首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Agriculture is one of the major sectors in Thailand, with more than half of the population employed in agriculture‐related occupations. This study evaluated energy consumption and greenhouse gas (GHG) emissions of the Thai agricultural sector by applying the economic input–output life cycle assessment (EIO‐LCA) approach. The model evaluates the entire agricultural sector supply chain. Based on one million Thai baht (approximately $27,800 U.S. dollars) final demand of the rice paddy sector, the carbon dioxide (CO2) emissions from the electricity sector are responsible for 27% (1,246 kilograms [kg] CO2) of the total CO2 emissions, whereas the emissions from paddy activities associated with the fertilizers and pesticides sector account for 16% (760 kg CO2) and 11% (513 kg CO2), respectively. The top three largest GHG emissions from the total agricultural sector supply chain are associated with the oil palm, the coffee and tea, and the fruit sectors. The government should promote and encourage sustainable agriculture by reducing the use of fertilizers and pesticides and by utilizing energy‐saving technologies.  相似文献   

3.

Alternative energy balances aimed to mitigate greenhouse gas (GHG) emissions are developed as alternatives to the baseline energy balance. The section of mitigation options is based on the results of the GHG emission inventory for the 1987–1992 period. The energy sector is the main contributor to the total CO2 emissions of Bulgaria. Stationary combustion for heat and electricity production as well as direct end-use combustion amounts to 80% of the total emissions. The parts of the energy network that could have the biggest influence on GHG emission reduction are identified. The potential effects of the following mitigation measures are discussed: rehabilitation of the combustion facilities currently in operation; repowering to natural gas; reduction of losses in thermal and electrical transmission and distribution networks; penetration of new combustion technologies; tariff structure improvement; renewable sources for electricity and heat production; wasteheat utilization; and supply of households with natural gas to substitute for electricity in space heating and cooking. The total available and the achievable potentials are estimated and the implementation barriers are discussed.

  相似文献   

4.
The Canadian province of British Columbia (BC) is taking significant steps towards climate change mitigation, including a carbon tax on fossil fuels and legislation that mandates greenhouse gas (GHG) reductions within public sector organisations and GHG reduction targets for municipalities. This paper carries out a preliminary scan of the GHG emissions of BC communities using the provincially mandated Community Energy and Emissions Inventory reports. We map trends in energy consumption and emissions per capita while uncovering correlations between these variables and land-use planning, geographic, and demographic variables. These data have shown that: (1) energy consumption in BC is an adequate proxy for GHG emissions; (2) transportation, more than buildings, is a strong driver of overall GHG emissions; (3) building emissions are not likely to be strongly influenced by dwelling type, but density of buildings is crucial; (4) geographic location influences emissions; and (5) population size and age do not appear to influence per capita emissions. These findings are particularly important as they suggest that the potentially intransigent factors of income and population size need not be barriers to achieving significant GHG reductions. The policy onus thus falls squarely on transportation planning, land-use, energy conservation, and fuel switching. This in turn highlights the importance of deeper underlying sociocultural and political preferences, which shape the behaviours that have a strong bearing on emissions profiles.  相似文献   

5.
This paper describes the study that led to the development of a carbon dioxide emissions matrix for the Oeiras municipality, one of the largest Portuguese municipalities, located in the metropolitan area of Lisbon. This matrix takes into account the greenhouse gases (GHG) emissions, due to an increase of electricity demand in buildings as well as solid and liquid wastes treatment, from the domestic and services sectors.Using emission factors that were calculated from the relationship between the electricity produced and amount of treated wastes, the GHG emissions in the Oeiras municipality, were estimated for a time series of 6 years (1998–2003).The obtained results showed that the electricity sector accounts for about 75% of the municipal emissions in 2003. This study was developed in order to obtain tools to base options and actions to be undertaken by local authorities such as energy planning and also public information.  相似文献   

