to show the necessity for local management measures to reduce the potential risks caused by groundwater quality.  相似文献   

8.
● Different advanced treatment processes were tested for ECs removal from wastewater. ● UV radiation showed low to moderate removal for 5 of the 38 micropollutants. ● Among tested membrane processes, nanofiltration showed the better performance. ● The use of PAC achieved high or partially removal for 31 out of the 38 compounds. ● The environmental and economical evaluation of a pilot-scale PAC unit is suggested. In this work, 38 different organic emerging contaminants (ECs), belonging to various chemical classes such as pharmaceuticals (PhCs), endocrine-disrupting chemicals (EDCs), benzotriazoles (BTRs), benzothiazoles (BTHs), and perfluorinated compounds (PFCs), were initially identified and quantified in the biologically treated wastewater collected from Athens’ (Greece) Sewage Treatment Plant (STP). Processes already used in existing STPs such as microfiltration (MF), nanofiltration (NF), ultrafiltration (UF), UV radiation, and powdered activated carbon (PAC) were assessed for ECs’ removal, under the conditions that represent their actual application for disinfection or advanced wastewater treatment. The results indicated that MF removed only one out of the 38 ECs and hence it was selected as pretreatment step for the other processes. UV radiation in the studied conditions showed low to moderate removal for 5 out of the 38 ECs. NF showed better results than UF due to the smaller pore sizes of the filtration system. However, this enhancement was observed mainly for 8 compounds originating from the classes of PhCs and PFCs, while the removal of EDCs was not statistically significant. Among the various studied technologies, PAC stands out due to its capability to sufficiently remove most ECs. In particular, removal rates higher than 70% were observed for 9 compounds, 22 were partially removed, while 7 demonstrated low removal rates. Based on our screening experiments, future research should focus on scaling-up PAC in actual conditions, combining PAC with other processes, and conduct a complete economic and environmental assessment of the treatment.  相似文献   

9.
● Recent advances in the electrochemical decontamination of PFAS are reviewed. ● Underlying mechanisms and impacting factors of these processes are discussed. ● Several novel couped systems and electrode materials are emphasized. ● Major knowledge gaps and research prospects on PFAS removal are identified. Per- and polyfluoroalkyl substances (PFAS) pose serious human health and environmental risks due to their persistence and toxicity. Among the available PFAS remediation options, the electrochemical approach is promising with better control. In this review, recent advances in the decontamination of PFAS from water using several state-of-the-art electrochemical strategies, including electro-oxidation, electro-adsorption, and electro-coagulation, were systematically reviewed. We aimed to elucidate their design principles, underlying working mechanisms, and the effects of operation factors (e.g., solution pH, applied voltage, and reactor configuration). The recent developments of innovative electrochemical systems and novel electrode materials were highlighted. In addition, the development of coupled processes that could overcome the shortcomings of low efficiency and high energy consumption of conventional electrochemical systems was also emphasized. This review identified several major knowledge gaps and challenges in the scalability and adaptability of efficient electrochemical systems for PFAS remediation. Materials science and system design developments are forging a path toward sustainable treatment of PFAS-contaminated water through electrochemical technologies.  相似文献   

10.
● A CNT filter enabled effective KMnO4 activation via facilitated electron transfer. ● Ultra-fast degradation of micropollutants were achieved in KMnO4/CNT system. ● CNT mediated electron transfer process from electron-rich molecules to KMnO4. ● Electron transfer dominated organic degradation. Numerous reagents have been proposed as electron sacrificers to induce the decomposition of permanganate (KMnO4) by producing highly reactive Mn species for micropollutants degradation. However, this strategy can lead to low KMnO4 utilization efficiency due to limitations associated with poor mass transport and high energy consumption. In the present study, we rationally designed a catalytic carbon nanotube (CNT) membrane for KMnO4 activation toward enhanced degradation of micropollutants. The proposed flow-through system outperformed conventional batch reactor owing to the improved mass transfer via convection. Under optimal conditionals, a > 70% removal (equivalent to an oxidation flux of 2.43 mmol/(h·m2)) of 80 μmol/L sulfamethoxazole (SMX) solution can be achieved at single-pass mode. The experimental analysis and DFT studies verified that CNT could mediate direct electron transfer from organic molecules to KMnO4, resulting in a high utilization efficiency of KMnO4. Furthermore, the KMnO4/CNT system had outstanding reusability and CNT could maintain a long-lasting reactivity, which served as a green strategy for the remediation of micropollutants in a sustainable manner. This study provides new insights into the electron transfer mechanisms and unveils the advantages of effective KMnO4 utilization in the KMnO4/CNT system for environmental remediation.  相似文献   

