首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A. sydowii strain bpo1 exhibited 99.8% anthracene degradation efficiency. • Four unique metabolic products were obtained after anthracene degradation. • Ligninolytic enzymes induction played vital roles in the removal of anthracene. • Laccase played a crucial role in comparison with other enzymes induced. The present study investigated the efficiency of Aspergillus sydowii strain bpo1 (GenBank Accession Number: MK373021) in the removal of anthracene (100 mg/L). Optimal degradation efficiency (98.7%) was observed at neutral pH, temperature (30℃), biomass weight (2 g) and salinity (0.2% w/v) within 72 h. The enzyme analyses revealed 131%, 107%, and 89% induction in laccase, lignin peroxidase, and manganese peroxidase respectively during anthracene degradation. Furthermore, the degradation efficiency (99.8%) and enzyme induction were significantly enhanced with the addition of 100 mg/L of citric acid and glucose to the culture. At varying anthracene concentrations (100–500 mg/L), the degradation rate constants (k1) peaked with increasing concentration of anthracene while the half-life (t1/2) decreases with increase in anthracene concentration. Goodness of fit (R2 = 0.976 and 0.982) was observed when the experimental data were subjected to Langmuir and Temkin models respectively which affirmed the monolayer and heterogeneous nature exhibited by A. sydwoii cells during degradation. Four distinct metabolites; anthracene-1,8,9 (2H,8aH,9aH)-trione, 2,4a-dihydronaphthalene-1,5-dione, 1,3,3a,7a-tetrahydro-2-benzofuran-4,7-dione and 2-hydroxybenzoic acid was obtained through Gas Chromatography-Mass spectrometry (GC-MS). A. sydowii exhibited promising potentials in the removal of PAHs.  相似文献   

2.
• PFOS was removed by soil adsorption and plant uptake in the VFCW. • Uptake of PFOS by E. crassipes was more than that of C. alternifolius. • PFOS in wastewater can inhibit the removal of nutrients. • Dosing with PFOS changed the soil microbial community in the VFCW. A vertical-flow constructed wetland (VFCW) was used to treat simulated domestic sewage containing perfluorooctane sulfonate (PFOS). The removal rate of PFOS in the domestic sewage was 93%–98%, through soil adsorption and plant uptake, suggesting that VFCWs can remove PFOS efficiently from wastewater. The removal of PFOS in the VFCW was dependent on soil adsorption and plant uptake; moreover, the percentage of soil adsorption was 61%–89%, and was higher than that of the plants uptake (5%–31%). The absorption capacity of Eichhornia crassipes (E. crassipes) (1186.71 mg/kg) was higher than that of Cyperus alternifolius (C. alternifolius) (162.77 mg/kg) under 10 mg/L PFOS, and the transfer factor of PFOS in E. crassipes and C. alternifolius was 0.04 and 0.58, respectively, indicating that PFOS is not easily translocated to leaves from roots of wetland plants; moreover, uptake of PFOS by E. crassipes was more than that of C. alternifolius because the biomass of E. crassipes was more than that of C. alternifolius and the roots of E. crassipes can take up PFOS directly from wastewater while C. alternifolius needs to do so via its roots in the soil. The concentration of 10 mg/L PFOS had an obvious inhibitory effect on the removal rate of total nitrogen, total phosphorus, chemical oxygen demand, and ammonia nitrogen in the VFCW, which decreased by 15%, 10%, 10% and 12%, respectively. Dosing with PFOS in the wastewater reduced the bacterial richness but increased the diversity in soil because PFOS stimulated the growth of PFOS-tolerant strains.  相似文献   

3.
4.
• Functional groups of AM and EDTA in composite increased removal of Cr(VI) and CR. • Removal process reached equilibrium within 30 min and was minimally affected by pH. • Elimination of Cr(VI) was promoted by coexisting CR. • Adsorption process of CR was less influenced by the presence of Cr(VI). • Mechanisms were electrostatic attraction, surface complexation and anion exchange. We prepared ethylenediaminetetraacetic acid (EDTA)-intercalated MgAl-layered double hydroxide (LDH-EDTA), then grafted acrylamide (AM) to the LDH-EDTA by a cross-linking method to yield a LDH-EDTA-AM composite; we then evaluated its adsorptive ability for Congo red (CR) and hexavalent chromium (Cr(VI)) in single and binary adsorption systems. The adsorption process on LDH-EDTA-AM for CR and Cr(VI) achieved equilibrium quickly, and the removal efficiencies were minimally affected by initial pH. The maximum uptake quantities of CR and Cr(VI) on LDH-EDTA-AM were 632.9 and 48.47 mg/g, respectively. In mixed systems, chromate removal was stimulated by the presence of CR, while the adsorption efficiency of CR was almost not influenced by coexisting Cr(VI). The mechanisms involved electrostatic attraction, surface complexation, and anion exchange for the adsorption of both hazardous pollutants. In the Cr(VI) adsorption process, reduction also took place. The removal efficiencies in real contaminated water were all higher than those in the laboratory solutions.  相似文献   

