首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two 11.7-m(3) experimental controlled release systems (ECRS), packed with sandy model aquifer material and amended with tetrachloroethene (PCE) dense nonaqueous phase liquid (DNAPL) source zone, were operated in parallel with identical flow regimes and electron donor amendments. Hydrogen Releasing Compound (Regenesis Bioremediation Products, Inc., San Clemente, California), and later dissolved lactate, served as electron donors to promote dechlorination. One ECRS was bioaugmented with an anaerobic dechlorinating consortium directly into the source zone, and the other served as a control (biostimulated only) to determine the benefits of bioaugmentation. The presence of halorespiring bacteria in the aquifer matrix before bioaugmentation, shown by nested polymerase chain reaction with phylogenetic primers, suggests that dechlorinating catabolic potential may be somewhat widespread. Results obtained corroborate that source zone reductive dechlorination of PCE is possible at near field scale and that a system bioaugmented with a competent halorespiring consortium can enhance DNAPL dissolution and dechlorination processes at significantly greater rates than in a system that is biostimulated only.  相似文献   

2.
外循环式UASB反应器处理高浓度酒精废水   总被引:1,自引:1,他引:0  
利用改进型上流式厌氧污泥床反应器在中温条件下处理高浓度酒精废水,研究反应器的启动影响因素及颗粒污泥形成过程,分析反应器运行特性。在容积负荷为10.39 kg COD/(m3.d),COD去除率达90.2%,VFA在300 mg/L以下,平均产气率为0.328 m3/kg COD,取得最佳的运行效果,为高浓度酒精废水的处理应用提供科学依据。  相似文献   

3.
Pseudomonas sp. AKS2 isolated from soil degrades polyethylene succinate (PES) efficiently in the laboratory. However, this organism may not be able to degrade PES with similar efficiency in a natural habitat. Since in situ remediation is preferred for the effective removal of recalcitrant materials like plastic, in the current study, bioaugmentation potential of this organism was investigated. To investigate the potential of the AKS2 strain to bioaugment the PES-contaminated soil, a microcosm-based study was carried out wherein naturally attenuated, biostimulated, and AKS2-inoculated (bioaugmented) soil samples were examined for their ability to degrade PES. The results showed better degradation of PES by bioaugmented soil than other microcosms. Consistent with it, a higher number of PES-degrading organisms were found in the bioaugmented microcosm. The bioaugmented microcosm also exhibited a higher level of average well color development in BiOLOG ECO plate assay than the other two. The corresponding Shannon–Weaver index and Gini coefficient revealed a higher soil microbial diversity of bioaugmented microcosm than the others. This was further supported by community-level physiological profile of three different microcosms wherein we have observed better utilization of different carbon sources by bioaugmented microcosms. Collectively, these results demonstrate that bioaugmentation of PES-contaminated soil with AKS2 not only enhances polymer degradation but also increases microbial diversity. Bioaugmentation of soil with AKS2 enhances PES degradation without causing damage to soil ecology. Thus, Pseudomonas sp. AKS2 has the potential to be implemented as a useful tool for in situ bioremediation of PES.  相似文献   

4.
生物量流失是EGSB反应器在高负荷状态下稳定运行面临的主要问题。利用实验室EGSB反应器在中温条件下处理高浓度葡萄糖废水,研究EGSB反应器在高负荷状态下的床层流态行为及其受影响因素。结果表明,在该反应器结构形式下,当有机负荷达到23-26 kg COD/(m3·d),水力上升流速在约3.0 m/h,气体上升流速在约1.3 m/h状态下运行时,床层易发生剧烈流化现象,并导致颗粒污泥的解体和流失。降低反应器回流比、减小反应器内水力上升流速,控制床层在悬浮状态时可以有效降低高负荷状态下生物量的流失,并取得了有机负荷46 kg COD/(m3·d),COD去除率97%以上的处理效果。  相似文献   

5.
Pilot-scale experiments were continuously carried out for more than 9 months to study the excess biomass reduction effect using a biophase-separation bioreactor, which was designed based on food-chain theory. By separating the biophase in the wastewater treatment system, bacteria, protozoa, and metazoa could be separated from each other and dominated in different microbial communities. After degrading organic matter, bacteria were consumed by protozoa or metazoa in the following process in such a reactor. Thus, both chemical oxygen demand (COD) and biomass were reduced. During the process of treating restaurant wastewater, the excess biomass yield in this biophase-separation technique varied from 0.13 to 0.22 kg/kg COD removed, 50% lower than that from the reference system. Apart from low biomass production, this biophase-separation technique can simultaneously achieve a high COD removal efficiency and improve settleability of biosolids at a hydraulic retention time of 6 to 13 hours.  相似文献   

