首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
利用气相色谱-质谱联用检测技术,建立了戊唑醇和嘧菌酯在水稻(Oryza sativa)地上各部位的残留分析方法;并通过田间试验,研究了戊唑醇和嘧菌酯在水稻植株中的消解行为及在水稻不同部位的残留累积分配特征。在吉林、浙江和广西3地的田间试验结果表明,戊唑醇和嘧菌酯在水稻植株中的残留消解动态规律符合一级动力学方程,在水稻植株中的消解半衰期分别为4.68~5.68和4.65~6.08 d。按推荐剂量(以有效成分计)168.8 g·hm-2和1.5倍推荐剂量253.2 g·hm-2在水稻植株上分别喷施750 g·L-1戊唑醇·嘧菌酯水分散粒剂2次和3次,戊唑醇和嘧菌酯在水稻各部位的累积分配特征显示,吉林地区2种农药在水稻植株不同部位的残留分配比由大到小依次均为稻壳、茎秆和稻米,浙江和广西地区2种农药在水稻植株各部位的残留分配比由大到小依次为茎秆、稻壳和稻米。  相似文献   

2.
吡嘧磺隆在水稻、土壤和田水中的消解和残留   总被引:1,自引:0,他引:1  
建立了水稻(糙米、稻壳和植株)、土壤和田水中吡嘧磺隆的残留分析方法.待测样品通过二氯甲烷或二氯甲烷/丙酮(1∶1,V/V)提取,C18固相萃取小柱净化后,采用高效液相色谱串联质谱(HPLC-MS/MS)测定吡嘧磺隆的含量,并研究了2010—2011年北京、安徽和海南等3地水稻、土壤和田水中吡嘧磺隆的消解动态和残留行为.实验结果表明,对水稻、土壤和田水的添加回收率均在73%—103%之间,相对标准偏差(RSD)均小于10%,在糙米、稻壳、植株、土壤、田水中的吡嘧磺隆最低检测浓度(LOQ)为0.005 mg.kg-1,符合残留试验要求.消解和残留试验结果表明,吡嘧磺隆在田水和土壤中的消解符合一级动力学,半衰期分别为5.29—6.42 d和4.99—6.42 d.秧苗期施药,收获时水稻和土壤中均未检出吡嘧磺隆的残留.  相似文献   

3.
对烯肟菌酯在苹果和土壤中的残留消解规律和最终残留进行分析,结果表明,烯肟菌酯的最小检出量为4.10×10-13 g,对苹果和土壤中烯肟菌酯的最小检出浓度分别为0.002 mg·kg-1和0.003mg·kg-1,苹果中烯肟菌酯的平均回收率为92.19%-97.69%,变异系数为4.78%-10.71%;土壤中烯肟菌酯平均回收率为100.43%-107.84%,变异系数为2.21%-4.61%.烯肟菌酯在苹果中的消解动态以及最终残留试验显示,烯肟菌酯消解较快,在天津市和合肥市两地苹果中降解的半衰期分别为7.74d和2.91d,土壤中降解的半衰期分别为8.85d和11.09d.在苹果树上按推荐剂量的2倍使用18%氟环唑·烯肟菌酯悬浮剂施药3次,距最后一次施药21d,烯肟菌酯在苹果和土壤中的残留量分别为0.0247mg·kg-1-0.0843mg·kg-1和0.1013mg·kg-1-0.1480mg·kg-1,苹果收获时烯肟菌酯的消解率在90%以上.  相似文献   