5.
• Upgrade process was investigated in a full-scale landfill leachate treatment plant. • The optimization of DO can technically achieve the shift from CND to PND process. • Nitrosomonas was mainly responsible for ammonium oxidation in PND system. • An obviously enrichment of Thauera was found in the PND process. • Enhanced metabolic potentials on organics was found during the process update. Because of the low access to biodegradable organic substances used for denitrification, the partial nitrification-denitrification process has been considered as a low-cost, sustainable alternative for landfill leachate treatment. In this study, the process upgrade from conventional to partial nitrification-denitrification was comprehensively investigated in a full-scale landfill leachate treatment plant (LLTP). The partial nitrification-denitrification system was successfully achieved through the optimizing dissolved oxygen and the external carbon source, with effluent nitrogen concentrations lower than 150 mg/L. Moreover, the upgrading process facilitated the enrichment of Nitrosomonas (abundance increased from 0.4% to 3.3%), which was also evidenced by increased abundance of amoA/B/C genes carried by Nitrosomonas. Although Nitrospira (accounting for 0.1%–0.6%) was found to stably exist in the reactor tank, considerable nitrite accumulation occurred in the reactor (reaching 98.8 mg/L), indicating high-efficiency of the partial nitrification process. Moreover, the abundance of Thauera, the dominant denitrifying bacteria responsible for nitrite reduction, gradually increased from 0.60% to 5.52% during the upgrade process. This process caused great changes in the microbial community, inducing continuous succession of heterotrophic bacteria accompanied by enhanced metabolic potentials toward organic substances. The results obtained in this study advanced our understanding of the operation of a partial nitrification-denitrification system and provided a technical case for the upgrade of currently existing full-scale LLTPs.  相似文献   

6.
• Sludge fermentation liquid addition resulted in a high NAR of 97.4%. • Extra NH4+-N from SFL was removed by anammox in anoxic phase. • Nitrogen removal efficiency of 92.51% was achieved in municipal wastewater. • The novel system could efficiently treat low COD/N municipal wastewater. Biological nitrogen removal of wastewater with low COD/N ratio could be enhanced by the addition of wasted sludge fermentation liquid (SFL), but the performance is usually limited by the introducing ammonium. In this study, the process of using SFL was successfully improved by involving anammox process. Real municipal wastewater with a low C/N ratio of 2.8–3.4 was treated in a sequencing batch reactor (SBR). The SBR was operated under anaerobic-aerobic-anoxic (AOA) mode and excess SFL was added into the anoxic phase. Stable short-cut nitrification was achieved after 46d and then anammox sludge was inoculated. In the stable period, effluent total inorganic nitrogen (TIN) was less than 4.3 mg/L with removal efficiency of 92.3%. Further analysis suggests that anammox bacteria, mainly affiliated with Candidatus_Kuenenia, successfully reduced the external ammonia from the SFL and contributed approximately 28%–43% to TIN removal. Overall, this study suggests anammox could be combined with SFL addition, resulting in a stable enhanced nitrogen biological removal.  相似文献   

