首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 456 毫秒
1.
Light duty vehicles, i.e. passenger cars and light trucks, account for approximately half of global transportation energy demand and, thus, a major share of carbon dioxide and other emissions from the transport sector. Energy consumption in the transport sector is expected to grow in the future, especially in developing countries. Cars with alternative powertrains to internal combustion engines (notably battery, hybrid and fuel-cell powertrains), in combination with potentially low carbon electricity or alternative fuels (notably hydrogen and methanol), can reduce energy demand by at least 50%, and carbon dioxide and regulated emissions much further. This article presents a comparative technical and economic assessment of promising future fuel/vehicle combinations. There are several promising technologies but no obvious winners. However, the electric drivetrain is a common denominator in the alternative powertrains and continued cost reductions are important for widespread deployment in future vehicles. Development paths from current fossil fuel based systems to future carbon-neutral supply systems appear to be flexible and a gradual phasing-in of new powertrains and carbon-neutral fluid fuels or electricity is technically possible. Technology development drivers and vehicle manufacturers are found mainly in industrialised countries, but developing countries represent a growing market and may have an increasingly important role in shaping the future.  相似文献   

2.
The increasing demand on energy due to population growth and rising of living standards has led to considerable use of fossil fuels which has in turn, had an adverse impact on environmental pollution and depletion of fossil fuels in Internal Combustion (IC) engine sector. Alternative fuel blend evaluation in IC engine fuel technologies is a very important strategic decision involving decisions balancing within a number of criteria and opinions from different decision maker of IC engine experts. The selection of appropriate source of biodiesel and proper blending of biodiesel plays a major role in alternate energy production. This paper describes an application of hybrid Multi Criteria Decision Making (MCDM) technique for the selection of optimum biodiesel blend in the IC engine. The proposed model, Analytical Network Process (ANP) is integrated with Technique for Order Performance by Similarity to Ideal Solution (TOPSIS) to evaluate the optimum blend. Here the ANP is used to determine the relative weights of the criteria, whereas TOPSIS is used for obtaining the final ranking of alternative blends. An efficient pair-wise comparison process and ranking of alternatives can be achieved for optimum blend selection through the integration of ANP and TOPSIS. The obtained preference order for the blends are as B20 > B40 > Diesel > B60 > B80 > B100. This paper highlights a new insight into MCDM techniques to evaluate the best fuel blend for the decision makers such as engine manufactures and R&D engineers to meet the fuel economy and emission norms to empower the green revolution.  相似文献   

3.
In this study, the optimal sizing and performance analysis of a standalone integrated solar power system equipped with different storage scenarios to supply the power demand of a household is presented. One of the main purposes when applying solar energy resource is to face the increasing environmental pollutions resulting from fossil fuel based electricity sector. To this end, and to compare and examine two energy storage technologies (battery and hydrogen storage technology), three storage scenarios including battery only, hydrogen storage technology only and hybrid storage options are evaluated. An optimization framework based on Energy Hub concept is used to determine the optimum sizes of equipment for the lowest net present cost (NPC) while maintaining the system reliability. It was determined that the most cost effective and reliable case is the system with hybrid storage technology. Also, the effects of solar radiation intensity, the abatement potential of CO2 emissions and converting excess power to hydrogen on the system’s performance and economics, were investigated and a few noticeable findings were obtained.  相似文献   

4.
Current projections estimating world population growth read in conjunction with corresponding projections of increased world energy consumption, point to electricity as the cleaner fuel of the future, especially because of its high efficiency and low levels of pollution. Due mostly to the fact that the electrical end-use devices are considerably more efficient than those using other forms of energy, most developed countries show decreasing curves of energy intensity as technologies become more sophisticated and shift over to increased reliance on electricity. It is therefore argued in this article that a gradual shift away from fossil fuels to electricity is a promising possibility to bring down global air pollution and emissions of greenhouse gases to acceptable levels. Examples are given of greater efficiency achieved by electrification. Overall gains in energy efficiency from the change over from fossil fuels to electricity, are possible even in situations where the electricity is generated by fossil fuel combustion, despite the loss of primary energy in the conversion process. The article also presents electricity generating projects designed for developing countries and countries with economies in transition. The generation of electricity from the combustion of renewable sources (biomass waste), fossil fuels, and other innovative methods are outlined.  相似文献   