4.
啶虫脒和仲丁威在水稻、土壤及田水中的残留消解动态   总被引:3,自引:0,他引:3  
在天津、浙江和山东三地开展了两年田间试验研究,建立了一种同时测定水稻、土壤及田水中啶虫脒和仲丁威残留量的分析方法.结果表明,在0.005—0.5 mg.kg-1添加水平范围内,啶虫脒在水稻、土壤和田水中的添加平均回收率为74.21%—106.5%,变异系数为5.6%—14.2%;仲丁威在水稻、土壤和田水中的添加平均回收率为81.12%—108.6%,变异系数为2.31%—10.9%.啶虫脒和仲丁威的最小检出量分别为3.8×10-11g和2.3×10-11g;在稻米、稻壳、植株和土壤中的最低检出浓度为0.01 mg.kg-1,在田水中的最低检出浓度为0.005 mg.kg-1.田间试验结果表明,啶虫脒和仲丁威在水稻植株、土壤和田水中的残留消解动态规律均符合一级动力学反应模型,啶虫脒在水稻植株、土壤和田水中的残留消解半衰期分别为7.0—20.4 d、2.8—7.62d和6.7—15.0 d;仲丁威在水稻植株、土壤和田水中的残留消解半衰期分别为5.7—10.0 d、10.8—15.2 d和2.6—9.5 d.以推荐施药剂量60 g/亩和1.5倍推荐施药剂量90 g/亩,在水稻灌浆期开始第1次施药,最多施药3次,距最后一次施药21 d时,啶虫脒和仲丁威在稻米中的最高残留量分别为0.42 mg.kg-1和0.054 mg.kg-1,低于我国农业行业标准规定的小麦中啶虫脒最大残留限量0.5 mg.kg-1和我国国家标准规定的糙米中仲丁威最大残留限量0.5 mg.kg-1.  相似文献   

5.
采用超高效液相色谱法分析了氟虫双酰胺及其代谢产物在田水、土壤、稻秆、糙米和稻壳中的残留.水样以乙酸乙酯为萃取溶剂,液-液分配净化;土壤样品以丙酮为提取剂,液-液分配净化;水稻样品经乙腈提取,NH2-Carb柱净化.对水稻和环境中的氟虫双酰胺及其代谢产物进行不同水平的添加回收率实验,方法的回收率在78.2%—104.8%之间,相对标准偏差为1.1%—4.4%.氟虫双酰胺及其代谢产物的最小检出量在0.004—0.02 ng,其在稻田水中的最低检测浓度为0.0008—0.0009 mg.L-1,在土壤、稻秆、糙米、稻壳中的最低检测浓度为0.001—0.003 mg.kg-1.  相似文献   

6.
建立了一种固相萃取-反相高效液相色谱检测60%唑醚·代森联水分散粒剂中吡唑醚菌酯在葡萄和土壤中的残留方法.方法的回收率为80.4%-98.4%,变异系数为1.8%-3.8%.最小检出量为2×10-10g,最低检测浓度为0.01 mg·kg-1.消解动态研究表明,吡唑醚菌酯在葡萄和土壤中消解较快,其半衰期分别为3.7-3.8d和8.7-10.2d.最终残留试验表明,60%唑醚·代森联水分散粒剂900mg(a.i.)·kg-1喷雾,4次药后7d,吡唑醚菌酯在葡萄和土壤中的最终残留量分别为0.1585-0.1886mg·kg-1和0.6935-0.7245 mg·kg-1,低于CAC规定吡唑醚菌酯在葡萄中的最高允许残留量(MRL值)2.0 mg·k-1.  相似文献   

7.
吡嘧磺隆和苯噻酰草胺在水稻中的残留分析   总被引:1,自引:0,他引:1  
本文建立了混合除草剂吡嘧磺隆和苯噻酰草胺在水稻上的残留分析方法,并研究了其在水稻中的消解动态和最终残留.样品经乙腈超声提取、二氯甲烷液-液分配和Pesticarb/NH2SPE净化后,通过HPLC-UVD检测.该方法对水稻植株、糙米、稻壳和土壤中的吡嘧磺隆最小检出量(LOD)为2.0×10-10g;田水中的吡嘧磺隆和苯噻酰草胺最小检出量(LOD)为1.0×10-10g.该方法对水稻植株、糙米、稻壳和土壤中的苯噻酰草胺最小检出量(LOD)为2.0×10-10g.试验结果显示,8%吡嘧·苯噻酰颗粒剂施药量分别为675 g(a.i.)·ha-1(其中吡嘧磺隆为42.2 g(a.i.)·ha-1)和1012.5 g(a.i.)·ha-1(其中吡嘧磺隆为63.3 g(a.i.)·ha-1),施药1次,2010年北京施药后120 d,安徽施药后92 d,湖南施药后70 d收获期糙米、植株、土壤和稻壳中吡嘧磺隆的残留量均低于0.01 mg·kg-1.  相似文献   

