首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
• Metal pollution was studied in riverine sediments from different land-use areas. • Cd was the most serious heavy metal contaminant in riverine sediment cores. • Riverine sediment cores from industrial area were most polluted by heavy metals. • B1 fraction determined metal pollution, risk and toxicity in riverine sediments. Anthropogenic activities are regarded as the main sources of heavy metal pollution, yet few studies have investigated the effects of land-use setting on heavy metal accumulation in riverine sediments. Based on both total contents and geochemical fractions, heavy metal pollution, risk and toxicity were determined in riverine sediment cores from different land-use areas (mountain area- MA, farm area- FA, city area- CA, and industrial area- IA) of the Yang River Basin in North China. The results showed that FA had higher contents of riverine sedimentary Cu; CA had higher contents of Cd; IA had higher contents of both Cd and Zn. Most riverine sediments from FA and IA were contaminated with the investigated metals, although these concentrations were evaluated to have low potential ecological risk and no toxicity to benthic organisms. However, a high proportion of Cd in the B1 fraction of riverine sediments in IA indicating high risk should receive more attention. The B1 fraction largely determined the contamination, risk and toxicity levels associated with heavy metals in the riverine sediments of the Yang River Basin.  相似文献   

2.
Rhodanobacter spp. are dominant in acidic, high nitrate and metal contaminated sites. • Dominance of Rhodanobacter is likely due to tolerance to low pH and heavy metals. • High organic content increases stress tolerance capacity. • Longer incubation time is critical for accurate assessment of MIC (various stresses). This work examines the physiologic basis of stress tolerance in bacterial strains of the genus Rhodanobacter that dominate in the acidic and highly metal contaminated near-source subsurface zone of the Oak Ridge Integrated Field Research Challenge (ORIFRC) site. Tolerance of R. denitrificans to levels of different stresses were studied in synthetic groundwater medium and R2A broth. Two strains of R. denitrificans, strains 2APBS1T and 116-2, tolerate low to circumneutral pH (4–8), high Uranium (1 mmol/L), elevated levels of nitrate (400 mmol/L) and high NaCl (2.5%). A combination of physiologic traits, such as growth at low pH, increased growth in the presence of high organics concentration, and tolerance of high concentrations of nitrate, NaCl and heavy metals is likely responsible for dominance of Rhodanobacter at the ORIFRC site. Furthermore, extended incubation times and use of low carbon media, better approximating site groundwater conditions, are critical for accurate determination of stress responses. This study expands knowledge of the ecophysiology of bacteria from the genus Rhodanobacter and identifies methodological approaches necessary for acquiring accurate tolerance data.  相似文献   

3.
• Adding kaolin/zeolite promotes the formation of stable heavy metals. • The potential ecological risk index of co-pyrolysis biochar is extremely low. • Increasing the pyrolysis temperature reduces the leaching toxicity of heavy metals. • The toxicity of biochar reduces with the increasing content of stable heavy metals. Pyrolysis is a promising technique used for treating of sewage sludge. However, the application of pyrolysis products is limited due to the presence of heavy metals. In this study, sewage sludge mixed with kaolin/zeolite was pyrolyzed in a rotary kiln, aiming to improve the immobilization of heavy metals in pyrolytic carbon. The total concentrations, speciation distributions, leaching toxicities, and potential ecological risk indices of heavy metals in pyrolysis biochar were explored to examine the effects of kaolin/zeolite and pyrolytic temperature on immobilizing heavy metals. Further, mineral composition and surface morphology of biochar were characterized by X-ray diffraction and scanning electron microscopy to reveal the potential mechanism of immobilizing heavy metals. Increasing pyrolysis temperature facilitated the stabilization of heavy metals in pyrolysis biochar. The proportions of stable heavy metals in biochar obtained at 650℃ were 54.50% (Cu), 29.73% (Zn), 79.29% (Cd), 68.17% (Pb) and 86.70% (Cr). Compared to sewage sludge, the potential contamination risk index of pyrolysis biochar obtained at 650℃ was reduced to 17.01, indicating a low ecological risk. The addition of 7% kaolin/zeolite further reduced the risk index of co-pyrolysis biochar prepared at 650℃ to 10.86/15.28. The characterization of biochar revealed that increase in the pyrolysis temperature and incorporation of additives are conducive to the formation of stable heavy metal-inorganics. This study demonstrates that the formation of stable mineral compounds containing heavy metals is the key to stabilizing heavy metals in pyrolysis biochar.  相似文献   