5.
The incessant demand and consumption of energy services among individuals’ is increasing throughout the world. Individuals’ electricity consumption in Northern Cyprus has risen considerably. However, the demand for electrical energy services on the island is heavily reliant on imported fossil fuels. Burning fossil fuels has adverse effects on its environment. Therefore, sustainable energy consumption is required and individuals are targeted for energy conservation to reduce electricity consumption. Against this background, using the Structural Equation Modeling approach, this research incorporates social‐psychological factors; personal norms, positive and negative emotions into the theory of planned behaviour (TPB) model to assess the relationships among the variables, explain their impact on consumers’ electricity conservation intentions and enhance the explanatory power of the model. Data was conveniently obtained from a quantitative sample of 400 electricity consumers. The results indicate that negative emotions have the strongest significant influence on intentions, but personal norms have the least effect on intentions to save electricity. Furthermore, the study revealed that our expanded TPB model can provide improved explanatory power more than the original TPB. Policy implications, limitations and future research are discussed.  相似文献   

6.
In the recent decades, the energy demand for transport and industrial sector has increased considerably. Fossil fuels which were the major fuel source for decades are no more sustainable. Biodiesel is an efficient alternative compared to depleting fossil fuels. The prospect of biodiesel as the best alternative fuel is a reliable source compared to depleting fossil fuels. Hydrogen is also considered as an attractive alternative fuel producing low emission with improved engine performance. This paper investigates the performance and emission characteristics of a single cylinder compression ignition engine using hydrogen as an inducted fuel and biodiesel, aka Pongamia pinnata as injected fuel. The experiments are conducted for different quantities of hydrogen induction through the intake manifold in order to improve the performance of the engine. The performance parameters such as brake thermal efficiency, brake specific fuel consumption, exhaust temperature and emission quantities like HC, NOX, CO, CO2 of biodiesel fueled CI engine with variable mass flow rate of hydrogen are investigated. The performances of biodiesel combined with hydrogen at varying mass flow rates are also compared. The 10 LPM hydrogen induction with biodiesel provided 0.33% increase of brake thermal efficiency compared with diesel and increase of 3.24% to biodiesel at 80% loading conditions. The emission of HC decreased by 13 ppm, CO decreased by 0.02% by volume and CO2 decreased by 3.8% by volume for biodiesel with induction of hydrogen at 10 LPM to that of neat biodiesel for 80% load conditions.  相似文献   

7.
Plastics have become an indispensable ingredient of human life. They are non-biodegradable polymers of mostly containing carbon, hydrogen, and few other elements such as chlorine, nitrogen etc. Rapid growth of the world population led to increased demand of commodity plastics. High density poly ethylene is one of the largest used commodity plastics due to its vast applications in many fields. Due to its non bio degradability and low life, HDPE contributes significantly to the problem of Municipal Waste Management. To avert environment pollution of HDPE wastes, they must be recycled and recovered. On the other hand, steady depletion of fossil fuel and increased energy demand, motivated the researchers and technologists to search and develop different energy sources. Waste to energy has been a significant way to utilize the waste sustainably, simultaneously add to meet the energy demand. Plastics being petrochemical origin have inherently high calorific value. Thus they can be converted back to useful energy. Many researches have been carried out to convert the waste plastics into liquid fuel by thermal and catalytic pyrolysis and this has led to establishment of a number of successful firms converting waste plastics to liquid fuels. This paper reviews the production and consumption HDPE, different methods of recycling of plastic with special reference to chemical degradation of HDPE to fuel. This also focuses on different factors that affect these degradations, the kinetics and mechanism of this reaction.  相似文献   

8.
Waste management activities contribute to global greenhouse gas emissions approximately by 4%. In particular the disposal of waste in landfills generates methane that has high global warming potential. Effective mitigation of greenhouse gas emissions is important and could provide environmental benefits and sustainable development, as well as reduce adverse impacts on public health. The European and UK waste policy force sustainable waste management and especially diversion from landfill, through reduction, reuse, recycling and composting, and recovery of value from waste. Energy from waste is a waste management option that could provide diversion from landfill and at the same time save a significant amount of greenhouse gas emissions, since it recovers energy from waste which usually replaces an equivalent amount of energy generated from fossil fuels. Energy from waste is a wide definition and includes technologies such as incineration of waste with energy recovery, or combustion of waste-derived fuels for energy production or advanced thermal treatment of waste with technologies such as gasification and pyrolysis, with energy recovery. The present study assessed the greenhouse gas emission impacts of three technologies that could be used for the treatment of Municipal Solid Waste in order to recover energy from it. These technologies are Mass Burn Incineration with energy recovery, Mechanical Biological Treatment via bio-drying and Mechanical Heat Treatment, which is a relatively new and uninvestigated method, compared to the other two. Mechanical Biological Treatment and Mechanical Heat Treatment can turn Municipal Solid Waste into Solid Recovered Fuel that could be combusted for energy production or replace other fuels in various industrial processes. The analysis showed that performance of these two technologies depends strongly on the final use of the produced fuel and they could produce GHG emissions savings only when there is end market for the fuel. On the other hand Mass Burn Incineration generates greenhouse gas emission savings when it recovers electricity and heat. Moreover the study found that the expected increase on the amount of Municipal Solid Waste treated for energy recovery in England by 2020 could save greenhouse gas emission, if certain Energy from Waste technologies would be applied, under certain conditions.  相似文献   