8.
HPLC法检测灭蝇胺在黄瓜和土壤中的残留   总被引:11,自引:0,他引:11  
建立了高效液相色谱测定灭蝇胺在黄瓜和土壤中残留的方法,灭蝇胺的最小检出量为4×10-10g.对黄瓜样品,在005—50mg·kg-1时,平均回收率为762—862%;变异系数为04—20%,最低检出浓度为002mg·kg-1.对土壤样品,在02—50mg·kg-1时,平均回收率为854—881%;变异系数为06—14%,最低检出浓度为002mg·kg-1.  相似文献   

9.
环境样品中乙虫腈及其代谢产物残留量分析   总被引:2,自引:0,他引:2  
采用加速溶剂萃取提取、florisil固相萃取小柱净化,建立了环境样品中乙虫腈农药及其代谢产物的气相色谱(电子捕获检测器)测定方法.试验结果表明,土壤、水稻植株、稻壳和稻米中乙虫腈及其代谢产物的最低检测量为0.0l mg· kg-1,稻田水中为0.01 mg·L-1.在该方法条件下,稻田水、土壤、水稻植株、稻壳和糙米中乙虫腈及其代谢产物的平均回收率为72.8%~103.6%,相对标准偏差为1.3%~12.5%.  相似文献   

10.
建立了环境样品中恶唑酰草胺及其代谢物的快速分析方法.以二氯甲烷作为提取溶剂,对试样采用加速溶剂萃取,自动凝胶渗透色谱仪净化预处理,液相色谱分离,PDA检测器测定,外标法定量.恶唑酰草胺及其代谢物的最低检测浓度,土壤和水稻植株为0.001-0.005 mg.kg-1,田水为0.001-0.002mg·l-1.其在田水、土壤、水稻植株中的平均回收率在80.0%-97.4%之间;相对标准偏差(变异系数)为2.0%-10.7%,线性相关系数均大于0.997.该方法的最低检测限和加标回收率均符合农药残留分析要求.  相似文献   

11.
新型除草剂硝磺草酮在玉米和土壤中的残留及降解行为   总被引:4,自引:0,他引:4  
孙约兵  徐应明  孙扬  秦旭  王倩  高阳 《环境化学》2013,32(1):144-149
利用高效液相色谱及田间试验方法,建立了硝磺草酮在土壤、玉米和植株中残留分析方法,研究了硝磺草酮在土壤和植株中的消解动态规律以及玉米中的最终残留状况.研究结果表明,在0.1—2.0 mg.kg-1质量浓度范围内,硝磺草酮的仪器响应值与质量浓度呈良好的线性关系,相关系数达到0.999以上.通过外标法定量(0.01—0.5 mg.kg-1),硝磺草酮在土壤、玉米和植株中的添加回收率分别达到75.10%—97.74%、80.08%—107.43%、86.49%—103.38%,其变异系数分别为4.01%—10.42%、3.44%—9.05%和3.06%—6.97%,在土壤、玉米和植株中硝磺草酮最低检出浓度均为0.001 mg.kg-1,该方法的灵敏度和回收率均可满足农药残留分析要求.在天津和南京开展的两年两地田间试验结果表明,硝磺草酮在土壤和植株中的残留消解动态规律符合一级动力学反应模型,硝磺草酮在土壤和植株中的残留消解半衰期分别为3.51—3.83 d和2.97—3.07 d.按推荐剂量和1.5倍推荐剂量在玉米上喷施10%硝磺草酮1次,在收获前20 d和收获时采集玉米样品,硝磺草酮最终残留量均低于方法最低检出浓度0.001 mg.kg-1.  相似文献   