4.
• Aquatic plants are more likely to absorb TiO2 NPs that are beneficial to them. • Ag NPs inhibited the growth of aquatic plants under both 5- and 60-day exposure. • CeO2 NPs had positive/negative impact on plant in 5/60-day exposure, respectively. • TiO2 NPs presence could enhance the photosynthesis and increase the plant biomass. • The ENPs changed plant activity, which resulted in changes of wetland performance. Engineered nanoparticles (ENPs) threaten the environment through wastewater discharging. Generally, constructed wetlands (CWs) are efficient methods for ENPs removal. However, the biotoxicity of ENPs on plants in CWs is unclear. Here, we investigated the distribution and bio-impacts of different ENPs (Ag NPs, TiO2 NPs, and CeO2 NPs) in plants under 5- and 60-day exposure to 1 and 50 mg/L concentrations. Results showed that ENPs appeared in the vascular bundle and mesophyll cell space, which induced the variation in antioxidase activities (e.g., superoxide dismutase [SOD], peroxidase [POD], and catalase [CAT] activities) as well as overproduction of malondialdehyde (MDA). Additionally, Ag NPs inhibited photosynthesis rate and root activity during two exposure phases. CeO2 NPs had positive and negative impacts on plants in 5- and 60-day exposure, respectively. Inversely, TiO2 NPs enhanced photosynthesis and root activity under 60-day exposure. Finally, the contents of the C, N, and P elements in plants fluctuated in response to ENPs stress. All results have a positive correlation with the wetland performance under ENPs exposure except for TiO2 NPs treatment. Overall, our study systematically reveals aquatic plants' responses to ENPs and provides a reference for building ecological treatment systems to purify wastewater containing ENPs.  相似文献   

5.
• Fe(III) accepted the most electrons from organics, followed by NO3, SO42‒, and O2. • The electrons accepted by SO42‒ could be stored in the solid AVS, FeS2-S, and S0. • The autotrophic denitrification driven by solid S had two-phase characteristics. • A conceptual model involving electron acceptance, storage, and donation was built. • S cycle transferred electrons between organics and NO3 with an efficiency of 15%. A constructed wetland microcosm was employed to investigate the sulfur cycle-mediated electron transfer between carbon and nitrate. Sulfate accepted electrons from organics at the average rate of 0.84 mol/(m3·d) through sulfate reduction, which accounted for 20.0% of the electron input rate. The remainder of the electrons derived from organics were accepted by dissolved oxygen (2.6%), nitrate (26.8%), and iron(III) (39.9%). The sulfide produced from sulfate reduction was transformed into acid-volatile sulfide, pyrite, and elemental sulfur, which were deposited in the substratum, storing electrons in the microcosm at the average rate of 0.52 mol/(m3·d). In the presence of nitrate, the acid-volatile and elemental sulfur were oxidized to sulfate, donating electrons at the average rate of 0.14 mol/(m3·d) and driving autotrophic denitrification at the average rate of 0.30 g N/(m3·d). The overall electron transfer efficiency of the sulfur cycle for autotrophic denitrification was 15.3%. A mass balance assessment indicated that approximately 50% of the input sulfur was discharged from the microcosm, and the remainder was removed through deposition (49%) and plant uptake (1%). Dominant sulfate-reducing (i.e., Desulfovirga, Desulforhopalus, Desulfatitalea, and Desulfatirhabdium) and sulfur-oxidizing bacteria (i.e., Thiohalobacter, Thiobacillus, Sulfuritalea, and Sulfurisoma), which jointly fulfilled a sustainable sulfur cycle, were identified. These results improved understanding of electron transfers among carbon, nitrogen, and sulfur cycles in constructed wetlands, and are of engineering significance.  相似文献   