11.
● The airborne bacteria in landfills were 4–50 times higher than fungi. ● Bioaerosols released from the working area would pose risk to on-site workers. ● The safe distance for the working area should be set as 80 m. Landfills are widely complained about due to the long-term odor and landfill gas emissions for local residents, while the bioaerosols are always neglected as another threat to on-site workers. In this study, bioaerosols samples were collected from the typical operation scenes in the large-scale modern landfill, and the emission levels of airborne bacteria, pathogenic species, and fungi were quantified and co-related. The corresponding exposure risks were assessed based on the average daily dose via inhalation and skin contact. It was found that the levels of culturable bacteria and fungi in all landfill samples were around 33–22778 CFU/m3 and 8–450 CFU/m3, and the active-working landfill area and the covered area were the maximum and minimum emission sources, respectively, meaning that the bioaerosols were mainly released from the areas related with the fresh waste operation. Acinetobacter sp., Massilia sp., Methylobacterium-Methylorubrum sp. and Noviherbaspirillum sp. were the main bacterial populations, with a percentage of 42.56%, 89.82%, 70.24% and 30.20% respectively in total bioaerosols measured. With regards to the health risk, the health risks via inhalation were the main potential risks, with four orders of magnitude higher than that of skin contact. Active-working area showed the critical point for non-carcinogenic risks, with a hazard quotient of 1.68, where 80 m protection distance is recommended for on-site worker protection, plus more careful protection measures.  相似文献   

12.
● High amounts of microplastics are released to receiving media from WWTPs. ● The effect of classical treatment processes on MP removal is important. ● MP load in the effluent of WWTPs is important for developing treatment technology. ● Additional physical treatment could help further reduce MP discharge. Plastic particles smaller than 5 mm are microplastics. They are among the significant pollutants that recently attracted attention. Great quantities of microplastics enter the sewage system daily and reach wastewater treatment plants (WWTPs). As a result, WWTPs are potential microplastic sources. Hence, they create a pathway for microplastics to reach aquatic environments with treated wastewater discharge. Studies on microplastic characterization in WWTPs have gained momentum in academia. This study investigates the abundance, size, shape, color, polymer type, and removal efficiencies of microplastics in a municipal wastewater treatment plant (WWTP) in Denizli/Turkey. The results showed that the dominant microplastic shape in wastewater samples was fibers (41.78%–60.77%) in the 100–500 µm (58.57%–80.07%) size range. Most of the microplastics were transparent-white (32.86%–58.93%). The dominant polymer types were polyethylene (54.05%) and polyethylene vinyl acetate (37.84%) in raw wastewater. Furthermore, the microplastic removal efficiencies of the Denizli Central WWTP as a whole and for individual treatment units were evaluated. Although the microplastic pollution removal efficiency of the Denizli Central WWTP was over 95%, the microplastic concentration discharged daily into the receiving environment was considerably high (1.28 × 1010 MP/d). Thus, Denizli Central WWTP effluents result in a high volume of emissions in terms of microplastic pollution with a significant daily discharge to the Çürüksu Stream.  相似文献   

13.
● Appreciable H2O2 production rate was achieved in MRCs utilizing NH4HCO3 solutions. ● Carbon black outperformed activated carbon as the catalyst for H2O2 production. ● The optimum carbon black loading for H2O2 production on air-cathode was 10 mg/cm2. ● The optimum number of cell pairs was determined to be three. ● A maximum power density of 980 mW/m2 was produced by MRCs with 5 cell pairs. H2O2 was produced at an appreciable rate in microbial reverse-electrodialysis cells (MRCs) coupled with thermolytic solutions, which can simultaneously capture waste heat as electrical energy. To determine the optimal cathode and membrane stack configurations for H2O2 production, different catalysts, catalyst loadings and numbers of membrane cell pairs were tested. Carbon black (CB) outperformed activated carbon (AC) for H2O2 production, although AC showed higher catalytic activity for oxygen reduction. The optimum CB loading was 10 mg/cm2 in terms of both the H2O2 production rate and power production. The optimum number of cell pairs was determined to be three based on a tradeoff between H2O2 production and capital costs. A H2O2 production rate as high as 0.99 ± 0.10 mmol/(L·h) was achieved with 10 mg/cm2 CB loading and 3 cell pairs, where the H2O2 recovery efficiency was 52 ± 2% and the maximum power density was 780 ± 37 mW/m2. Increasing the number of cell pairs to five resulted in an increase in maximum power density (980 ± 21 mW/m2) but showed limited effects on H2O2 production. These results indicated that MRCs can be an efficient method for sustainable H2O2 production.  相似文献   