6.
Greenhouse gas (GHG) mitigation options in the Russian forest sector include: afforestation and reforestation of unforested/degraded land area; enhanced forest productivity; incorporation of nondestructive methods of wood harvesting in the forest industry; establishment of land protective forest stands; increase in stand age of final harvest in the European part of Russia; increased fire control; increased disease and pest control; and preservation of old growth forests in the Russian Far-East, which are presently threatened. Considering the implementation of all of the options presented, the GHG mitigation potential within the forest and agroforestry sectors of Russia is approximately 0.6–0.7 Pg C/yr or one half of the industrial carbon emissions of the United States. The difference between the GHG mitigation potential and the actual level of GHGs mitigated in the Russian forest sector will depend to a great degree on external financing that may be available. One possibility for external financing is through joint implementation (JI). However, under the JI process, each project will be evaluated by considering a number of criteria including also the difference between the carbon emissions or sequestration for the baseline (or reference) and the project case, the permanence of the project, and leakage. Consequently, a project level assessment must appreciate the near-term constraints that will face practitioners who attempt to realize the GHG mitigation potential in the forest and agroforestry sectors of their countries.  相似文献   

7.
Management of forests, rangelands, and wetlands on public lands, including the restoration of degraded lands, has the potential to increase carbon sequestration or reduce greenhouse gas (GHG) emissions beyond what is occurring today. In this paper we discuss several policy options for increasing GHG mitigation on public lands. These range from an extension of current policy by generating supplemental mitigation on public lands in an effort to meet national emissions reduction goals, to full participation in an offsets market by allowing GHG mitigation on public lands to be sold as offsets either by the overseeing agency or by private contractors. To help place these policy options in context, we briefly review the literature on GHG mitigation and public lands to examine the potential for enhanced mitigation on federal and state public lands in the United States. This potential will be tempered by consideration of the tradeoffs with other uses of public lands, the needs for climate change adaptation, and the effects on other ecosystem services.  相似文献   

8.

Greenhouse gas (GHG) mitigation options in the Russian forest sector include: afforestation and reforestation of unforested/degraded land area; enhanced forest productivity; incorporation of nondestructive methods of wood harvesting in the forest industry; establishment of land protective forest stands; increase in stand age of final harvest in the European part of Russia; increased fire control; increased disease and pest control; and preservation of old growth forests in the Russian Far-East, which are presently threatened. Considering the implementation of all of the options presented, the GHG mitigation potential within the forest and agroforestry sectors of Russia is approximately 0.6–0.7 Pg C/yr or one half of the industrial carbon emissions of the United States. The difference between the GHG mitigation potential and the actual level of GHGs mitigated in the Russian forest sector will depend to a great degree on external financing that may be available. One possibility for external financing is through joint implementation (JI). However, under the JI process, each project will be evaluated by considering a number of criteria including also the difference between the carbon emissions or sequestration for the baseline (or reference) and the project case, the permanence of the project, and leakage. Consequently, a project level assessment must appreciate the near-term constraints that will face practitioners who attempt to realize the GHG mitigation potential in the forest and agroforestry sectors of their countries.

  相似文献   

9.
Data from the US Department of Energy show that single-family detached homes consume about 17% more energy per year than attached homes and roughly double that of units in large multi-family structures. While greater use of these compact housing types could reduce a community's energy use and greenhouse gas (GHG) emissions, most local climate action plans (CAPs) do not quantify those potential savings. This article describes how the climate action planning process in the Town of Blacksburg, Virginia has addressed residential sector GHG emissions and demonstrates a methodology applied in that community for estimating potential GHG reductions from compact housing. It finds that in an aggressive compact housing scenario GHG emissions from new housing could be decreased by as much as 36%, without factoring in additional energy conservation or efficiency measures. The article concludes with a discussion of the opportunities and challenges related to implementing compact housing in future residential development.  相似文献   

10.

As part of the studies related to the obligations of the UN Framework Convention on Climate Change, the Republic of Kazakhstan started activities to inventory greenhouse gas (GHG) emissions and assess of GHG mitigation options. The objective of this paper is to present an estimate of the possibility of mitigating GHG emissions and determine the mitigation priorities. It presents a compilation of the possible options and their assessment in terms of major criteria and implementation feasibility. Taking into account the structure of GHG emissions in Kazakhstan in 1990, preliminary estimates of the potential for mitigation are presented for eight options for the energy sector and agriculture and forestry sector. The reference scenario prepared by expert assessments assumes a reduction of CO2 emissions in 1996–1998 by about 26% from the 1990 level due to general economic decline, but then emissions increase. It is estimated that the total potential for the mitigation of CO2 emissions for the year 2000 is 3% of the CO2 emissions in the reference scenario. The annual reduction in methane emissions due to the estimated options can amount to 5%–6% of the 1990 level.