6.
• MPs in the coastal sediment of south-east coast of India are quantified. • High MPs are recorded near river mouths and nearshore regions. • Polyethylene and polypropylene are the major polymers observed. • MPs contamination is higher than the values reported elsewhere. In view of increasing Microplastics (MPs) contamination in the marine environment and dearth of baseline data, a study was conducted on the abundance, characterization, and seasonal distribution of MPs in the nearshore sediments of the south-east coast of India. Sediment samples (n = 130) were collected at a distance of 1 km and 10 km from the shore region at varying depths (8–45 m) along the Chennai to Puducherry coast (165 km stretch), representing two seasons, i.e., south-west (July 2019 and July 2020) and north-east (January 2020) monsoons. The average abundance of MPs at the 22 offshore sites along the Chennai to Puducherry coast varied from 9±4.3 to 19±12.9 particles/50 g dry weight, in July 2019 and January 2020, respectively. July 2020 had an average abundance of 10±4.5 particles/50 g dry weight. Spatially, high levels of MPs were found at 1km stations and transects in proximity to the river inlets, and temporally, the north-east month recorded the maximum concentration. The dominant morphotype was the filament, and the major polymers were polyethylene and polypropylene. Scanning Electron Microscope (SEM) images revealed the surface irregularity and degradation of MPs due to weathering. The study highlights that high sediment contamination by MPs occurs during heavy rainfall and accumulates closer to river inlets. Eventually, this study suggests that appropriate management of plastic wastes on the landside will reduce MP contamination in the marine environment.  相似文献   

7.
• The three simulation factors caused various changes in both water and sediment. • Responses to simulations differed with the reported natural lakes and wetlands. • Al has dominant effects on sediment P release control among the three factors. • Adding sediment Al can be effective and safe under the simulated conditions. • Polyphosphates were not generated, while added phytate was rather stable. The effects of sediment aluminum (Al), organic carbon (OC), and dissolved oxygen (DO) on phosphorus (P) transformation, at the water-sediment interface of a eutrophic constructed lake, were investigated via a series of simulative experiments. The above three factors had various influences on dissolved P concentration, water pH, water and surface sediment appearance, and P fractions. Additions of Al had the greatest effect on suppressing P release, and the water pH remained alkaline in the water-sediment system under various OC and DO conditions. No dissolution of the added Al was detected. 31P-NMR characterization suggested that OC addition did not promote biological P uptake to polyphosphates under oxic conditions. The simulation result on the added phytate indicated the absence of phytate in the original lake sediment. As compared to the reported natural lakes and wetland, the water-sediment system of the constructed lake responded differently to some simulative conditions. Since Al, OC, and DO can be controlled with engineering methods, the results of this study provide insights for the practical site restorations.  相似文献   

