首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
The imperatives for reducing the world's dependence on fossil and nuclear fuels have multiplied manifold in recent years with the advent of worldwide terrorism. These new dangers come in addition to the imperatives of addressing the dire consequences of global warming and devastating pollution that accompany the use of these fossil fuels. Reducing dependence on these unsafe and unreliable energy resources should be a top global priority. Implementation of proven energy efficiency technologies offers the world the fastest, safest, most economic and most environmentally benign way to alleviate these threats. This article outlines available efficiency measures, their economic advantages and means by which they may be and have been implemented. While examples of efficiency applications from both developed and developing countries are given, the article relies heavily on experience with energy efficiency in the United States, where data on efficiency is particularly abundant.  相似文献   

2.
Light duty vehicles, i.e. passenger cars and light trucks, account for approximately half of global transportation energy demand and, thus, a major share of carbon dioxide and other emissions from the transport sector. Energy consumption in the transport sector is expected to grow in the future, especially in developing countries. Cars with alternative powertrains to internal combustion engines (notably battery, hybrid and fuel-cell powertrains), in combination with potentially low carbon electricity or alternative fuels (notably hydrogen and methanol), can reduce energy demand by at least 50%, and carbon dioxide and regulated emissions much further. This article presents a comparative technical and economic assessment of promising future fuel/vehicle combinations. There are several promising technologies but no obvious winners. However, the electric drivetrain is a common denominator in the alternative powertrains and continued cost reductions are important for widespread deployment in future vehicles. Development paths from current fossil fuel based systems to future carbon-neutral supply systems appear to be flexible and a gradual phasing-in of new powertrains and carbon-neutral fluid fuels or electricity is technically possible. Technology development drivers and vehicle manufacturers are found mainly in industrialised countries, but developing countries represent a growing market and may have an increasingly important role in shaping the future.  相似文献   

3.
At best, the future of alternative and renewable energy remains uncertain. Our dependency on fossil fuels is already depleting world supplies of coal and petroleum while increasing greenhouse gas emissions. Most assuredly, the ability of alternative energy, described in this article as biomass, hydrogen, wind, solar, and geothermal power, to compete and even integrate with fossil fuels will depend on several important variables: First, developing, as well as developed, countries must be willing to direct long-term public and private funding towards innovative energy technologies by increasing research and promoting public education. Secondly, the “bottom line” economics associated with alternative energy technology must clearly show a positive cost/benefit ratio. Revenues and not deficits are paramount to the sustainability of alternative energy. Lastly, many experts argue for the environmental benefits of alternative energy by way of carbon reductions. The 1997 Kyoto Global Warming Treaty requires the United States in particular to reduce carbon dioxide emissions from fossil fuel burning by 7 percent below 1990 levels. While many experts argue that reactions to global warming and the alternative energy benefits anticipated because of them are fiscally irresponsible and not worth the billions of tax dollars intended, we can be assured that a business-as-usual attitude will continue without increased government and public support.© 1999 John Wiley & Sons, Inc.  相似文献   

4.
The LCA emissions from four renewable energy routes that convert straw/corn stover into usable energy are examined. The conversion options studied are ethanol by fermentation, syndiesel by oxygen gasification followed by Fischer Tropsch synthesis, and electricity by either direct combustion or biomass integrated gasification and combined cycle (BIGCC). The greenhouse gas (GHG) emissions of these four options are evaluated, drawing on a range of studies, and compared to the conventional technology they would replace in a western North American setting. The net avoided GHG emissions for the four energy conversion processes calculated relative to a “business as usual” case are 830 g CO2e/kWh for direct combustion, 839 g CO2e/kWh for BIGCC, 2,060 g CO2e/L for ethanol production, and 2,440 g CO2e/L for FT synthesis of syndiesel. The largest impact on avoided emissions arises from substitution of biomass for fossil fuel. Relative to this, the impact of emissions from processing of fossil fuel, e.g., refining of oil to produce gasoline or diesel, and processing of biomass to produce electricity or transportation fuels, is minor.  相似文献   