  相似文献   

11.
Plug-in hybrid electric vehicles (PHEVs) have the potential to be an economic means of reducing direct (or tailpipe) carbon dioxide (CO2) emissions from the transportation sector. However, without a climate policy that places a limit on CO2 emissions from the electric generation sector, the net impact of widespread deployment of PHEVs on overall U.S. CO2 emissions is not as clear. A comprehensive analysis must consider jointly the transportation and electricity sectors, along with feedbacks to the rest of the energy system. In this paper, we use the Pacific Northwest National Laboratory's MiniCAM model to perform an integrated economic analysis of the penetration of PHEVs and the resulting impact on total U.S. CO2 emissions. In MiniCAM, the deployment of PHEVs (or any technology) is determined based on its relative economics compared to all other methods of providing fuels and energy carriers to serve passenger transportation demands. Under the assumptions used in this analysis where PHEVs obtain 50–60% of the market for passenger automobiles and light-duty trucks, the ability to deploy PHEVs under the two climate policies modelled here results in over 400 million tons (MT) CO2 per year of additional cost-effective emissions reductions from the U.S. economy by 2050. In addition to investments in nuclear and renewables, one of the key technology options for mitigating emissions in the electric sector is CO2 capture and storage (CCS). The additional demand for geologic CO2 storage created by the introduction of the PHEVs is relatively modest: approximately equal to the cumulative geologic CO2 storage demanded by two to three large 1000 megawatt (MW) coal-fired power plants using CCS over a 50-year period. The introduction of PHEVs into the U.S. transportation sector, coupled with climate policies such as those examined here, could also reduce U.S. demand for oil by 20–30% by 2050 compared to today's levels.  相似文献   

12.
This study estimated a series of indicators to assess the energy security of supply and global and local environmental impacts under different mitigation scenarios through 2050 in Brazil, designed with the integrated optimization energy system model MESSAGE‐BRAZIL. The assessment of interactions between environmental impacts and energy security dimensions was complemented through the application of life cycle assessment (LCA) methodology. Overall results imply energy security establishes more synergies than trade‐offs in increasingly stringent mitigation scenarios, especially patent within the sustainability dimension, which increases energy security and provides additional benefits regarding climate change mitigation and air pollution emissions. It is still necessary to extend analysis to other energy sectors in addition to the power supply sector and to promote a better understanding of repercussions of energy scenario expansion in energy security.  相似文献   

13.
An assessment of potential biomass resources in Nigeria for the production of methane and power generation is presented in this paper. Nigeria, as an underdeveloped and populous country, needs an uninterrupted source of energy. The country's energy problems have crippled large sectors of the economy. The percentage of people connected to the national grid is 40%. These 40% experience electricity supply failure on average 10–12 hours daily. Energy generation from municipal solid waste (MSW) is an effective MSW management strategy. Yearly waste generation has increased from 6,471 gigagrams (Gg) in 1959 to 26,600 Gg in 2015. This amount is projected to reach 36,250 Gg per year by 2030. Methane emission for 2015 was 491 Gg, and it is projected to reach 669 Gg in 2030. These values translate to 3.48 × 109 kilowatt hours (kWh) of electricity for 2015, with a projected 4.74 × 109 kWh by 2030. The revenue to be derived from the electricity that is generated could have been US$365.04 × 106 for 2015, and it is estimated that it will reach US$473.82 × 106 by 2030. It was found that methane emissions from MSW increased with time, and capturing this gas for energy production will lead to a sustainable waste management.  相似文献   

14.
The Clean Development Mechanism (CDM) under the Kyoto Protocol to the United Nations Framework Convention on Climate Change is considered a key instrument to encourage developing countries' participation in the mitigation of global climate change. Reduction of greenhouse gas (GHG) emissions through the energy supply and demand side activities are the main options to be implemented under the CDM. This paper analyses the general equilibrium effects of a supply side GHG mitigation option-the substitution of thermal power with hydropower--in Thailand under the CDM. A static multi-sector general equilibrium model has been developed for the purpose of this study. The key finding of the study is that the substitution of electricity generation from thermal power plants with that from hydropower plants would increase economic welfare in Thailand. The supply side option would, however, adversely affect the gross domestic product (GDP) and the trade balance. The percentage changes in economic welfare, GDP and trade balance increase with the level of substitution and the price of certified emission reduction (CER) units.  相似文献   