8.
• The long-period groundwater evolution was identified by hydrochemical signatures. • The dominant processes in the groundwater evolution were verified. • Groundwater quality in the coastal areas was susceptible to deterioration due to SI. • Groundwater contamination arose from fertilizer, livestock manure & domestic sewage. The evolution of hydrochemical compositions influenced by long-period interactions between groundwater and the geo-environment is a fundamental issue for exploring groundwater quality and vulnerability. This study systematically investigated the hydrochemical processes and anthropogenic interference occurring in the river basin by bivariate plots, Gibbs diagrams, saturation index, and the major ions ratios. Apparent changes in groundwater hydrochemistry have been observed in the study area, illustrating the origins of major ions are affected by various internal and external factors. Results highlighted that TDS varied from freshwater to brackish water, ranging between 187.90 and 2294.81 mg/L. Ca2+ and HCO3 are the dominant ions in the studied samples. The results gained by Gibbs diagrams, bivariate plots, saturation index, and the major ions ratios demonstrated that minerals dissolution/precipitation, cation exchange, and human inputs play crucial roles in the unconfined aquifers. Moreover, the overuse of nitrogen fertilizer, livestock manure, and industrial/domestic sewage led to nitrate and nitrite contamination and brought significant challenges to the surrounding hydrogeo-environment. The present study could make an unambiguous identification of natural processes and anthropogenic interventions influencing groundwater hydrochemistry’s long-period evolution and create a preliminary strategy for groundwater resources management.  相似文献   

9.
• Smart wetland was designed to treat wastewater according to zero waste principle. • The system included a dynamic roughing filter, Cyperus papyrus (L.) and zeolite. • It removed 98.8 and 99.8% of chemical and bacterial pollutants in 3 days. • The effluent reused to irrigate a landscape and the sludge recycled as fertilizer. • The plant biomass is a profitable resource for antibacterial and antioxidants. The present investigation demonstrates the synergistic action of using a sedimentation unit together with Cyperus papyrus (L.) wetland enriched with zeolite mineral in one-year round experiment for treating wastewater. The system was designed to support a horizontal surface flow pattern and showed satisfactory removal efficiencies for both physicochemical and bacteriological contaminants within 3 days of residence time. The removal efficiencies ranged between 76.3% and 98.8% for total suspended solids, turbidity, iron, biological oxygen demand, and ammonia. The bacterial indicators (total and fecal coliforms, as well as fecal streptococci) and the potential pathogens (Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa) showed removal efficiencies ranged between 96.9% and 99.8%. We expect the system to offer a smart management for every component according to zero waste principle. The treated effluent was reused to irrigate the landscape of pilot area, and the excess sludge was recycled as fertilizer and soil conditioner. The zeolite mineral did not require regeneration for almost 36 weeks of operation, and enhanced the density of shoots (14.11%) and the height of shoots (15.88%). The harvested plant biomass could be a profitable resource for potent antibacterial and antioxidant bioactive compounds. This could certainly offset part of the operation and maintenance costs and optimize the system implementation feasibility. Although the experiment was designed under local conditions, its results could provide insights to upgrade and optimize the performance of other analogous large-scale constructed wetlands.  相似文献   

10.
• The concentrations of 13 heavy metals in Taihu Lake were analyzed. • Aquatic vegetables intake was first included in deriving human health AWQC. • The human health AWQC for 13 heavy metals in Taihu Lake were derived. • Human health risk assessment for 13 heavy metals were conducted in Taihu Lake. Heavy metals are widely concerning because of their toxicity, persistence, non-degradation and bioaccumulation ability. Human health ambient water quality criteria (AWQC) are specific levels of chemicals that can occur in water without harming human health. At present, most countries do not consider the effects of aquatic vegetables in deriving human health AWQC. Therefore, the intake of aquatic vegetables (Brasenia schreberi) was added to the derivation of human health AWQC and a health risk assessment for 13 heavy metals in Taihu Lake. The human health AWQC (consumption of water, fish and aquatic vegetables) values of 13 heavy metals ranged from 0.04 (Cd) to 710.87 μg/L (Sn), and the intake of B. schreberi had a very significant effect on the human health AWQC for Cu, with a more than 62-fold difference. The hazard quotients of As (2.8), Cd (1.6), Cr (1.4) and Cu (4.86) were higher than the safe level (HQ= 1), indicating that As, Cd, Cr and Cu in Taihu Lake posed a significant health risk. Sensitivity analysis showed that the contribution rate of B. schreberi intake to the human health risk from Cu was 91.6%, and all results indicated that the risk of Cu in B. schreberi to human health should be of particular concern. This study adds the consideration of aquatic vegetable consumption to the traditional method of human health AWQC derivation and risk assessments for the first time, and this approach can promote the development of risk assessments and water quality criteria.  相似文献   