5.
In line with the global target of reducing climate change and its impact, this study explored the causal relationship between CO2 emissions, modernized agriculture, trade openness, aggregate and disaggregate energy consumption in 14 African countries from 1990–2013 using a panel quantile estimation procedure. The empirical results showed that value addition to agricultural commodities declines CO2 emissions in countries with high pollution levels. The study revealed a positive nexus between CO2 emissions and energy consumption homogeneously distributed across quantiles. Trade openness was found to lower CO2 emissions in countries with lower and higher levels of environmental pollution. While fossil fuel energy consumption was found to exacerbate CO2 emissions, renewable energy consumption confirmed its mitigating effect on environmental pollution. The institution of climate‐smart agricultural options will sustainably increase productivity and income while adapting to climate change by reducing greenhouse gas emissions. Diversification of energy technologies with clean and modern energy sources like renewables avoid the over‐dependence on fossil fuels for agricultural purposes. Trade policies can stimulate flows of technology and investment opportunities for specialization in production and economies of scale. Hence, the consideration of policies that boost agricultural sector productivity and create an efficient market for international trade in Africa will help in improving livelihoods.  相似文献   

6.
Population of the world is growing with increasing rate and it seems that existing fossil fuel energy sources will not be able to meet energy demand in the near future. Energy is not only crucial for civil sector but also it is one of the most important assets in defense sector. Energy for military operations is mostly provided from fossil fuel as it is the case in other sectors; however, fossil fuels have hazardous effects to the environment and cause global environment concerns. These drawbacks of fossil fuels are also valid for battlefield. Furthermore, transportation of fossil fuels causes extra safety and logistics problems in military case. In this study, we developed a hybrid green energy solution with wind, solar, and batteries together to minimize or eliminate the fossil fuel demand for the battlefield. Results of our algorithm are superior to the already used diesel generator solution from the point of view of cost and various other aspects. The novelty of our study stems from applying optimization of hybrid green energy solution to military case with battlefield constraints.  相似文献   

7.
The rapid advances in technology and improved living standard of the society necessitate abundant use of fossil fuels which poses two major challenges to any nation. One is fast depletion of fossil fuel resources; the other is environmental pollution. The porous medium combustion (PMC) has proved to be one of the technically and economically feasible options to tackle the aforesaid problems to a remarkable extent. PMC has interesting advantages compared with free flame combustion due to the higher burning rates, the increased power dynamic range, the extension of the lean flammability limits, and the low emissions of pollutants. This article provides a comprehensive picture of the global scenario of research and developments in PMC and its applications that enable a researcher to decide the direction of further investigation. The works published so far in this area are reviewed, classified according to their objectives and presented in an organized manner with general conclusions. A separate section is devoted for the numerical modeling of PMC.  相似文献   

8.
The incessant demand and consumption of energy services among individuals’ is increasing throughout the world. Individuals’ electricity consumption in Northern Cyprus has risen considerably. However, the demand for electrical energy services on the island is heavily reliant on imported fossil fuels. Burning fossil fuels has adverse effects on its environment. Therefore, sustainable energy consumption is required and individuals are targeted for energy conservation to reduce electricity consumption. Against this background, using the Structural Equation Modeling approach, this research incorporates social‐psychological factors; personal norms, positive and negative emotions into the theory of planned behaviour (TPB) model to assess the relationships among the variables, explain their impact on consumers’ electricity conservation intentions and enhance the explanatory power of the model. Data was conveniently obtained from a quantitative sample of 400 electricity consumers. The results indicate that negative emotions have the strongest significant influence on intentions, but personal norms have the least effect on intentions to save electricity. Furthermore, the study revealed that our expanded TPB model can provide improved explanatory power more than the original TPB. Policy implications, limitations and future research are discussed.  相似文献   

9.
Climate change and energy security are global challenges requiring concerted attention and action by all of the world’s countries. Under these conditions, energy supplier and exporter countries in the Middle East region are experiencing further challenges, such as increasing domestic energy demand while energy exports have to concurrently be kept at high levels. Middle East countries process the largest proven oil and gas reserves in the world and contribute a large fraction of the world’s CO2 emissions from the use of these as fuels both domestically and internationally. This paper addresses different policies that could dramatically change the future course of the Middle East region toward a zero CO2 emission energy system. To this aim, an integrated energy supply–demand model has been developed to analyze required commitments including renewable energy and energy efficiency targets and the potential of nuclear power, all of which should need to be considered in order to reduce CO2 emissions by 2100. The results indicate that nearly 43% of the global energy of the Middle East region can be supplied from non-fossil fuel resources in 2100.  相似文献   