9.
Elcock, Deborah, 2010. Future U.S. Water Consumption: The Role of Energy Production. Journal of the American Water Resources Association (JAWRA) 46(3):447-460. DOI: 10.1111/j.1752-1688.2009.00413.x Abstract: This study investigates how meeting domestic energy production targets for both fossil and renewable fuels may affect future water demand. It combines projections of energy production developed by the U.S. Department of Energy with estimates of water consumption on a per-unit basis (water-consumption coefficients) for coal, oil, gas, and biofuels production, to estimate and compare the domestic freshwater consumed. Although total domestic freshwater consumption is expected to increase by nearly 7% between 2005 and 2030, water consumed for energy production is expected to increase by nearly 70%, and water consumed for biofuels (biodiesel and ethanol) production is expected to increase by almost 250%. By 2030, water consumed in the production of biofuels is projected to account for nearly half of the total amount of water consumed in the production of all energy fuels. Most of this is for irrigation, and the West North Central Region is projected to consume most of this water in 2030. These findings identify an important potential future conflict between renewable energy production and water availability that warrants further investigation and action to ensure that future domestic energy demand can be met in an economically efficient and environmentally sustainable manner.  相似文献   

10.
Ethanol fuels: Energy security,economics, and the environment   总被引:6,自引:0,他引:6  
Problems of fuel ethanol production have been the subject of numerous reports, including this analysis. The conclusions are that ethanol: does not improve U.S. energy security; is uneconomical; is not a renewable energy source; and increases environmental degradation. Ethanol production is wasteful of energy resources and does not increase energy security. Considerably more energy, much of it high- grade fossil fuels, is required to produce ethanol than is available in the energy output. About 72% more energy is used to produce a gallon of ethanol than the energy in a gallon of ethanol. Ethanol production from corn is not renewable energy. Its production uses more non- renewable fossil energy resources in growing the corn and in the fermentation/distillation process than is produced as ethanol energy. Ethanol produced from corn and other food crops is also an unreliable and therefore a non-secure source of energy, because of the likelihood of uncontrollable climatic fluctuations, particularly droughts which reduce crop yields. The expected priority for corn and other food crops would be for food and feed. Increasing ethanol production would increase degradation of agricultural land and water and pollute the environment. In U.S. corn production, soil erodes some 18- times faster than soil is reformed, and, where irrigated, corn production mines water faster than recharge of aquifers. Increasing the cost of food and diverting human food resources to the costly and inefficient production of ethanol fuel raise major ethical questions. These occur at a time when more food is needed to meet the basic needs of a rapidly growing world population.  相似文献   

11.
Abstract

Biomass energy is the most renewable energy resource in the world. Biomass energy is derived from plant and animal material, such as wood from forests, residues from agricultural and forestry processes, and industrial, human or animal wastes. The production of biofuels such as ethanol and biodiesel has the potential to replace significant quantities of fossil fuels in many transport applications, electricity, generate heat and steam, etc. In this study, Turkish sugar sector and sugar capacity, residue quantitiy and its possibility of utilization is examined.  相似文献   

12.
This paper reviews both innovative fossil energy sources (tar sands, oil shale, and unconventional natural gas), and more established technologies that are being considered as suppliers of gaseous and liquid fuels (that is, coal gasification and liquefaction). Potential health and safety issues related to the technologies are discussed, although the absence of commercial-scale facilities in the United States restricts the discussion to health effects information derived from related processes. The available epidemiological and carcinogenic studies give cause for concern. The study of the health and environmental impacts of the emerging fossil fuel technologies will be important for quantification of adverse effects and rectification of problems before commitment to large-scale commercialization occurs.Operated by Union Carbide Corporation under contract W-7405-eng-26 with the U.S. Department of Energy.  相似文献   