15.
Large-scale, dedicated commercial biomass energy systems are a potentially large contributor to meeting global climate policy targets by the end of the century. We use an integrated assessment model of energy and agriculture systems to show that, given a climate policy in which terrestrial carbon is appropriately valued equally with carbon emitted from the energy system, biomass energy has the potential to be a major component of achieving these low concentration targets. A key aspect of the research presented here is that the costs of processing and transporting biomass energy at much larger scales than current experience are explicitly incorporated into the modeling. From the scenario results, 120–160 EJ/year of biomass energy is produced globally by midcentury and 200–250 EJ/year by the end of this century. In the first half of the century, much of this biomass is from agricultural and forest residues, but after 2050 dedicated cellulosic biomass crops become the majority source, along with growing utilization of waste-to-energy. The ability to draw on a diverse set of biomass-based feedstocks helps to reduce the pressure for drastic large-scale changes in land use and the attendant environmental, ecological, and economic consequences those changes would unleash. In terms of the conversion of bioenergy feedstocks into value added energy, this paper demonstrates that biomass is and will continue to be used to generate electricity as well as liquid transportation fuels. A particular focus of this paper is to show how climate policies and technology assumptions – especially the availability of carbon dioxide capture and storage (CCS) technologies – affect the decisions made about where the biomass is used in the energy system. The potential for net-negative electric sector emissions through the use of CCS with biomass feedstocks provides an attractive part of the solution for meeting stringent emissions constraints; we find that at carbon prices above $150/tCO2, over 90% of biomass in the energy system is used in combination with CCS. Despite the higher technology costs of CCS, it is a very important tool in controlling the cost of meeting a target, offsetting the venting of CO2 from sectors of the energy system that may be more expensive to mitigate, such as oil use in transportation. CCS is also used heavily with other fuels such as coal and natural gas, and by 2095 a total of 1530 GtCO2 has been stored in deep geologic reservoirs. The paper also discusses the role of cellulosic ethanol and Fischer–Tropsch biomass derived transportation fuels as two representative conversion processes and shows that both technologies may be important contributors to liquid fuels production, with unique costs and emissions characteristics.  相似文献   

16.
煤电是我国汞污染的重要来源,旨在控制汞排放的《水俣公约》也将煤电列为重点管控源.因此,我国急需提出科学合理的策略以指导煤电汞减排工作.明确煤电汞排放的驱动因素以及预测未来趋势是制定污染控制政策的基础.鉴于此,本文以辽宁省为例,综合运用对数平均迪氏分解法、环境学习曲线和情景分析模型,辨识了燃煤电厂汞排放的主要影响因素,并预测了未来十年的大气汞排放量.结果显示:2006—2017年排放从5009kg(-57.8%,79.1%)大幅下降至1419kg(-61.1%,80.2%),排放因子、煤炭消耗效率和电力行业结构是汞排放的主要抑制因素,而电力需求拉动了辽宁省大气汞排放.在基准情景下,燃煤电厂大气汞排放从2017年的1419kg下降至2030年的1243kg.在环境规划和严格控制情景下,2030年燃煤电厂大气汞排放分别下降了1200kg和1274kg.最后,本文针对辽宁省汞减排提出一系列政策建议:①通过优化电厂污染物控制设施,提高洗煤比例等措施降低汞排放因子;②继续淘汰低效燃煤电厂,并推广节能技术以提高煤炭消耗效率;③推进风能、光能等可再生能源替代煤电.  相似文献   