10.
CO2-free paper?     
Black liquor gasification–combined cycle (BLGCC) is a new technology that has the potential to increase electricity production of a chemical pulping mill. Increased electricity generation in combination with the potential to use biomass (e.g. bark, hog fuel) more efficiently can result in increased power output compared to the conventional Tomlinson-boiler. Because the BLGCC enables an integrated pulp and paper mill to produce excess power, it can offset electricity produced by power plants. This may lead to reduction of the net-CO2 emissions. The impact of BLGCC to offset CO2 emissions from the pulp and paper industry is studied. We focus on two different plant designs and compare the situation in Sweden and the US. The CO2 emissions are studied as function of the share of recycled fibre used to make the paper. The study shows that under specific conditions the production of “CO2-free paper” is possible. First, energy efficiency in pulp and paper mills needs to be improved to allow the export of sufficient power to offset emissions from fossil fuels used in boilers and other equipment. Secondly, the net-CO2 emission per ton of paper depends strongly on the emission reduction credits for electricity export, and hence on the country or grid to which the paper mill is connected. Thirdly, supplemental use of biomass to replace fossil fuel inputs is important to reduce the overall emissions of the pulp and paper industry.  相似文献   

11.
Summary The balance of evidence suggests a perceptible human influence on global ecosystems. Human activities are affecting the global ecosystem, some directly and some indirectly. If researchers could clarify the extent to which specific human activities affect global ecosystems, they would be in a much better position to suggest strategies for mitigating against the worst disturbances. Sophisticated statistical analysis can help in interpreting the influence of specific human activities on global ecosystems more carefully. This study aims at identifying significant or influential human activities (i.e. factors) on CO2 emissions using statistical analyses. The study was conducted for two cases: (i) developed countries and (ii) developing countries. In developed countries, this study identified three influential human activities for CO2 emissions: (i) combustion of fossil fuels, (ii) population pressure on natural and terrestrial ecosystems, and (iii) land use change. In developing countries, the significant human activities causing an upsurge of CO2 emissions are: (i) combustion of fossil fuels, (ii) terrestrial ecosystem strength and (iii) land use change. Among these factors, combustion of fossil fuels is the most influential human activity for CO2 emissions both in developed and developing countries. Regression analysis based on the factor scores indicated that combustion of fossil fuels has significant positive influence on CO2 emissions in both developed and developing countries. Terrestrial ecosystem strength has a significant negative influence on CO2 emissions. Land use change and CO2 emissions are positively related, although regression analysis showed that the influence of land use change on CO2 emissions was still insignificant. It is anticipated, from the findings of this study, that CO2 emissions can be reduced by reducing fossil-fuel consumption and switching to alternative energy sources, preserving exiting forests, planting trees on abandoned and degraded forest lands, or by planting trees by social/agroforestry on agricultural lands.  相似文献   

12.
Kazakhstan is an upper-middle-income country and one of the coldest countries in the world with rich energy resources and energy prices considerably lower than in developed countries. This paper presents the first comprehensive overview of household fuel use in Kazakhstan and assesses the causes and extent of energy poverty using the Households Living Conditions Survey dataset of 12,000 households. The results show that there is an overwhelming reliance on coal in Kazakhstan: 40% of all surveyed households use coal for heating, cooking and other needs. In general, liquefied petroleum gas is mainly used for cooking, coal and firewood for heating, while electricity is rarely used for heating. Energy poverty was less prevalent in oil and gas rich regions, due to low gas prices and higher income levels in those regions, while households located in the North Kazakhstan, Central and East Kazakhstan mainly suffer from lack of cleaner fuel options, income poverty, longer and colder winters and consequently energy affordability. Despite low energy prices in Kazakhstan, the results demonstrate that 28% of surveyed households spend more than 10% of their income on energy. Gas and district heating infrastructure coverage and income inequality across its regions contributed the most to energy poverty in Kazakhstan. Energy prices are regulated and indirectly subsidised. Removing energy subsidies alone may worsen energy affordability of households. Offering direct subsidies to cover part of the energy expenditures may not fully solve the problem, but subsidies, interventions for efficient technologies and fuels, dwelling energy-efficiency improvements are necessary.  相似文献   