14.
● A method based on ATR-FTIR and ML was developed to predict CHNS contents in waste. ● Feature selection methods were used to improve models’ prediction accuracy. ● The best model predicted C, H, and N contents with accuracy R 2 ≥ 0.93, 0.87, 0.97. ● Some suitable models showed insensitivity to spectral noise. ● Under moisture interference, the models still had good prediction performance. Elemental composition is a key parameter in solid waste treatment and disposal. This study has proposed a method based on infrared spectroscopy and machine learning algorithms that can rapidly predict the elemental composition (C, H, N, S) of solid waste. Both noise and moisture spectral interference that may occur in practical application are investigated. By comparing two feature selection methods and five machine learning algorithms, the most suitable models are selected. Moreover, the impacts of noise and moisture on the models are discussed, with paper, plastic, textiles, wood, and leather as examples of recyclable waste components. The results show that the combination of the feature selection and K-nearest neighbor (KNN) approaches exhibits the best prediction performance and generalization ability. Particularly, the coefficient of determination (R2) of the validation set, cross validation and test set are higher than 0.93, 0.89, and 0.97 for predicting the C, H, and N contents, respectively. Further, KNN is less sensitive to noise. Under moisture interference, the combination of feature selection and support vector regression or partial least-squares regression shows satisfactory results. Therefore, the elemental compositions of solid waste are quickly and accurately predicted under noise and moisture disturbances using infrared spectroscopy and machine learning algorithms.  相似文献   

15.
● Pd-Cu modified CNT membranes were prepared successfully by electrodeposition method. ● The deposition voltage and deposition time were optimized for Pd-Cu co-deposition. ● NO3-N was removed efficiently from water by Pd-Cu modified CNT membranes. ● The presence of dissolved oxygen did not affect the nitrate reduction performance. ● Mass transfer rate was promoted significantly with the increase in membrane flux. Excessive nitrate in water is harmful to the ecological environment and human health. Electrocatalytic reduction is a promising technology for nitrate removal. Herein, a Pd-Cu modified carbon nanotube membrane was fabricated with an electrodeposition method and used to reduce nitrate in a flow-through electrochemical reactor. The optimal potential and duration for codeposition of Pd and Cu were −0.7 V and 5 min, respectively, according to linear scan voltammetry results. The membrane obtained with a Pd:Cu ratio of 1:1 exhibited a relatively high nitrate removal efficiency and N2 selectivity. Nitrate was almost completely reduced (~99 %) by the membrane at potentials lower than −1.2 V. However, −0.8 V was the optimal potential for nitrate reduction in terms of both nitrate removal efficiency and product selectivity. The nitrate removal efficiency was 56.2 %, and the N2 selectivity was 23.8 % for the Pd:Cu=1:1 membrane operated at −0.8 V. Nitrate removal was enhanced under acidic conditions, while N2 selectivity was decreased. The concentrations of Cl ions and dissolved oxygen showed little effect on nitrate reduction. The mass transfer rate constant was greatly improved by 6.6 times from 1.14 × 10−3 m/h at a membrane flux of 1 L/(m2·h) to 8.71 × 10−3 m/h at a membrane flux of 15 L/(m2·h), which resulted in a significant increase in the nitrate removal rate from 13.6 to 133.5 mg/(m2·h). These findings show that the Pd-Cu modified CNT membrane is an efficient material for nitrate reduction.  相似文献   