12.
单嘧磺隆在小麦田中的残留试验研究   总被引:2,自引:0,他引:2  
研究了单嘧磺隆的残留分析方法 ,单嘧磺隆在土壤中的消解动态和在土壤、小麦中的最终残留 .土壤经甲醇 /氨水混合液提取 (小麦用丙酮 /水混合液 ) .液液分配及C1 8小柱净化、用带紫外检测器的高效液相色谱仪测定 .单嘧磺隆的最低检出量为 4ng ,在土壤和小麦中的最低检出浓度为 0 0 2mg·kg- 1 .本方法的平均添加回收率为 91 1 7— 1 0 3 8% ,变异系数为 1 47— 1 1 8% .应用上述方法 ,测定了单嘧磺隆在北京、山东两地土壤中的消解动态以及在土壤、小麦中的最终残留 .结果表明 :在北京土壤中的半衰期为 9 2 4d ;在山东土壤中的半衰期为 1 3 5 9d;当按推荐剂量施药 ,小麦收获时 ,在土壤和小麦中 ,北京、山东两地均未检出单嘧磺隆  相似文献   

13.
建立了马铃薯和土壤中代森锰锌残留量的气相色谱分析方法.结果表明,空白样品的标准添加浓度为0.2-2.0mg·kg-1时,平均回收率为79.21%-106.96%,变异系数11.30%,样品中代森锰锌的最低检出浓度为1.429×10-6mg·kg-1.  相似文献   

14.
应用所建立的分散固相萃取-液相色谱-串联质谱法测定土壤和番茄中霜霉威为0.02、0.20、2.00 mg·kg-1等3个添加浓度时,日内平均回收率为83.9%—104.6%,日内相对标准偏差为1.0%—5.5%,日间平均回收率为84.3%—108.9%,日间相对标准偏差为1.4%—4.9%.霜霉威在1.0—200.0μg·L-1浓度范围内相关系数R20.9992,在土壤中和番茄基质中定量限均为0.02 mg·kg-1.该方法能够满足现有限量标准的要求.霜霉威消解动态试验采用推荐高剂量(90 g·ha-1)为施药剂量,在植株第2穗果膨大期开始喷药1次,分别测定喷药后2 h、1 d、2 d、4 d、7 d、14 d的霜霉威残留量的变化.浙江杭州、山东潍坊和河南商丘的3个试验点消解动态试验中,降解动态符合一级动力学指数模型.2011—2012年霜霉威在番茄中降解半衰期为2.4—4.7 d,在土壤中降解半衰期1.1—1.5 d.施药5 d后的残留量均小于检测限,远远低于2.0 mg·kg-1最大残留限量,实际样品中霜霉威的残留量均低于检测限.72.2%霜霉威水剂按照推荐剂量1.5倍喷施番茄1次,其喷施2 h后的残留量仅为1.5 mg·kg-1,符合残留要求可以安全使用.  相似文献   

15.
咪鲜胺及其代谢物在黄瓜和土壤中残留的分析方法   总被引:10,自引:1,他引:9  
建立了气相色谱法测定咪鲜胺及其代谢物在黄瓜和土壤中残留的分析方法.咪鲜胺的最小检出量为15×10-11g;最低检出浓度为0001mg·kg-1;在浓度为002—20mg·kg-1时,平均回收率为756%—1060%;变异系数为25%—115%.  相似文献   

16.
采用基质固相分散技术(QuEChERS)为样品前处理方法,建立了高效液相色谱-串联质谱(HPLCMS/MS)快速检测小麦植株、小麦粒和土壤中萎锈灵残留量的分析方法.样品经乙腈提取及盐析处理后,用N-丙基乙二胺(PSA)和石墨化碳黑(GCB)固相萃取填料净化,HPLC-MS/MS、多反应监测模式(MRM)下测定.基质标准曲线外标法进行定量分析.结果显示,在0.005—0.5mg·L-1浓度范围内,不同基质中萎锈灵均有较好的线性关系(R20.998),在0.02、0.2、1mg·kg-1添加水平下,萎锈灵在不同基质中的平均回收率介于77.5%—109.7%,相对标准偏差(RSD)介于1.7%—9.9%,检出限(LOD)为0.5μg·L-1,方法的最低检测浓度(LOQ)均为0.02mg·kg-1.该方法前处理简单、快速,分析时间短,灵敏度、准确度和精密度均符合农药残留检测要求,适用于小麦样品中萎锈灵残留量的检测.  相似文献   