13.
In line with the global target of reducing climate change and its impact, this study explored the causal relationship between CO2 emissions, modernized agriculture, trade openness, aggregate and disaggregate energy consumption in 14 African countries from 1990–2013 using a panel quantile estimation procedure. The empirical results showed that value addition to agricultural commodities declines CO2 emissions in countries with high pollution levels. The study revealed a positive nexus between CO2 emissions and energy consumption homogeneously distributed across quantiles. Trade openness was found to lower CO2 emissions in countries with lower and higher levels of environmental pollution. While fossil fuel energy consumption was found to exacerbate CO2 emissions, renewable energy consumption confirmed its mitigating effect on environmental pollution. The institution of climate‐smart agricultural options will sustainably increase productivity and income while adapting to climate change by reducing greenhouse gas emissions. Diversification of energy technologies with clean and modern energy sources like renewables avoid the over‐dependence on fossil fuels for agricultural purposes. Trade policies can stimulate flows of technology and investment opportunities for specialization in production and economies of scale. Hence, the consideration of policies that boost agricultural sector productivity and create an efficient market for international trade in Africa will help in improving livelihoods.  相似文献   

14.
生物质能发展现状及前景分析   总被引:6,自引:0,他引:6  
生物质能源作为惟一可再生、可替代化石能源转化成气态、液态和固态燃料以及其它化工原料或者产品的碳资源,随着化石能源的枯竭和人类对全球性环境问题的关注,其替代化石能源利用的研究和开发,已成为科学研究和社会关注的热点。本文对生物质能的资源分类和利用方式进行了分析和研究,提出了生物质能在中国的发展现状、存在的瓶颈以及前景和方向。  相似文献   

15.
Kazakhstan is an upper-middle-income country and one of the coldest countries in the world with rich energy resources and energy prices considerably lower than in developed countries. This paper presents the first comprehensive overview of household fuel use in Kazakhstan and assesses the causes and extent of energy poverty using the Households Living Conditions Survey dataset of 12,000 households. The results show that there is an overwhelming reliance on coal in Kazakhstan: 40% of all surveyed households use coal for heating, cooking and other needs. In general, liquefied petroleum gas is mainly used for cooking, coal and firewood for heating, while electricity is rarely used for heating. Energy poverty was less prevalent in oil and gas rich regions, due to low gas prices and higher income levels in those regions, while households located in the North Kazakhstan, Central and East Kazakhstan mainly suffer from lack of cleaner fuel options, income poverty, longer and colder winters and consequently energy affordability. Despite low energy prices in Kazakhstan, the results demonstrate that 28% of surveyed households spend more than 10% of their income on energy. Gas and district heating infrastructure coverage and income inequality across its regions contributed the most to energy poverty in Kazakhstan. Energy prices are regulated and indirectly subsidised. Removing energy subsidies alone may worsen energy affordability of households. Offering direct subsidies to cover part of the energy expenditures may not fully solve the problem, but subsidies, interventions for efficient technologies and fuels, dwelling energy-efficiency improvements are necessary.  相似文献   

16.
The LCA emissions from four renewable energy routes that convert straw/corn stover into usable energy are examined. The conversion options studied are ethanol by fermentation, syndiesel by oxygen gasification followed by Fischer Tropsch synthesis, and electricity by either direct combustion or biomass integrated gasification and combined cycle (BIGCC). The greenhouse gas (GHG) emissions of these four options are evaluated, drawing on a range of studies, and compared to the conventional technology they would replace in a western North American setting. The net avoided GHG emissions for the four energy conversion processes calculated relative to a “business as usual” case are 830 g CO2e/kWh for direct combustion, 839 g CO2e/kWh for BIGCC, 2,060 g CO2e/L for ethanol production, and 2,440 g CO2e/L for FT synthesis of syndiesel. The largest impact on avoided emissions arises from substitution of biomass for fossil fuel. Relative to this, the impact of emissions from processing of fossil fuel, e.g., refining of oil to produce gasoline or diesel, and processing of biomass to produce electricity or transportation fuels, is minor.  相似文献   

17.
The Sustainable Development Goal (SDG) 7 targets universal access to affordable, reliable, and modern energy services by 2030. Modern or clean energy is perceived to be the golden thread that connects economic growth, human development, and environmental sustainability. However, one third of the world's population still uses solid fuels for cooking, endangering human health, and the environment. This paper, therefore, analyses demographic, socio-economic, and housing characteristics that affect the fuel choice for cooking. Further, it identifies how SDG 4 (quality education) and SDG 6 (clean water) create synergies with SDG 7 (clean energy). The data are obtained from the four waves of the Sri Lankan Households Income and Expenditure Survey, covering more than 79,000 households. The random-effects panel multinomial logit results reveal that household income, wealth, marital status and education of the head, age and education of the spouse, household size, number of children, housing characteristics, and residential sector are vital in selecting clean fuel for cooking. Furthermore, advanced sustainability analysis shows SDG 4 and 6 have a strong synergistic effect on SDG 7. Policymakers can use the findings to prioritise educational, water, and sanitation programmes in national policies aimed at enhancing the use of clean cooking fuel and technologies to meet SDG 7 by 2030.  相似文献   