16.
● Au, Ag and Pd were recovered from WPCBs with high efficiencies. ● Au leaching is strictly dependent on WPCB size and reagent concentration. ● High Ag extraction efficiencies are achieved regardless of the WPCB size. ● Pd leaching works better with small and medium WPCB sizes. ● The leaching results suggest the possibility of selective recovery of metals. The work presented here focused on the extraction of gold (Au), silver (Ag) and palladium (Pd) from electronic waste using a solution of ammonium thiosulfate. Thiosulfate was used as a valid alternative to cyanide for precious metal extractions, due to its non-toxicity and high selectivity. The interactions between sodium thiosulfate, total ammonia/ammonium, precious metal concentrations and the particle size of the waste printed circuit boards (WPCBs) were studied by the response surface methodology (RSM) and the principal component analysis (PCA) to maximize precious metal mobilization. Au extraction reached a high efficiency with a granulometry of less than 0.25 mm, but the consumption of reagents was high. On the other hand, Ag extraction depended neither on thiosulfate/ammonia concentration nor granulometry of WPCBs and it showed efficiency of 90% also with the biggest particle size (0.50 < Ø < 1.00 mm). Pd extraction, similarly to Au, showed the best efficiency with the smallest and the medium WPCB sizes, but required less reagents compared to Au. The results showed that precious metal leaching is a complex process (mainly for Au, which requires more severe conditions in order to achieve high extraction efficiencies) correlated with reagent concentrations, precious metal concentrations and WPCB particle sizes. These results have great potentiality, suggesting the possibility of a more selective recovery of precious metals based on the different granulometry of the WPCBs. Furthermore, the high extraction efficiencies obtained for all the metals bode well in the perspective of large-scale applications.  相似文献   

17.
● Waste refrigerator polyurethane (WRPU) was ingested and biodegraded by mealworms. ● The carbon in WRPU-based frass was lower than that in WRPU. ● Urethane groups in WRPU were broken down after ingestion by mealworms. ● Thermal stability of WRPU-based frass were deteriorated compared to that of WRPU. ● Gut microbiomes of mealworms fed using WRPU were distinct from that fed using bran. Refrigerator insulation replacement results in discarding a large amount of waste refrigerator polyurethane (WRPU). Insect larvae like mealworms have been used to biodegrade pristine plastics. However, knowledge about mealworms degrading WRPU is scarce. This study presents an in-depth investigation of the degradation of WRPU by mealworms using the micro-morphology, composition, and functional groups of WRPU and the egested frass characteristics. It was found that the WRPU debris in frass was scoured, implying that WRPU was ingested and degraded by mealworms. The carbon content of WRPU-based frass was lower than that of WRPU, indicating that mealworms utilized WRPU as a carbon source. The urethane groups in WRPU were broken, and benzene rings’ C=C and C–H bonds in the isocyanate disappeared after being ingested by mealworms. Thermal gravimetric-differential thermal gravimetry analysis showed that the weight loss temperature of WRPU-based frass was 300 °C lower than that of WRPU, indicating that the thermal stability of WRPU deteriorated after being ingested. The carbon balance analysis confirmed that carbon in the ingested WRPU released as CO2 increased from 18.84 % to 29.80 %, suggesting that WRPU was partially mineralized. The carbon in the mealworm biomass ingesting WRPU decreased. The possible reason is that WRPU does not supply sufficient nutrients for mealworm growth, and the impurities and odor present in WRPU affect the appetite of the mealworms. The microbial community analysis indicated that WRPU exerts a considerable effect on the gut microorganism of mealworms. These findings confirm that mealworms degrade WRPU.  相似文献   

18.
● The availability of PD-anammox was investigated with higher NO3–N concentration. ● NO3–N concentration affects NO3–N accumulation during denitrification. ● COD concentration is determinant for N removal pathways in PD-anammox process. ● The synergy/competition mechanisms between denitrifiers and anammox was explored. Partial denitrification-anammox (PD-anammox) is an innovative process to remove nitrate (NO3–N) and ammonia (NH4+–N) simultaneously from wastewater. Stable operation of the PD-anammox process relies on the synergy and competition between anammox bacteria and denitrifiers. However, the mechanism of metabolic between the functional bacteria in the PD-anammox system remains unclear, especially in the treatment of high-strength wastewater. The kinetics of nitrite (NO2–N) accumulation during denitrification was investigated using the Michaelis-Menten equation, and it was found that low concentrations of NO3–N had a more significant effect on the accumulation of NO2–N during denitrification. Organic matter was a key factor to regulate the synergy of anammox and denitrification, and altered the nitrogen removal pathways. The competition for NO2–N caused by high COD concentration was a crucial factor that affecting the system stability. Illumina sequencing techniques demonstrated that excess organic matter promoted the relative abundance of the Denitratesoma genus and the nitrite reductase gene nirS, causing the denitrifying bacteria Denitratisoma to compete with Cadidatus Kuenenia for NO2–N, thereby affecting the stability of the system. Synergistic carbon and nitrogen removal between partial denitrifiers and anammox bacteria can be effectively achieved by controlling the COD and COD/NO3–N.  相似文献   