6.
To better construct a bioaugmented system for tobacco wastewater treatment, activated sludge was inoculated with different concentrations of the nicotine-degrading bacterium Pseudomonas sp. HF-1. The results showed that inoculum concentrations of 0.55?±?0.01 and 1.10?±?0.03 mg/g (dry weight of strain HF-1/dry weight of activated sludge) were best to ensure strain HF-1 survival and successful bioaugmentation. The release pattern of autoinducer (AI) for quorum sensing in the bioaugmented system was also investigated. During the period of HF-1 inoculation, compared with failed bioaugmented systems, AI-2 was significantly increased in the successful systems, suggesting that AI-2-mediated bacterial communication played an important role in the colonization of HF-1. When inoculation of strain HF-1 was stopped, the amount of AI-2 decreased and leveled out in all systems. Notably, there was a greater than threefold increase of short-chain AHLs in failed bioaugmented systems, but no increase in successful ones, implying that the fluctuation of short-chain AHLs could be an indicator of the failure of bioaugmentation. Thus, AI-2-mediated quorum sensing could be implemented to facilitate HF-1 colonization.  相似文献   

7.
Biological treatment of petroleum refinery wastewater was studied in a rotating biological contactor (RBC) coupled to a polyurethane foam (PUF) as a porous biomass support. The PUF was attached on both sides of biodisks. The biodegradation studies were carried out at varying hydraulic and organic loadings. COD removal efficiency of up to 87% was achieved. The results obtained in terms of biodegradation of COD, NH3-N, phenol, hydrocarbons and suspended solids in this study were compared with those in the literature. The RBC-PUF bioreactor was found to have a better performance than a conventional RBC for the biodegradation of the above mentioned parameters. A higher concentration of active biomass (77 g TVS/m2) was observed in the RBC-PUF as compared to other treatment systems. A linear relationship between COD applied and COD removed was observed for the combined four stage system as well as for the individual stages.  相似文献   

8.
对厌氧滤池反应器处理难降解印染废水进行中试研究。结果表明,厌氧滤池反应器水力停留时间(HRT)在8.1~14.6 h之间,进水COD浓度波动较大(500~1 000 mg/L)时,对COD平均去除率为20%。印染废水的BOD5/COD由0.23提高到0.35,废水可生化性明显改善。印染废水中硫酸根浓度略有下降,去除浓度为70 mg/L左右。厌氧滤池进出水颜色明显变化,由紫红色变为蓝黑色,紫外可见光谱分析表明废水中的有机物结构发生变化。  相似文献   

9.
Synthesis of polyhydroxyalkanoates in municipal wastewater treatment.   总被引:1,自引:0,他引:1  
Biologically derived polyesters known as polyhydroxyalkanoates (PHAs) represent a potentially "sustainable" replacement to fossil-fuel-based thermoplastics. However, current commercial practices that produce PHA with pure microbial cultures grown on renewable, but refined, feedstocks (i.e., glucose) under sterile conditions do not represent a sustainable commodity. Here, we report on PHA production with a mixed microbial consortium indigenous to an activated sludge process on carbon present in municipal wastewaters. Reactors operated under anaerobic/aerobic and aerobic-only mode and fed primary solids fermenter liquor maintained a mixed microbial consortium capable of synthesizing PHA at 10 to 25% (w/w), while reducing soluble COD by approximately 62 to 71%. More critically, an aerobic batch reactor seeded from the anaerobic/aerobic reactor and fed fermenter liquor achieved approximately 53% PHA (w/w). Results presented suggest that environmentally benign production of biodegradable polymers is feasible. We further used PHA-rich biomass to produce a natural fiber-reinforced thermoplastic composite that can be used to offset advanced wastewater treatment costs.  相似文献   

10.
根据印染废水的特点和印染废水处理工程实例,从适用性、与其他工艺的衔接、工程造价、运行费用及水解效果等方面对UASB水解酸化反应器和填料式水解酸化反应器进行比较研究。研究表明,UASB水解酸化反应器在适用性和工程造价两个方面具有一定的缺陷;但是UASB水解酸化反应器对印染废水中COD、SS和色度去除率能够分别达到50%、73%和75%,明显高于填料式水解酸化反应器;且UASB水解酸化反应器每降解1kgCOD所需电量为(0.23±0.05)kW·h,优于填料式水解酸化反应器。  相似文献   