11.
• Bacterial community varied spatially in sediments from the urban river network. • Key environmental factors shaping bacterial community were detected by RDA. • Bacterial co-occurrence networks changed at different levels of nutrient and metal. • Potential indicator species were selected to predict pollution risk in sediment. Microbial communities in sediment are an important indicator linking to environmental pollution in urban river systems. However, how the diversity and structure of bacterial communities in sediments from an urban river network respond to different environmental factors has not been well studied. The goal of this study was to understand the patterns of bacterial communities in sediments from a highly dense urbanized river network in the lower Yangtze River Delta by Illumina MiSeq sequencing. The correlations between bacterial communities, the environmental gradient and geographical distance were analyzed by redundancy analysis (RDA) and network methods. The diversity and richness of bacterial community in sediments increased from upstream to downstream consistently with the accumulation of nutrient in the urban river network. Bacterial community composition and structure showed obvious spatial changes, leading to two distinct groups, which were significantly related to the characteristics of nutrient and heavy metal in sediments. Humic substance, available nitrogen, available phosphorus, Zn, Cu, Hg and As were selected as the key environmental factors shaping the bacterial community in sediments based on RDA. The co-occurrence patterns of bacterial networks showed that positive interaction between bacterial communities increased but the connectivity among bacterial genera and stability of sediment ecosystem reduced under a higher content of nutrient and heavy metal in average. The sensitive and ubiquitous taxa with an overproportional response to key environmental factors were detected as indicator species, which provided a novel method for the prediction of the pollution risk of sediment in an urban river network.  相似文献   

12.
• A new EK-BIO technology was developed to decontaminate e-waste contaminated soil. • Adding sodium citrate in electrolyte was a good choice for decontaminating the soil. • The system has good performance with low cost. This work investigates the influence of electrokinetic-bioremediation (EK-BIO) on remediating soil polluted by persistent organic pollutants (POPs) and heavy metals (mainly Cu, Pb and Ni), originated from electronic waste recycling activity. The results demonstrate that most of POPs and metals were removed from the soil. More than 60% of metals and 90% of POPs in the soil were removed after a 30-day EK-BIO remediation assisted by citrate. A citrate sodium concentration of 0.02 g/L was deemed to be suitable because higher citrate did not significantly improve treatment performance whereas increasing dosage consumption. Citrate increased soil electrical current and electroosmotic flow. After remediation, metal residues mainly existed in stable and low-toxic states, which could effectively lower the potential hazard of toxic metals to the surrounding environment and organisms. EK-BIO treatment influenced soil microbial counts, dehydrogenase activity and community structure.  相似文献   

13.
• Bioaerosols are produced in the process of wastewater biological treatment. • The concentration of bioaerosol indoor is higher than outdoor. • Bioaerosols contain large amounts of potentially pathogenic biomass and chemicals. • Inhalation is the main route of exposure of bioaerosol. • Both the workers and the surrounding residents will be affected by the bioaerosol. Bioaerosols are defined as airborne particles (0.05–100 mm in size) of biological origin. They are considered potentially harmful to human health as they can contain pathogens such as bacteria, fungi, and viruses. This review summarizes the most recent research on the health risks of bioaerosols emitted from wastewater treatment plants (WWTPs) in order to improve the control of such bioaerosols. The concentration and size distribution of WWTP bioaerosols; their major emission sources, composition, and health risks; and considerations for future research are discussed. The major themes and findings in the literature are as follows: the major emission sources of WWTP bioaerosols include screen rooms, sludge-dewatering rooms, and aeration tanks; the bioaerosol concentrations in screen and sludge-dewatering rooms are higher than those outdoors. WWTP bioaerosols contain a variety of potentially pathogenic bacteria, fungi, antibiotic resistance genes, viruses, endotoxins, and toxic metal(loid)s. These potentially pathogenic substances spread with the bioaerosols, thereby posing health risks to workers and residents in and around the WWTP. Inhalation has been identified as the main exposure route, and children are at a higher risk of this than adults. Future studies should identify emerging contaminants, establish health risk assessments, and develop prevention and control systems.  相似文献   