18.
ABSTRACT

Energy management strategy (EMS) is crucial in improving the fuel economy of plug-in hybrid electric vehicle (PHEV). Existing studies on EMS mostly manage powertrain and cooling system separately which cannot get the minimum total energy consumption. This paper aims to propose a novel EMS for a new type of dual-motor planetary-coupled PHEV, which considers cooling power demand and effect of temperature on fuel economy. Temperature-modified engine model, lithium-ion battery model, two motors, and cooling system models are established. Firstly, the separated EMS (S-EMS) is designed which manages powertrain and cooling system separately. Sequentially, after the analysis of thermal characteristics of the powertrain and cooling system, the thermal-based EMS (T-EMS) is then proposed to manage two systems coordinately. In T-EMS, cooling power demand and the charging/discharging energy of motors are calculated as equivalent fuel consumption and integrated into the object function. Besides, a fuzzy controller is also established to deicide the fuel-electricity equivalent factor with consideration of the effect of temperature and state of charge on powertrain efficiency. Finally, the hardware-in-loop experiment is carried out to validate the real-time effect of EMS under the New European Driving Cycle. The result shows that cooling power demand and temperature can significantly affect the fuel economy of the vehicle. T-EMS shows better performance in fuel economy than S-EMS. The equivalent fuel consumption of the cooling system of T-EMS decreases by 27% compared with that of S-EMS. The total equivalent fuel consumption over the entire trip of PHEV using T-EMS is reduced by 9.7%.  相似文献   

19.
Increasing deployment of cellular networks across the globe is pushing the energy consumption in cellular networks at an exceptional rate. The integration of renewable energy (RE) harvesting technology into future mobile networks has the potential to positively cope with environmental contamination and ensure self-energy sustainability as a means to decrease fossil fuel consumption. Diesel generator (DG) in conjunction with on-site RE harvester has emerged as an economic and extent efficient option where commercial grid supply is not viable. This paper is focused on the cost aware energy management framework addressing to least net present cost (NPC) for the envisioned hybrid powered green cellular base stations (BSs) considering tempo-spatial traffic dynamics. In such wireless networks, solar photovoltaic modules are considered as a primary energy source, while the DG and energy storage device are kept as the standby supply in case of inadequate solar energy to ensure zero outage. A comprehensive simulation-based investigation is carried out in the context of downlink Long-Term Evolution (LTE) cellular networks for evaluating cost-efficiency and reliability performance under a wide range of network settings. Particularly, this paper examines the energy yield, greenhouse gas emissions, and cost analysis based on the optimal architecture of Remote Radio Head-enabled LTE BS. Moreover, wireless network performance in terms of throughput, energy efficiency gain, and radio efficiency is thoroughly investigated using Monte Carlo simulations. Numerical results demonstrate a substantial reduction of carbon footprints with minimum NPC while satisfying the quality of service requirements.  相似文献   

20.
While the energy sector is the largest global contributor to greenhouse gas (GHG) emissions, the agriculture, forestry, and other land use (AFOLU) sector account for up to 80% of GHG emissions in the least developed countries (LDCs). Despite this, the nationally determined contributions (NDCs) of LDCs, including Nepal, focus primarily on climate mitigation in the energy sector. This paper introduces green growth—a way to foster economic growth while ensuring access to resources and environmental services—as an approach to improving climate policy coherence across sectors. Using Nepal as a case country, this study models the anticipated changes in resource use and GHG emissions between 2015 and 2030, that would result from implementing climate mitigation actions in Nepal's NDC. The model uses four different scenarios. They link NDC and policies across economic sectors and offer policy insights regarding (1) energy losses that could cost up to 10% of gross domestic product (GDP) by 2030, (2) protection of forest resources by reducing the use of biomass fuels from 465 million gigajoules (GJ) in 2015 to 195 million GJ in 2030, and (3) a significant reduction in GHG emissions by 2030 relative to the business-as-usual (BAU) case by greater use of electricity from hydropower rather than biomass. These policy insights are significant for Nepal and other LDCs as they seek an energy transition towards using more renewable energy and electricity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号