首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   71篇
  免费   0篇
  国内免费   3篇
安全科学   1篇
废物处理   10篇
环保管理   9篇
综合类   7篇
基础理论   12篇
环境理论   1篇
污染及防治   19篇
评价与监测   12篇
社会与环境   2篇
灾害及防治   1篇
  2023年   2篇
  2022年   8篇
  2021年   8篇
  2020年   3篇
  2019年   7篇
  2018年   5篇
  2017年   7篇
  2016年   1篇
  2015年   3篇
  2014年   4篇
  2013年   11篇
  2012年   6篇
  2011年   4篇
  2010年   4篇
  2002年   1篇
排序方式: 共有74条查询结果,搜索用时 31 毫秒
1.
Leachate generated in a landfill may not be treated by conventional biological treatment due to its nature and complexity. The process of forming aerobic granules in batch sequencing reactors having features such as; reducing the settling process time and saving energy consumption and high decomposition rate have been noticed by researchers. In the present study, the structure of sequencing batch reactors (SBRs) was evaluated for the formation of granules, which were subsequently utilized for the treatment of landfill leachate. The experiment was initiated by using the GSBR, containing 1200 ml with different apparatuses, to develop granular sludge, and synthetic wastewater was added to reinforcement. The selected parameters for the operational hydraulic retention time (HRT) of the wastewater (6-h cycles) included feeding, idle, aeration, settling, and discharge. Furthermore, the controlled conditions were the dissolved oxygen (DO) range of 2–2.2 mg/L, temperature range of 20–23℃, and pH of 7.5–8.3. The chemical oxygen demand (COD), mixed liquor suspended solids (MLSS), and sludge volume index (SVI) daily were measured at the influent and effluent of GSBR reactor. The main properties of aerobic granular sludge were identified during the research procedures, and the remarkable settling and potent, high-density microbial structure of the granules were confirmed. The mean size of the formulated granules was estimated at 7.46 ± 1.8 mm, and the volume of the biomass also increased from approximately 1607 to 4137 mg/L through the granulation process. Moreover, 98% of the influent chemical oxygen demand (COD) could be removed by the formulated granular sludge, and the final-stage organic loading rate was estimated at 5.65 COD/m3/day. According to the results, GSBRs could be employed for the formulation of aerobic granular sludge for the treatment of landfill leachate.  相似文献   
2.
3.
The aim of the current research was to systematically review and summarize the studies that evaluated the concentration of lead (Pb) and cadmium (Cd) in cow milk in different regions of Iran and to perform a meta-analysis of the findings. Moreover, the non-carcinogenic and carcinogenic risks of Pb and Cd through milk consumption in adult and child consumers were assessed. As a result of a systematic search in the international and national databases between January 2008 and October 2018, 17 reports involving 1874 samples were incorporated in our study for meta-analysis. The pooled concentrations of Pb and Cd were estimated to be 13.95 μg mL−1 (95% CI 9.72–18.11 μg mL−1) and 3.55 μg mL−1 (95% CI − 2.38–9.48 μg mL−1), respectively, which were lower than the WHO/FAO and national standard limits. The estimated weekly intake (EWI) of Pb and Cd through consuming milk was 16.65 and 7 μg day−1 for adults of 70 kg and 45 and 34 μg day−1 for children of 26 kg, respectively, which was well below the risk values set by Joint FAO/WHO Expert Committee on Food Additives (JECFA). The maximum target hazard quotient values (THQs) of Pb and Cd were 5.55E−5 and 5.55E−5 for adults and 5.55E−5 and 5.55E−5 for children, respectively, which were lower than 1 value, suggesting that Iranian consumers are not exposed to non-carcinogenic risk through consuming milk. Moreover, the incremental lifetime cancer risk (ILCR) of Pb estimated to be 2.96E−04 in adults and 1.0E−03 in children, indicating that consumers in Iran are at threshold carcinogenic risk of Pb through consuming milk (ILCR > 10−4). Therefore, planning and policy making for the sustainable reduction of these toxic metals in milk, particularly in industrial regions of Iran, are crucial.  相似文献   
4.