14.
• Municipal solid waste (MSW) was fermented, screened, gasified, then co-processed. • Co-processing MSW in cement kilns could cause excessive pollutant emissions. • Bypass flue gas can be disposed of through the main flue system. • Popular MSW co-processing methods do not affect cement quality. Cement kiln co-processing techniques have been developed in the past 20 years in China, and more than 60 factories now use fermentation, screening, and gasification pre-treatment techniques to co-process municipal solid waste (MSW). There three complete MSW pre-treatment techniques, co-processing procedures, and environmental risk assessments have been described in few publications. In this study, we assessed the effectiveness of each technique. The results suggested that the pollutant content released by each pre-treatment technology was lower than the emission standard. To reveal the mechanisms of pollutant migration and enrichment, the substances in the kiln and kiln products are investigated. The input of co-processing materials (Co-M) produced by fermentation caused formation of polychlorinated dibenzo-p-dioxins and dibenzofuran (PCDD/Fs) in the bypass flue gas (By-gas) in excess of the regulatory standard. The Co-M input produced by the screening and gasifier technologies caused the total organic carbon (TOC) concentration to exceed the standard. In addition, the NOx, TOC, and PCDD/Fs in the By-gas exceeded the regulatory standard. Raw meal was the primary chlorine and heavy metals input stream, and clinker (CK) and cement kiln dust (CKD) accounted for>90% of the total chlorine output stream. Flue gas and CKD were the primary volatile heavy metal (Hg) output streams. Greater than 70% of the semi-volatile heavy metals (Cd, Pb, Tl and Se) distributed in hot raw meal and bypass cement kiln dust. The low-volatility heavy metals were concentrated in the CK. These results indicated that co-processing techniques used in China still require improvement.  相似文献   

15.
• DPAA sorption followed pseudo-secondary and intra-particle diffusion models. • Chemical bonding and intra-particle diffusion were dominant rate-limiting steps. • DPAA simultaneously formed inner- and outer-sphere complexes on siderite. • DPAA predominantly formed occluded inner-sphere complexes on magnetite. • Bidentate binuclear bond was identified for DPAA on siderite and magnetite. Diphenylarsinic acid (DPAA) is both the prime starting material and major metabolite of chemical weapons (CWs). Because of its toxicity and the widespread distribution of abandoned CWs in burial site, DPAA sorption by natural Fe minerals is of considerable interest. Here we report the first study on DPAA sorption by natural magnetite and siderite using macroscopic sorption kinetics, sequential extraction procedure (SEP) and microscopic extended X-ray absorption fine-structure spectroscopy (EXAFS). Our results show that the sorption pseudo-equilibrated in 60 minutes and that close to 50% and 20%–30% removal can be achieved for magnetite and siderite, respectively, at the initial DPAA concentrations of 4–100 mg/L. DPAA sorption followed pseudo-secondary and intra-particle diffusion kinetics models, and the whole process was mainly governed by intra-particle diffusion and chemical bonding. SEP and EXAFS results revealed that DPAA mainly formed inner-sphere complexes on magnetite (>80%), while on siderite it simultaneously resulted in outer-sphere and inner-sphere complexes. EXAFS analysis further confirmed the formation of inner-sphere bidentate binuclear corner-sharing complexes (2C) for DPAA. Comparison of these results with previous studies suggests that phenyl groups are likely to impact the sorption capacity and structure of DPAA by increasing steric hindrance or affecting the way the central arsenic (As) atom maintains charge balance. These results improve our knowledge of DPAA interactions with Fe minerals, which will help to develop remediation technology and predict the fate of DPAA in soil-water environments.  相似文献   