17.
建立了土壤和小麦种子、茎杆中苯达嗪丙酯的残留分析方法.研究了高剂量施药条件下土壤中的消解动态,并测定了土壤、小麦种子和茎杆中的最终残留.苯达嗪丙酯的最低检出限为10ng,在土壤和小麦中的最低检出浓度为0.05mg·kg-1.方法的平均添加回收率为88.7%—103.3%,变异系数为4.3%—16.4%.苯达嗪丙酯的消解动态试验表明:高剂量施药条件下苯达嗪丙酯在土壤中的半衰期分别为2.5d(北京)和3.1d(石家庄);当按推荐剂量施药时,小麦收获前10d,在土壤、小麦种子和茎杆中,北京和石家庄两地均未检出苯达嗪丙酯.  相似文献   

18.
建立了固相萃取-高效液相色谱-串联质谱同时测定蔬菜中8种磺胺类抗生素(SAs)的分析方法.以10 mL乙腈(添加2 g无水硫酸钠、0.1 g乙酸钠、0.1 g Na2EDTA)进行提取,HLB柱净化富集.采用RESTEKPinnacleⅡC18色谱柱,以水(含0.1%甲酸)和乙腈(含0.1%甲酸)为初始流动相进行梯度洗脱.在电喷雾-多反应检测离子模式下,进行定性定量分析.SMZ的方法定量限为0.2μg·kg-1,其它7种化合物的定量限均为0.1μg·kg-1.不同加标浓度(5—100μg·kg-1)下8种SAs的回收率大部分约在70%以上,相对标准偏差(RSD)多数小于10%,表明该方法能够满足实际样品的分析要求.利用该方法对某无公害蔬菜基地进行分析,蔬菜中检出3种以上磺胺类抗生素,含量在0.20—17.43μg·kg-1(干重)之间,总含量在2.42—27.60μg·kg-1之间.  相似文献   

19.
为进一步研究虫酰肼在苹果树冠层的递释规律,分别采用QuEChERS法和Florisil固相萃取法建立虫酰肼在苹果叶片上的液相分析检测方法.结果显示,QuEChERS法虫酰肼的均添加回收率为80.34%—99.20%,变异系数为5.3%—17.9%,最小检出量均为0.1 ng,最低检出质量浓度均为0.01 mg·L~(-1);Florisil固相萃取法虫酰肼的均添加回收率为78.45%—88.24%,变异系数为7.8%—10.9%,最小检出量均为0.1 ng,最低检出质量浓度均为0.02 mg·L~(-1).两种方法均满足农药残留分析的要求.  相似文献   

20.
研究了甲基硫菌灵及其代谢物多菌灵在苹果和土壤中的消解动态和最终残留。苹果和土壤中甲基硫菌灵及多菌灵采用乙酸乙酯提取,提取液经旋转蒸发仪浓缩后经SPE氨基净化柱净化,过0.22μm滤膜后上机,采用超高效液相色谱和272 nm紫外检测器检测,外标法定量。添加浓度为0.05、1.0、5.0 mg·kg-1时,苹果中甲基硫菌灵的添加回收率在76.3%~108.5%之间,相对标准偏差为1.7%~5.7%;土壤中甲基硫菌灵的添加回收率在90.0%~106.7%之间,相对标准偏差为2.6%~7.4%;苹果中多菌灵的添加回收率在82.7%~109.3%之间,相对标准偏差为8.6%~11.5%;土壤中多菌灵的添加回收率在77.9%~116.9%之间,相对标准偏差为4.8%~7.3%;检测方法满足农药留分析要求。在山东省泰安市、安徽省宿州市、河北省保定市3个试验点两年的消解动态试验结果表明:施药后,甲基硫菌灵在苹果和土壤中均很快转化为多菌灵。甲基硫菌灵在苹果和土壤中的半衰期均小于6.3 d,属于易降解农药。两年三地的最终残留试验结果表明,甲基硫菌灵及代谢物多菌灵在苹果和土壤中最终残留量均低于0.05 mg·kg-1,小于我国规定的最大残留限量(MRL)3.0 mg·kg-1和欧盟规定的MRL 0.5 mg·kg-1。说明按照推荐的甲基硫菌灵在苹果上的施用方法:施用药量(有效成分)500 mg·kg-1,施药2次,施药间隔7 d,采收间隔期大于21 d,在以上条件下施药是安全的。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号