Several treatment technologies are available for the treatment of palm oil mill wastes. Vermicomposting is widely recognized as efficient, eco-friendly methods for converting organic waste materials to valuable products. This study evaluates the effect of different vermicompost extracts obtained from palm oil mill effluent (POME) and palm-pressed fiber (PPF) mixtures on the germination, growth, relative toxicity, and photosynthetic pigments of mung beans (Vigna radiata) plant. POME contains valuable nutrients and can be used as a liquid fertilizer for fertigation. Mung bean seeds were sown in petri dishes irrigated with different dilutions of vermicomposted POME-PPF extracts, namely 50, 60, and 70% at varying dilutions. Results showed that at lower dilutions, the vermicompost extracts showed favorable effects on seed germination, seedling growth, and total chlorophyll content in mung bean seedlings, but at higher dilutions, they showed inhibitory effects. The carotenoid contents also decreased with increased dilutions of POME-PPF. This study recommends that the extracts could serve as a good source of fertilizer for the germination and growth enhancement of mung bean seedlings at the recommended dilutions.  相似文献   
5.
Environmental Science and Pollution Research - The aim of this study is to assess the content of heavy metals and their potential health risk in consumed food crops. To this end, the samples from...  相似文献   
6.
A pilot‐scale test was conducted in a saline aquifer to determine if a petroleum hydrocarbon (PHC) plume containing benzene (B), toluene (T), ethylbenzene (E), xylenes (X), methyl tert‐butyl ether (MTBE), and tert‐butyl alcohol (TBA) could be treated effectively using a sequential treatment approach that employed in situ chemical oxidation (ISCO) and enhanced bioremediation (EBR). Chemical oxidants, such as persulfate, have been shown to be effective in reducing dissolved concentrations of BTEX (B + T + E + X) and additives such as MTBE and TBA in a variety of geochemical environments including saline aquifers. However, the lifespan of the oxidants in saline environments tends to be short‐lived (i.e., hours to days) with their effectiveness being limited by poor delivery, inefficient consumption by nontargeted species, and back‐diffusion processes. Similarly, the addition of electron acceptors has also been shown to be effective at reducing BTEX and associated additives in saline groundwater through EBR, however EBR can be limited by various factors similar to ISCO. To minimize the limitations of both approaches, a pilot test was carried out in a saline unconfined PHC‐impacted aquifer to evaluate the performance of an engineered, combined remedy that employed both approaches in a sequence. The PHC plume had total BTEX, MTBE, and TBA concentrations of up to 4,584; 55,182; and 1,880 μg/L, respectively. The pilot test involved injecting 13,826 L of unactivated persulfate solution (19.4 weight percent (wt.%) sodium persulfate (Na2S2O8) solution into a series of injection wells installed within the PHC plume. Parameters monitored over a 700‐day period included BTEX, MTBE, TBA, sulfate, and sulfate isotope concentrations in the groundwater, and carbon and hydrogen isotopes in benzene and MTBE in the groundwater. The pilot test data indicated that the BTEX, MTBE, and TBA within the PHC plume were treated over time by both chemical oxidation and sulfate reduction. The injection of the unactivated persulfate resulted in short‐term decreases in the concentrations of the BTEX compounds, MTBE, and TBA. The mean total BTEX concentration from the three monitoring wells within the pilot‐test area decreased by up to 91%, whereas MTBE and TBA mean concentrations decreased by up to 39 and 58%, respectively, over the first 50 days postinjection in which detectable concentrations of persulfate remained in groundwater. Concentrations of the BTEX compounds, MTBE, and TBA rebounded at the Day 61 marker, which corresponded to no persulfate being detected in the groundwater. Subsequent monitoring of the groundwater revealed that the concentrations of BTEX continued to decrease with time suggesting that EBR was occurring within the plume. Between Days 51 and 487, BTEX concentrations decreased an additional 84% from the concentration measured on Day 61. Mean concentrations of MTBE showed a reduction during the EBR phase of remediation of 33% while the TBA concentration appeared to decrease initially but then increased as the sulfate concentration decreased as a result of MTBE degradation. Isotope analyses of dissolved sulfate (34S and 18O), and compound‐specific isotope analysis (CSIA) of benzene and MTBE (13C and 2H) supported the conclusions that ISCO and EBR processes were occurring at different stages and locations within the plume over time.  相似文献   
7.
Environmental Science and Pollution Research - With the rapid growth of population, development of different industries, and production of several ranges of products, the generation of municipal...  相似文献   
8.
Titanium dioxide (TiO2) nanoparticles were prepared by sol gel route. The preparation parameters were optimized in the removal of 4-nitrophenol (4-NP). All catalysts were analyzed by X-ray diffraction (XRD) and scanning electron microscopy (SEM). An artificial neural network model (ANN) was developed to predict the photocatalytic removal of 4-NP in the presence of TiO2 nanoparticles prepared under desired conditions. The comparison between the predicted results by designed ANN model and the experimental data proved that modeling of the removal process of 4-NP using artificial neural network was a precise method to predict the extent of 4-NP removal under different conditions.  相似文献   
9.
10.
Environmental Science and Pollution Research -  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号