16.
• Coulomb and Lennard−Jones forces were considered for droplet interactions. • The net droplet interactions were repulsive. • Repulsive droplet interactions increased the transport of droplets. • Repulsive droplet interactions significantly modified the fate of droplets. Previous studies reported that specially designed ventilation systems provide good air quality and safe environment by removing airborne droplets that contain viruses expelled by infected people. These water droplets can be stable in the environment and remain suspended in air for prolonged periods. Encounters between droplets may occur and droplet interactions should be considered. However, the previous studies focused on other physical phenomena (air flow, drag force, evaporation) for droplet transport and neglected droplet interactions. In this work, we used computational fluid dynamics (CFD) to simulate the transport and fate of airborne droplets expelled by an asymptomatic person and considered droplet interactions. Droplet drag with turbulence for prediction of transport and fate of droplets indicated that the turbulence increased the transport of 1 μm droplets, whereas it decreased the transport of 50 μm droplets. In contrast to only considering drag and turbulence, consideration of droplet interactions tended to increase both the transport and fate. Although the length scale of the office is much larger than the droplet sizes, the droplet interactions, which occurred at the initial stages of release when droplet separation distances were shorter, had a significant effect in droplet fate by considerably manipulating the final locations on surfaces where droplets adhered. Therefore, it is proposed that when an exact prediction of transport and fate is required, especially for high droplet concentrations, the effects of droplet interactions should not be ignored.  相似文献   

17.
• There was significant absorption of heavy metals by the pepper in contaminated soils. • The target hazard quotient (THQ) indices followed the order of Pb>Zn>>Cd » Ni. • Relationships exist between contaminated plants and electromagnetic wave. • PCA and random search can select the main spectra and predict THQ for each element. Given the tendency of heavy metals to accumulate in soil and plants, the purpose of this study was to determine the contamination levels of Cd, Ni, Pb, and Zn on peppers (leaves and fruit) grown in contaminated soils in industrial centers. For this purpose, we measured the uptake of the four heavy metals by peppers grown in the heavy metal contaminated soils throughout the four growth stages: two-leaf, growth, flowering, and fruiting, and calculated various vegetation indices to evaluate the heavy metal contamination potentials. Electromagnetic waves were also applied for analyzing the responses of the target plants to various heavy metals. Based on the relevant spectral bands identified by principal component analysis (PCA) and random search methods, a regression method was then employed to determine the most optimal spectral bands for estimating the target hazard quotient (THQ). The THQ was found to be the highest in the plants contaminated by Pb (THQ= 62) and Zn (THQ= 5.07). The results of PCA and random search indicated that the spectra at the bands of b570, b650, and b760 for Pb, b400 and b1030 for Ni, b400 and b880 for Cd, and b560, b910, and b1050 for Zn were the most optimal spectra for assessing THQ. Therefore, in future studies, instead of examining the amount of heavy metals in plants by chemical analysis in the laboratory, the responses of the plants to the electromagnetic waves in the identified bands can be readily investigated in the field based on the established correlations.  相似文献   