17.
This paper reports on a life‐cycle analysis (LCA) of Taiwan's “agriculture and forestry”, “crude petroleum, coal and natural gas extraction” and “electricity generation” sectors, revealing for the first time Taiwan's CO2 and CH4 emissions inventories and matching Taiwan's input‐output sectors. Integrated hybrid input‐output life cycle analysis is used to disaggregate the electricity generation sector into nuclear, hydro, gas, oil and coal, and cogeneration. Results show that the fossil‐fuel‐related electricity sub‐sectors have higher CO2 emissions intensity than the remaining sectors in the economy and that the “paddy rice” sector is Taiwan's most CH4‐intensive sector, making rice cultivation an important source of CH4 emissions. This work is vital to sound policy decisions concerning power generation, coal, and agriculture and forestry at the national level.  相似文献   

18.
The International Energy Agency Energy Technologies Perspectives (ETP) model is used to assess the prospects for carbon abatement options, including carbon capture and storage, up to 2050. Three main scenarios are considered: a Baseline scenario with current energy policies, an accelerated technology scenario that seeks to return energy-related CO2 emissions in 2050 to their level in 2005, and a scenario for which CO2 emissions are reduced at 50% of current levels by 2050. To reach these emissions reduction targets, annual global CO2 emissions in the year 2050 must be reduced by 35 GtCO2 to 48 GtCO2 compared to the Baseline scenario. The analysis presented here shows that a broad portfolio of emissions reducing technologies will need to be deployed across all economic sectors of the global economy to reach these targets. Carbon dioxide capture and storage (CCS) is one of the suite of technologies employed across the globe to reach these targets. CCS adoption occurs in many aspects of the global economy and accounts for 14–19% of all emissions reductions. The total amount of CO2 captured and stored in deep geologic reservoirs up to 2050 ranges between 5.1 GtCO2 and 10.4 GtCO2 in these two climate policy scenarios. Up to 2030, more than half of total CCS deployment takes place in OECD countries. After 2035, emerging economies account for more than half of total CCS use. This paper also demonstrates that as the climate policy becomes more stringent it will be necessary for CCS to deploy more extensively in many different industries outside of the electric power sector which often receives the most attention in discussions of CCS's role in addressing climate change.  相似文献   

19.
Tropical deforestation is a significant contributor to accumulation of greenhouse gases (GHGs) in the atmosphere. GHG emissions from deforestation in the tropics were in the range of 1 to 2 Pg C yr(-1) for the 1990s, which is equivalent to as much as 25% of global anthropogenic GHG emissions. While there is growing interest in providing incentives to avoid deforestation and consequently reduce net carbon emissions, there is limited information available on the potential costs of these activities. This paper uses a global forestry and land use model to analyze the potential marginal costs of reducing net carbon emissions by avoiding deforestation in tropical countries. Our estimates suggest that about 0.1 Pg C yr(-1) of emissions reductions could be obtained over the next 30 to 50 yr for $5 per Mg C, and about 1.6 Pg C yr(-1) could be obtained over the same time frame for $100 per Mg C. In addition, the effects of carbon incentives on land use could be substantial. Relative to projected baseline conditions, we find that there would be around 3 million additional hectares (ha) of forestland in 2055 at $5 per Mg C and 422 million ha at $100 per Mg C. Estimates of reductions in area deforested, GHG mitigation potential, and annual land rental payments required are presented, all of which vary by region, carbon price paid, and time frame of mitigation.  相似文献   

20.
Urbanisation is truly a global phenomenon. Starting at 39% in 1980, the urbanisation level rose to 52% in 2011. Ongoing rapid urbanisation has led to increase in urban greenhouse gas (GHG) emissions. Urban climate change risks have also increased with increase in climate-induced extreme weather events and more low-income urban dwellers living in climate sensitive locations. Despite increased emissions, including GHGs and heightened climate change vulnerability, climate mitigation and adaptation actions are rare in the cities of developing countries. Cities are overwhelmed with worsening congestion, air pollution, crime, waste management, and unemployment problems. Lack of resources and capacity constraints are other factors that discourage cities from embarking on climate change mitigation and adaptation pathways. Given the multitude of problems faced, there is simply no appetite for stand-alone urban climate change mitigation and adaptation policies and programmes. Urban mitigation and adaptation goals will have to be achieved as co-benefits of interventions targeted at solving pressing urban problems and challenges. The paper identifies administratively simple urban interventions that can help cities solve some of their pressing service delivery and urban environmental problems, while simultaneously mitigating rising urban GHG emissions and vulnerability to climate change.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号