7.
• A novel Bi2WO6/CuS composite was fabricated by a facile solvothermal method. • This composite efficiently removed organic pollutants and Cr(VI) by photocatalysis. • The DOM could promoted synchronous removal of organic pollutants and Cr(VI). • This composite could be applied at a wide pH range in photocatalytic reactions. • Possible photocatalytic mechanisms of organic pollutants and Cr(VI) were proposed. A visible-light-driven Bi2WO6/CuS p-n heterojunction was fabricated using an easy solvothermal method. The Bi2WO6/CuS exhibited high photocatalytic activity in a mixed system containing rhodamine B (RhB), tetracycline hydrochloride (TCH), and Cr (VI) under natural conditions. Approximately 98.8% of the RhB (10 mg/L), 87.6% of the TCH (10 mg/L) and 95.1% of the Cr(VI) (15 mg/L) were simultaneously removed from a mixed solution within 105 min. The removal efficiencies of TCH and Cr(VI) increased by 12.9% and 20.4%, respectively, in the mixed solution, compared with the single solutions. This is mainly ascribed to the simultaneous consumption electrons and holes, which increases the amount of excited electrons/holes and enhances the separation efficiency of photogenerated electrons and holes. Bi2WO6/CuS can be applied over a wide pH range (2–6) with strong photocatalytic activity for RhB, TCH and Cr(VI). Coexisiting dissolved organic matter in the solution significantly promoted the removal of TCH (from 74.7% to 87.2%) and Cr(VI) (from 75.7% to 99.9%) because it accelerated the separation of electrons and holes by consuming holes as an electron acceptor. Removal mechanisms of RhB, TCH, and Cr(VI) were proposed, Bi2WO6/CuS was formed into a p-n heterojunction to efficiently separate and transfer photoelectrons and holes so as to drive photocatalytic reactions. Specifically, when reducing pollutants (e.g., TCH) and oxidizing pollutants (e.g., Cr(VI)) coexist in wastewater, the p-n heterojunction in Bi2WO6/CuS acts as a “bridge” to shorten the electron transport and thus simultaneously increase the removal efficiencies of both types of pollutants.  相似文献   

8.
• CW-Fe allowed a high-performance of NO3-N removal at the COD/N ratio of 0. • Higher COD/N resulted in lower chem-denitrification and higher bio-denitrification. • The application of s-Fe0 contributed to TIN removal in wetland mesocosm. • s-Fe0 changed the main denitrifiers in wetland mesocosm. Sponge iron (s-Fe0) is a porous metal with the potential to be an electron donor for denitrification. This study aims to evaluate the feasibility of using s-Fe0 as the substrate of wetland mesocosms. Here, wetland mesocosms with the addition of s-Fe0 particles (CW-Fe) and a blank control group (CW-CK) were established. The NO3-N reduction property and water quality parameters (pH, DO, and ORP) were examined at three COD/N ratios (0, 5, and 10). Results showed that the NO3-N removal efficiencies were significantly increased by 6.6 to 58.9% in the presence of s-Fe0. NH4+-N was mainly produced by chemical denitrification, and approximately 50% of the NO3-N was reduced to NH4+-N, at the COD/ratio of 0. An increase of the influent COD/N ratio resulted in lower chemical denitrification and higher bio-denitrification. Although chemical denitrification mediated by s-Fe0 led to an accumulation of NH4+-N at COD/N ratios of 0 and 5, the TIN removal efficiencies increased by 4.5%‒12.4%. Moreover, the effluent pH, DO, and ORP values showed a significant negative correlation with total Fe and Fe (II) (P<0.01). High-throughput sequencing analysis indicated that Trichococcus (77.2%) was the most abundant microorganism in the CW-Fe mesocosm, while Thauera, Zoogloea, and Herbaspirillum were the primary denitrifying bacteria. The denitrifiers, Simplicispira, Dechloromonas, and Denitratisoma, were the dominant bacteria for CW-CK. This study provides a valuable method and an improved understanding of NO3-N reduction characteristics of s-Fe0 in a wetland mesocosm.  相似文献   

9.
• Genotoxicity of substances is unknown in the water after treatment processes. • Genotoxicity decreased by activated carbon treatment but increased by chlorination. • Halogenated hydrocarbons and aromatic compounds contribute to genotoxicity. • Genotoxicity was assessed by umu test; acute and chronic toxicity by ECOSAR. • Inconsistent results confirmed that genotoxicity cannot be assessed by ECOSAR. Advanced water treatment is commonly used to remove micropollutants such as pesticides, endocrine disrupting chemicals, and disinfection byproducts in modern drinking water treatment plants. However, little attention has been paid to the changes in the genotoxicity of substances remaining in the water following the different water treatment processes. In this study, samples were collected from three drinking water treatment plants with different treatment processes. The treated water from each process was analyzed and compared for genotoxicity and the formation of organic compounds. The genotoxicity was evaluated by an umu test, and the acute and chronic toxicity was analyzed through Ecological Structure- Activity Relationship (ECOSAR). The results of the umu test indicated that biological activated carbon reduced the genotoxicity by 38%, 77%, and 46% in the three drinking water treatment plants, respectively, while chlorination increased the genotoxicity. Gas chromatograph-mass spectrometry analysis revealed that halogenated hydrocarbons and aromatic compounds were major contributors to genotoxicity. The results of ECOSAR were not consistent with those of the umu test. Therefore, we conclude that genotoxicity cannot be determined using ECOSAR .  相似文献   