19.
● A series of mixed-LOFs and portable LOF-fibers were synthesized. ● LOF-S3 was selected as a luminescent sensor for antibiotics. ● Mixed-LOF was capable of decoding antibiotics by emission intensity ratios. ● Linear relationship between antibiotic concentration and I545nm/I618nm was observed. Due to the potential risk of antibiotics to the environment, the development of inexpensive, simple, and reliable antibiotic detection methods is significant but also faces challenges. In this work, several lanthanide-organic frameworks (LOFs), constructed from lanthanide ions (Eu3+ and/or Tb3+) and 1,3,5-benzene-tricarboxylic acid (BTC), were synthesized by solvothermal method. LOF-S3 with comparable emission peaks of 5D47F5 (Tb3+, 545 nm) and 5D07F2 (Eu3+, 618 nm) was selected as a luminescent sensor. In this system, the highly efficient energy transferred from the organic linker to lanthanide ions and from Tb3+ to Eu3+ occurs. LOF-S3 sensor was capable of decoding antibiotics by distinguishable emission intensity ratios. Therefore, a two-dimensional decoded map of antibiotics was established. The linear relationship between antibiotic concentration and emission intensity ratio indicated the quantitative determination of antibiotics was feasible. As a typical analyte, the response mechanism of nalidixic acid (NA) was investigated in detail. The competition of NA and BTC for UV light absorption, as well as the binding propensity of NA and Tb, affected the organic linkers-to-lanthanide ions and Tb-to-Eu energy transfer, resulting in the change of fluorescence intensity ratio. The self-calibrating mixed-LOF sensor overcame the uncontrollable errors of the traditional absolute emission intensity method and generated stable luminescent signals in multiple cycles. Furthermore, the integration of LOF-S3 with polymer fibers enabled the formation of a LOF-polymer fibrous composite with fluorescence detection capability, which is a promising portable sensor for practical applications.  相似文献   

20.
● This study explored the long-term association by double robust additive models. ● Individual exposure concentrations were assessed by integrating GAM, LUR and BPNN. ● PM2.5, SO2 and NO2 are positively associated with cerebrovascular disease. ● CO could reduce the risk of cerebrovascular disease with the highest robustness. ● The elderly, women and people with normal BMI are at higher risk for air pollution. The relationship between air pollution and cerebrovascular disease has become a popular topic, yet research findings are highly heterogeneous. This study aims to investigate this association based on detailed individual health data and a precise evaluation of their exposure levels. The integrated models of generalized additive model, land use regression model and back propagation neural network were used to evaluate the exposure concentrations. And doubly robust additive model was conducted to explore the association between cerebrovascular disease and air pollution after adjusted for demographic characteristics, physical examination, disease information, geographic and socioeconomic status. A total of 25097 subjects were included in the Beijing Health Management Cohort from 2013 to 2018. With a 1 μg/m3 increase in the concentrations of PM2.5, SO2 and NO2, the incidence risk of cerebrovascular disease increased by 1.02 (95% CI: 1.008–1.034), 1.06 (95% CI: 1.034–1.095) and 1.02 (95% CI: 1.010–1.029) respectively. Whereas CO exposure could decrease the risk, with an odds ratio of 0.38 (95% CI: 0.212–0.626). In the subgroup analysis, individuals under the age of 50 with normal BMI were at higher risk caused by PM2.5, and SO2 was considered more hazardous to women. Meanwhile, the protective effect of CO on women and those with normal BMI was stronger. Successful reduction of long-term exposure to PM2.5, SO2 and NO2 would lead to substantial benefits for decrease the risk of cerebrovascular disease especially for the health of the susceptible individuals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号