13.
Plastics have become an indispensable ingredient of human life. They are non-biodegradable polymers of mostly containing carbon, hydrogen, and few other elements such as chlorine, nitrogen etc. Rapid growth of the world population led to increased demand of commodity plastics. High density poly ethylene is one of the largest used commodity plastics due to its vast applications in many fields. Due to its non bio degradability and low life, HDPE contributes significantly to the problem of Municipal Waste Management. To avert environment pollution of HDPE wastes, they must be recycled and recovered. On the other hand, steady depletion of fossil fuel and increased energy demand, motivated the researchers and technologists to search and develop different energy sources. Waste to energy has been a significant way to utilize the waste sustainably, simultaneously add to meet the energy demand. Plastics being petrochemical origin have inherently high calorific value. Thus they can be converted back to useful energy. Many researches have been carried out to convert the waste plastics into liquid fuel by thermal and catalytic pyrolysis and this has led to establishment of a number of successful firms converting waste plastics to liquid fuels. This paper reviews the production and consumption HDPE, different methods of recycling of plastic with special reference to chemical degradation of HDPE to fuel. This also focuses on different factors that affect these degradations, the kinetics and mechanism of this reaction.  相似文献   

14.
The aim of this study was to develop and apply an advanced, measurement based method for the estimation of annual CH4 and N2O emissions and thus gain improved understanding on the actual greenhouse gas (GHG) balances of combustion of fossil fuels, peat, biofuels and REF. CH4 and N2O emissions depend strongly on combustion conditions, and therefore the emission factors used in the calculation of annual emissions contain significant uncertainties. Fluidised bed combustion (FBC) has many good properties for combustion of different types of fuels and fuels of varying quality, e.g., biofuels and wastes. Therefore, it is currently increasing its market share. In this study, long term measurements (up to 50 days) were carried out at seven FBC boilers representing different size classes, loadings and fuel mixes. Both decreasing load and increasing share of coal in fuel mix increased N2O emissions. Measurement results from different loading levels were combined with the common loading curves of similar plants in Finland to estimate annual emissions. Based on the results, recommendations for emission factors for the Finnish GHG emission inventory are given. The role of FBC as a potential technology for the utilisation of biofuels and wastes with future GHG reduction requirements is discussed.  相似文献   

15.
In the recent decades, the energy demand for transport and industrial sector has increased considerably. Fossil fuels which were the major fuel source for decades are no more sustainable. Biodiesel is an efficient alternative compared to depleting fossil fuels. The prospect of biodiesel as the best alternative fuel is a reliable source compared to depleting fossil fuels. Hydrogen is also considered as an attractive alternative fuel producing low emission with improved engine performance. This paper investigates the performance and emission characteristics of a single cylinder compression ignition engine using hydrogen as an inducted fuel and biodiesel, aka Pongamia pinnata as injected fuel. The experiments are conducted for different quantities of hydrogen induction through the intake manifold in order to improve the performance of the engine. The performance parameters such as brake thermal efficiency, brake specific fuel consumption, exhaust temperature and emission quantities like HC, NOX, CO, CO2 of biodiesel fueled CI engine with variable mass flow rate of hydrogen are investigated. The performances of biodiesel combined with hydrogen at varying mass flow rates are also compared. The 10 LPM hydrogen induction with biodiesel provided 0.33% increase of brake thermal efficiency compared with diesel and increase of 3.24% to biodiesel at 80% loading conditions. The emission of HC decreased by 13 ppm, CO decreased by 0.02% by volume and CO2 decreased by 3.8% by volume for biodiesel with induction of hydrogen at 10 LPM to that of neat biodiesel for 80% load conditions.  相似文献   

16.
Abstract

Biomass energy is the most renewable energy resource in the world. Biomass energy is derived from plant and animal material, such as wood from forests, residues from agricultural and forestry processes, and industrial, human or animal wastes. The production of biofuels such as ethanol and biodiesel has the potential to replace significant quantities of fossil fuels in many transport applications, electricity, generate heat and steam, etc. In this study, Turkish sugar sector and sugar capacity, residue quantitiy and its possibility of utilization is examined.  相似文献   