10.
• 90% total COD, 95.3% inert COD and 97.2% UV254 were removed. • High R2 values (over 95%) for all responses were obtained with CCD. • Operational cost was calculated to be 0.238 €/g CODremoved for total COD removal. • Fenton oxidation was highly-efficient method for inert COD removal. • BOD5/COD ratio of leachate concentrate raised from 0.04 to 0.4. The primary aim of this study is inert COD removal from leachate nanofiltration concentrate because of its high concentration of resistant organic pollutants. Within this framework, this study focuses on the treatability of leachate nanofiltration concentrate through Fenton oxidation and optimization of process parameters to reach the maximum pollutant removal by using response surface methodology (RSM). Initial pH, Fe2+ concentration, H2O2/Fe2+ molar ratio and oxidation time are selected as the independent variables, whereas total COD, color, inert COD and UV254 removal are selected as the responses. According to the ANOVA results, the R2 values of all responses are found to be over 95%. Under the optimum conditions determined by the model (pH: 3.99, Fe2+: 150 mmol/L, H2O2/Fe2+: 3.27 and oxidation time: 84.8 min), the maximum COD removal efficiency is determined as 91.4% by the model. The color, inert COD and UV254 removal efficiencies are determined to be 99.9%, 97.2% and 99.5%, respectively, by the model, whereas the total COD, color, inert COD and UV254 removal efficiencies are found respectively to be 90%, 96.5%, 95.3% and 97.2%, experimentally under the optimum operating conditions. The Fenton process improves the biodegradability of the leachate NF concentrate, increasing the BOD5/COD ratio from the value of 0.04 to the value of 0.4. The operational cost of the process is calculated to be 0.238 €/g CODremoved. The results indicate that the Fenton oxidation process is an efficient and economical technology in improvement of the biological degradability of leachate nanofiltration concentrate and in removal of resistant organic pollutants.  相似文献   

11.
• In situ preparation of FeNi nanoparticles on the sand via green synthesis approach. • Removal of tetracycline using GS-FeNi in batch and column study. • Both reductive degradation and sorption played crucial role the process. • Reusability of GS-FeNi showed about 77.39±4.3% removal on 4th cycle. • TC by-products after interaction showed less toxic as compared with TC. In this study, FeNi nanoparticles were green synthesized using Punica granatum (pomegranate) peel extract, and these nanoparticles were also formed in situ over quartz sand (GS-FeNi) for removal of tetracycline (TC). Under the optimized operating conditions, (GS-FeNi concentration: 1.5% w/v; concentration of TC: 20 mg/L; interaction period: 180 min), 99±0.2% TC removal was achieved in the batch reactor. The removal capacity was 181±1 mg/g. A detailed characterization of the sorbent and the solution before and after the interaction revealed that the removal mechanism(s) involved both the sorption and degradation of TC. The reusability of reactant was assessed for four cycles of operation, and 77±4% of TC removal was obtained in the cycle. To judge the environmental sustainability of the process, residual toxicity assay of the interacted TC solution was performed with indicator bacteria (Bacillus and Pseudomonas) and algae (Chlorella sp.), which confirmed a substantial decrease in the toxicity. The continuous column studies were undertaken in the packed bed reactors using GS-FeNi. Employing the optimized conditions, quite high removal efficiency (978±5 mg/g) was obtained in the columns. The application of GS-FeNi for antibiotic removal was further evaluated in lake water, tap water, and ground water spiked with TC, and the removal capacity achieved was found to be 781±5, 712±5, and 687±3 mg/g, respectively. This work can pave the way for treatment of antibiotics and other pollutants in the reactors using novel green composites prepared from fruit wastes.  相似文献   