18.
• Magnetotactic bacteria (MTB) synthesize magnetic nanoparticle within magnetosomes. • The morphologic and phylogenetic diversity of MTB were summarized. • Isolation and mass cultivation of MTB deserve extensive research for applications. • MTB can remove heavy metals, radionuclides, and organic pollutants from wastewater. Magnetotactic bacteria (MTB) are a group of Gram-negative prokaryotes that respond to the geomagnetic field. This unique property is attributed to the intracellular magnetosomes, which contains membrane-bound nanocrystals of magnetic iron minerals. This review summarizes the most recent advances in MTB, magnetosomes, and their potential applications especially the environmental pollutant control or remediation. The morphologic and phylogenetic diversity of MTB were first introduced, followed by a critical review of isolation and cultivation methods. Past research has devoted to optimize the factors, such as oxygen, carbon source, nitrogen source, nutrient broth, iron source, and mineral elements for the growth of MTB. Besides the applications of MTB in modern biological and medical fields, little attention was made on the environmental applications of MTB for wastewater treatment, which has been summarized in this review. For example, applications of MTB as adsorbents have resulted in a novel magnetic separation technology for removal of heavy metals or organic pollutants in wastewater. In addition, we summarized the current advance on pathogen removal and detection of endocrine disruptor which can inspire new insights toward sustainable engineering and practices. Finally, the new perspectives and possible directions for future studies are recommended, such as isolation of MTB, genetic modification of MTB for mass production and new environmental applications. The ultimate objective of this review is to promote the applications of MTB and magnetosomes in the environmental fields.  相似文献   

19.
• DBP adsorption was tested using three kinds of substrates in constructed wetlands. • The DBP adsorption capacity followed the order: steel slag>gravel>shell sand. • High temperatures increased the DBP adsorption capacity in the substrates. • DOM consistently inhibited the DBP adsorption onto steel slag and gravel. In recent years, the presence and adverse impacts of phthalic acid esters in aquatic environments have gained increasing attention. This work investigated the adsorption behavior of a typical phthalic acid ester, dibutyl phthalate (DBP), onto steel slag, gravel, and shell sand (substrates commonly used in constructed wetlands). The influence of dissolved organic matter (DOM) on DBP adsorption was investigated using humic acid as a proxy for DOM. The results demonstrated that the adsorption of DBP to three substrates reached equilibrium within 96 h, and the adsorption kinetics were well fitted by a pseudo-second-order model. The DBP adsorption isotherms were best fitted by the Langmuir adsorption model. The DBP adsorption capacity decreased in the order of steel slag>gravel>shell sand, with values of 656 mg/kg, 598 mg/kg, and 6.62 mg/kg at 25°C, respectively. DBP adsorbed to the surface of all substrates in a monolayer via an endothermic process. The DBP adsorption capacities of steel slag and gravel decreased as the DOM content increased. The DBP adsorption mechanisms to steel slag and gravel mainly involved the surface coordination of DBP with –OH or –COOH groups and electrostatic interactions. The results of this work suggest that steel slag and gravel may be ideal substrates for use in constructed wetlands to treat wastewater polluted with DBP.  相似文献   

20.
• Indirect use of sludge in ditches alongside plants was tested in field experiments. • The dried and stabilized sludge in ditches was recovered with heavy metals. • Cd, Pb, Cu and Zn in the planted soil were all in a safe range. • The indirect use of sludge increased plant yield, soil N content and C storage. The treatment and disposal of municipal sewage sludge (MSS) is an urgent problem to be resolved in many countries. Safely using the nutrients within MSS to increase crop yield and enhance the fertility of poor soil could contribute to achieving sustainable development. An indirect use of MSS in ditches alongside Pennisetum hybridum plants was studied in field plots for 30 months and the contents of heavy metals and macronutrients were monitored in soil, sludge and plant samples. We found that the yield of P. hybridum was significantly increased by 2.39 to 2.80 times and the treated plants had higher N content compared with no sludge. In addition, the organic matter (OM) and N contents in the planted soil increased significantly compared with the initial soil. The OM content in the planted soil of the MSS treatment was 2.9 to 5.2 times higher than that with no sludge, and N increased by 2.0 to 3.8 times. However, MSS had no significant effect on the N, P and K contents in the soil at the bottom of the MSS ditch, and the content of heavy metals (Cd, Pb, Cu and Zn) were also within the safe range. Moreover, the moisture content and phytotoxicity of MSS after this indirect use were reduced and the heavy metal contents changed little, which is favorable to the further disposal of recovered MSS. Therefore, this indirect use of MSS is beneficial to agricultural production, soil quality and environmental sustainability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号