17.
Deforestation and decline in agricultural productivity are major concerns over large parts of sub-Saharan Africa. One of the principal causes for both these phenomena is the export of woodfuels from rural agroecosystems to urban markets. This process is noteworthy because of the size of the trade. Wood fuels (fuelwood, charcoal, and agricultural residues) constitute the most important source of energy in these countries, varying from 60% to 95% of total energy consumption. In terms of the environmental impact of the fuelwood trade, solutions typically considered are the introduction of improved cookstoves, fuelwood plantations, and fuel substitution by conventional fuels. This article examines the structure of the fuelwood problem, reviews the successes and failures of past experiences, and focuses on the potential for fuel substitution as an option to reduce the urban demand for fuelwood.  相似文献   

18.
Waste management activities contribute to global greenhouse gas emissions approximately by 4%. In particular the disposal of waste in landfills generates methane that has high global warming potential. Effective mitigation of greenhouse gas emissions is important and could provide environmental benefits and sustainable development, as well as reduce adverse impacts on public health. The European and UK waste policy force sustainable waste management and especially diversion from landfill, through reduction, reuse, recycling and composting, and recovery of value from waste. Energy from waste is a waste management option that could provide diversion from landfill and at the same time save a significant amount of greenhouse gas emissions, since it recovers energy from waste which usually replaces an equivalent amount of energy generated from fossil fuels. Energy from waste is a wide definition and includes technologies such as incineration of waste with energy recovery, or combustion of waste-derived fuels for energy production or advanced thermal treatment of waste with technologies such as gasification and pyrolysis, with energy recovery. The present study assessed the greenhouse gas emission impacts of three technologies that could be used for the treatment of Municipal Solid Waste in order to recover energy from it. These technologies are Mass Burn Incineration with energy recovery, Mechanical Biological Treatment via bio-drying and Mechanical Heat Treatment, which is a relatively new and uninvestigated method, compared to the other two. Mechanical Biological Treatment and Mechanical Heat Treatment can turn Municipal Solid Waste into Solid Recovered Fuel that could be combusted for energy production or replace other fuels in various industrial processes. The analysis showed that performance of these two technologies depends strongly on the final use of the produced fuel and they could produce GHG emissions savings only when there is end market for the fuel. On the other hand Mass Burn Incineration generates greenhouse gas emission savings when it recovers electricity and heat. Moreover the study found that the expected increase on the amount of Municipal Solid Waste treated for energy recovery in England by 2020 could save greenhouse gas emission, if certain Energy from Waste technologies would be applied, under certain conditions.  相似文献   

19.
This paper examines the different perceptions on deforestation and the household fuel crisis from the point of view of the development planners and the main user group of household fuels in developing countries — women. It is argued that afforestation strategies designed to deal with the environmental deterioration are not the most appropriate response to the household fuel shortage. It is suggested that this shortage, which in many parts of the world has reached a crisis, can only be adequately responded to by strategies which allow for the increased access to, and control over, productive resources by women.  相似文献   

20.
This paper presents a decision support framework for environmental planning in developing countries. The interest in protecting the natural environment from pollution gained increased importance in the 1990s with a push by world communities for sustainable development. Developing countries as well as the industrialized nations are expected to cut down on pollution and control the use of non-renewable natural resources. Although the concept of sustainable development sounds plausible, it is difficult to implement in many countries due to their conflicting goals. The world-wide targets on emissions, use of fossil fuels, reduction in water and atmospheric pollution require the participation of every nation. These goals are not easily achievable by some of the poorer developing countries partly because of their economic dependence on natural resources and partly because of their inability to afford more modern and efficient technologies. Thus, environmental planning goals are often in conflict with the development,social and economic needs of a country. In this paper, we develop a decision support framework that utilizes multicriteria and optimization models to address environmental planning problems. This framework is based on identifying the priorities of conflicting goals by working through and reducing the conflicts. A strategic planning framework is introduced into the decision support system since national planning is a strategic issue and these goals can only be achieved by adopting a systemic view.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号