12.
• Emerging titanium coagulation was high-efficient for algae-laden water treatment. • Polytitanium coagulation was capable for both algae and organic matter removal. • Surface water purification was improved by around 30% due to algae inclusion. • Algae functioned as flocculant aid to assist polytitanium coagulation. • Algae could enhance charge neutralization capability of polytitanium coagulant. Titanium-based coagulation has proved to be effective for algae-laden micro-polluted water purification processes. However, the influence of algae inclusion in surface water treatment by titanium coagulation is barely reported. This study reports the influence of both Microcystis aeruginosa and Microcystis wesenbergii in surface water during polytitanium coagulation. Jar tests were performed to evaluate coagulation performance using both algae-free (controlled) and algae-laden water samples, and floc properties were studied using a laser diffraction particle size analyzer for online monitoring. Results show that polytitanium coagulation can be highly effective in algae separation, removing up to 98% from surface water. Additionally, the presence of algae enhanced organic matter removal by up to 30% compared to controlled water containing only organic matter. Polytitanium coagulation achieved significant removal of fluorescent organic materials and organic matter with a wide range of molecular weight distribution (693–4945 Da) even in the presence of algae species in surface water. The presence of algae cells and/or algal organic matter is likely to function as an additional coagulant or flocculation aid, assisting polytitanium coagulation through adsorption and bridging effects. Although the dominant coagulation mechanisms with polytitanium coagulant were influenced by the coagulant dosage and initial solution pH, algae species in surface water could enhance the charge neutralization capability of the polytitanium coagulant. Algae-rich flocs were also more prone to breakage with strength factors approximately 10% lower than those of algae-free flocs. Loose structure of the flocs will require careful handling of the flocs during coagulation-sedimentation-filtration processes.  相似文献   

13.
• MES was constructed for simultaneous ammonia removal and acetate production. • Energy consumption was different for total nitrogen and ammonia nitrogen removal. • Energy consumption for acetate production was about 0.04 kWh/g. • Nitrate accumulation explained the difference of energy consumption. • Transport of ammonia and acetate across the membrane deteriorated the performance. Microbial electrosynthesis (MES) is an emerging technology for producing chemicals, and coupling MES to anodic waste oxidation can simultaneously increase the competitiveness and allow additional functions to be explored. In this study, MES was used for the simultaneous removal of ammonia from synthetic urine and production of acetate from CO2. Using graphite anode, 83.2%±5.3% ammonia removal and 28.4%±9.9% total nitrogen removal was achieved, with an energy consumption of 1.32 kWh/g N for total nitrogen removal, 0.45 kWh/g N for ammonia nitrogen removal, and 0.044 kWh/g for acetate production. Using boron-doped diamond (BDD) anode, 70.9%±12.1% ammonia removal and 51.5%±11.8% total nitrogen removal was obtained, with an energy consumption of 0.84 kWh/g N for total nitrogen removal, 0.61 kWh/g N for ammonia nitrogen removal, and 0.043 kWh/g for acetate production. A difference in nitrate accumulation explained the difference of total nitrogen removal efficiencies. Transport of ammonia and acetate across the membrane deteriorated the performance of MES. These results are important for the development of novel electricity-driven technologies for chemical production and pollution removal.  相似文献   

14.
• MFC promoted the nitrogen removal of anammox with Fe-C micro-electrolysis. • Reutilize pyrolysis waste tire as micro-electrolysis and electrode materials. • Total nitrogen removal efficiency of modified MFC increased to 85.00%. Candidatus kuenenia and SM1A02 were major genera responsible for nitrogen removal. In this study, microbial fuel cells (MFCs) were explored to promote the nitrogen removal performance of combined anaerobic ammonium oxidation (anammox) and Fe-C micro-electrolysis (CAE) systems. The average total nitrogen (TN) removal efficiency of the modified MFC system was 85.00%, while that of the anammox system was 62.16%. Additionally, the effective operation time of this system increased from six (CAE system alone) to over 50 days, significantly promoting TN removal. The enhanced performance could be attributed to the electron transferred from the anode to the cathode, which aided in reducing nitrate/nitrite in denitrification. The H+ released through the proton exchange membrane caused a decrease in the pH, facilitating Fe corrosion. The pyrolyzed waste tire used as the cathode could immobilize microorganisms, enhance electron transport, and produce a natural Fe-C micro-electrolysis system. According to the microbial community analysis, Candidatus kuenenia was the major genus involved in the anammox process. Furthermore, the SM1A02 genus exhibited the highest abundance and was enriched the fastest, and could be a novel potential strain that aids the anammox process.  相似文献   

15.
• Mechanism of DCM disproportionation over mesoporous TiO2 was studied. • DCM was completely eliminated at 350℃ under 1 vol.% humidity. • Anatase (001) was the key for disproportionation. • A competitive oxidation route co-existed with disproportionation. • Disproportionation was favored at low temperature. Mesoporous TiO2 was synthesized via nonhydrolytic template-mediated sol-gel route. Catalytic degradation performance upon dichloromethane over as-prepared mesoporous TiO2, pure anatase and rutile were investigated respectively. Disproportionation took place over as-made mesoporous TiO2 and pure anatase under the presence of water. The mechanism of disproportionation was studied by in situ FTIR. The interaction between chloromethoxy species and bridge coordinated methylenes was the key step of disproportionation. Formate species and methoxy groups would be formed and further turned into carbon monoxide and methyl chloride. Anatase (001) played an important role for disproportionation in that water could be dissociated into surface hydroxyl groups on such structure. As a result, the consumed hydroxyl groups would be replenished. In addition, there was another competitive oxidation route governed by free hydroxyl radicals. In this route, chloromethoxy groups would be oxidized into formate species by hydroxyl radicals transfering from the surface of TiO2. The latter route would be more favorable at higher temperature.  相似文献   

16.
• Actual SAORs was determined using MLVSS and temperature. • Measured SAOR decreased with increasing MLVSS 1.1‒8.7 g/L. • Temperature coefficient (θ) decreased with increasing MLVSS. • Nitrification process was dynamically simulated based on laboratory-scale SBR tests. • A modified model was successfully validated in pilot-scale SBR systems. Measurement and predicted variations of ammonia oxidation rate (AOR) are critical for the optimization of biological nitrogen removal, however, it is difficult to predict accurate AOR based on current models. In this study, a modified model was developed to predict AOR based on laboratory-scale tests and verified through pilot-scale tests. In biological nitrogen removal reactors, the specific ammonia oxidation rate (SAOR) was affected by both mixed liquor volatile suspended solids (MLVSS) concentration and temperature. When MLVSS increased 1.6, 4.2, and 7.1-fold (1.3‒8.9 g/L, at 20°C), the measured SAOR decreased by 21%, 49%, and 56%, respectively. Thereby, the estimated SAOR was suggested to modify when MLVSS changed through a power equation fitting. In addition, temperature coefficient (θ) was modified based on MLVSS concentration. These results suggested that the prediction of variations ammonia oxidation rate in real wastewater treatment system could be more accurate when considering the effect of MLVSS variations on SAOR.  相似文献   

17.
Ascomycota was the predominant phylum in sanitary landfill fungal communities. • Saprophytic fungi may be of special importance in landfill ecology. • Both richness and diversity of fungal community were lower in leachate than refuse. • Physical habitat partly contributed to the geographic variance of fungal community. • NO3 was considered the most significant abiotic factor shaping fungal community. Land filling is the main method to dispose municipal solid waste in China. During the decomposition of organic waste in landfills, fungi play an important role in organic carbon degradation and nitrogen cycling. However, fungal composition and potential functions in landfill have not yet been characterized. In this study, refuse and leachate samples with different areas and depths were taken from a large sanitary landfill in Beijing to identify fungal communities in landfills. In high-throughput sequencing of ITS region, 474 operational taxonomic units (OTUs) were obtained from landfill samples with a cutoff level of 3% and a sequencing depth of 19962. The results indicates that Ascomycota, with the average relative abundance of 84.9%, was the predominant phylum in landfill fungal communities. At the genus level, Family Hypocreaceae unclassified (15.7%), Fusarium (9.9%) and Aspergillus (8.3%) were the most abundant fungi found in the landfill and most of them are of saprotrophic lifestyle, which plays a big role in nutrient cycling in ecosystem. Fungi existed both in landfilled refuse and leachate while both the richness and evenness of fungal communities were higher in the former. In addition, fungal communities in landfilled refuse presented geographic variances, which could be partly attributed to physical habitat properties (pH, dissolved organic carbon, volatile solid, NH4+, NO2 and NO3), while NO3 was considered the most significant factor (p<0.05) in shaping fungal community.  相似文献   

18.
• Two IFAS and two MBBR full-scale systems (high COD:N ratio 8:1) were characterized. • High specific surface area carriers grew and retained slow-growing nitrifiers. • High TN removal is related to high SRT and low DO concentration in anoxic tanks. The relative locations of AOB, NOB, and DNB were examined for three different kinds of carriers in two types of hybrid biofilm process configurations: integrated fixed-film activated sludge (IFAS) and moving bed biofilm reactor (MBBR) processes. IFAS water resource recovery facilities (WRRFs) used AnodkalnessTM K1 carriers (KC) at Broomfield, Colorado, USA and polypropylene resin carriers (RC) at Fukuoka, Japan, while MBBR WRRFs used KC carriers at South Adams County, Colorado, USA and sponge carriers (SC) at Saga, Japan. Influent COD to N ratios ranged from 8:1 to 15:1. The COD and BOD removal efficiencies were high (96%–98%); NH4+-N and TN removal efficiencies were more varied at 72%–98% and 64%–77%, respectively. The extent of TN removal was higher at high SRT, high COD:N ratio and low DO concentration in the anoxic tank. In IFAS, RC with high specific surface area (SSA) maintained higher AOB population than KC. Sponge carriers with high SSA maintained higher overall bacteria population than KC in MBBR systems. However, the DNB were not more abundant in high SSA carriers. The diversity of AOB, NOB, and DNB was fairly similar in different carriers. Nitrosomonas sp. dominated over Nitrosospira sp. while denitrifying bacteria included Rhodobacter sp., Sulfuritalea sp., Rubrivivax sp., Paracoccus sp., and Pseudomonas sp. The results from this work suggest that high SRT, high COD:N ratio, low DO concentration in anoxic tanks, and carriers with greater surface area may be recommended for high COD, BOD and TN removal in WRRFs with IFAS and MBBR systems.  相似文献   

19.
• A V2O5/TiO2 granular catalyst for simultaneous removal of NO and chlorobenzene. • Catalyst synthesized by vanadyl acetylacetonate showed good activity and stability. • The kinetic model was established and the synergetic activity was predicted. • Both chlorobenzene oxidation and SCR of NO follow pseudo-first-order kinetics. • The work is of much value to design of multi-pollutants emission control system. The synergetic abatement of multi-pollutants is one of the development trends of flue gas pollution control technology, which is still in the initial stage and facing many challenges. We developed a V2O5/TiO2 granular catalyst and established the kinetic model for the simultaneous removal of NO and chlorobenzene (i.e., an important precursor of dioxins). The granular catalyst synthesized using vanadyl acetylacetonate precursor showed good synergistic catalytic performance and stability. Although the SCR reaction of NO and the oxidation reaction of chlorobenzene mutually inhibited, the reaction order of each reaction was not considerably affected, and the pseudo-first-order reaction kinetics was still followed. The performance prediction of this work is of much value to the understanding and reasonable design of a catalytic system for multi-pollutants (i.e., NO and dioxins) emission control.  相似文献   

20.
•Steroid hormones could be removed efficiently from mariculture system using seaweed; Caulerpa lentillifera was the most efficient seaweed for removal of steroid hormones; • More than 90% of E2 or EE2 were removed within 12 h using Caulerpa lentillifera; • The removal included the rapid biosorption and the slow bio-accumulation; •The hormones and nutrients in mariculture wastewater could be simultaneously removed. The removal of steroid hormones from the mariculture system using seaweeds (Caulerpa lentillifera, Ulva pertusa, Gracilaria lemaneiformis, and Codium fragile) was investigated. The results illustrated that both 17β-estradiol (E2) and 17α-ethinylestradiol (EE2) could be removed by the seaweeds at different levels, and the Caulerpa lentillifera was the most efficient one. More than 90% of E2 or EE2 at concentration of 10 μg/L was removed by Caulerpa lentillifera within 12 h. Processes including initial quick biosorption, the following slow accumulation, and biodegradation might explain the removal mechanisms of E2/EE2 by Caulerpa lentillifera. E2/EE2 removal was positively related to the nutrient level and the initial concentration of steroid hormone. A significant linear relationship for E2 and EE2 existed between the initial pollutant concentration and the average removal rate. The highest removal kinetic constant (k) value was obtained at 30°C as 0.34 /h for E2 and at 20°C as 0.28 /h for EE2, demonstrating the promising application potential of Caulerpa lentillifera in the water purification of the industrialized mariculture system with relatively high water temperature. Simultaneous and efficient removal of E2 and EE2 by Caulerpa lentillifera was still achieved after 3 cycles in the pilot-scale experiment. The steroid hormones and nutrients in mariculture wastewater could also be simultaneously removed using Caulerpa lentillifera. These findings demonstrated that Caulerpa lentillifera was the promising seaweed for the removal of steroid hormones in mariculture systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号