11.
Ozonation of hydrolyzed azo dye reactive yellow 84 (CI).   总被引:17,自引:0,他引:17  
The combination of chemical and biological water treatment processes is a promising technique to reduce recalcitrant wastewater loads. The key to the efficiency of such a system is a better understanding of the mechanisms involved during the degradation processes. Ozonation has been applied to many fields in water and wastewater treatment. Especially for textile mill effluents ozonation can achieve high color removal, enhance biodegradability, destroy phenols and reduce the chemical oxygen demand (COD). However, little is known about the reaction intermediates and products formed during ozonation. This work deals with the degradation of hydrolyzed Reactive Yellow 84 (Color Index), a widely used azo dye in textile finishing processes with two monochlorotriazine anchor groups. Ozonation of the hydrolyzed dye in ultra pure water was performed in a laboratory scale cylindric batch reactor. Decolorization, determined by measuring the light absorbance at the maximum wavelength in the visible range (400 nm), was almost complete after 60 and 90 min with an ozone concentration of 18.5 and 9.1 mg/l, respectively. The TOC/TOC0 ratio after ozonation was about 30%, the COD was diminished to 50% of the initial value. The BOD5/COD ratio increased from 0.01 to about 0.8. Oxidation and cleavage of the azo group yield nitrate. Cleavage of the sulfonic acid groups of aromatic rings caused increases in the amount of sulfate. Formic acid and oxalic acid were identified as main oxidation products by high performance ion chromatography (HPIC). The concentrations of these major products were monitored at defined time intervals during ozonation.  相似文献   

12.
曝气生物滤池深度处理混合印染废水   总被引:5,自引:0,他引:5  
采用曝气生物滤池(BAF)反应器作为混合印染废水的深度处理工艺,对BAF的启动情况和不同气水比条件下BAF的深度处理效能进行探讨。结果表明,采用同步连续法可实现BAF在15 d内快速启动;当气水比为3∶1时,二级处理出水的处理效果最好,氨氮、COD和色度去除率分别达到77.8%、61.5%和90%。比较BAF中生物膜和活性污泥对二级处理出水的深度处理效能性能时发现,在相同生物量和环境条件下生物膜表现了出更强深度处理能力。  相似文献   

13.
王学华  黄勇  王浩 《环境工程学报》2014,8(4):1521-1525
根据印染废水的特点和印染废水处理工程实例,从适用性、与其他工艺的衔接、工程造价、运行费用及水解效果等方面对UASB水解酸化反应器和填料式水解酸化反应器进行比较研究。研究表明,UASB水解酸化反应器在适用性和工程造价两个方面具有一定的缺陷;但是UASB水解酸化反应器对印染废水中COD、SS和色度去除率能够分别达到50%、73%和75%,明显高于填料式水解酸化反应器;且UASB水解酸化反应器每降解1 kg COD所需电量为(0.23±0.05)kW·h,优于填料式水解酸化反应器。  相似文献   

14.
一体式A/O摇动床工艺处理石化废水   总被引:1,自引:0,他引:1  
针对国内许多石油化工废水处理工艺中氨氮降解效果差的问题,采用新型Biofringe填料设计一体式A/O摇动床工艺,对反应器的操作参数和去除效果进行了试验.结果表明:水力停留时间对氨氮去除负荷的影响较大,在水力停留时间为20.8 h,回流比为3.5时,COD的去除率可以达到90%以上,NH3-N的去除率可以达到95%以上,TN的去除率可以达到70%以上.通过一年多的小试,反应器具有动力消耗低,抗冲击能力强,操作稳定等特点,为进一步在石油化工废水处理中的应用提供了实验依据.  相似文献   

15.
采用厌氧流化床(AFB)-序批式反应器(SBR)工艺处理蓝皮制革工业废水。分别考察了水力停留时间(HRT)、容积负荷对厌氧流化床以及曝气时间、污泥浓度、溶解氧浓度对SBR反应器处理效果的影响。试验结果表明,AFB将实验废水的BOD_5/COD(B/C)值由0.19~0.26提高至0.35~0.42,有效提高了其可生化性;在进水COD浓度为1 700~1 890 mg/L、HRT为1 d、容积负荷为1.792 kg COD/(m~3·d)时,COD去除率达65.2%~68.5%,且具有良好的抗冲击负荷能力。SBR在进水COD浓度为628~712 mg/L、污泥浓度为2.9 g/L、曝气时间为10 h、溶解氧浓度为2 mg/L工况下,COD去除率达87.6%,NH_3-N去除率达93.6%,处理后出水水质符合污水综合排放标准(GB 8978-1996)中的一级标准要求。  相似文献   

16.
A microcosm study was conducted to evaluate the need for bioaugmentation after a thermal treatment to anaerobically dechlorinate trichloroethene (TCE) to ethene. The microcosms were either: heated to 100 degrees C and slowly cooled to simulate thermal remediation while bioaugmenting when the declining temperature reached 10 degrees C; or kept at ambient groundwater temperatures (10 degrees C) and bioaugmented for comparison. Aquifer samples from three sediment locations within a TCE-polluted source zone were investigated in duplicate microcosms. In biostimulated (5 mM lactate) and heated microcosms, no conversion of TCE was observed in 4 out of 6 microcosms, and in the remaining microcosms the dechlorination of TCE was incomplete to cDCE (cis-dichloroethene). By comparison, complete TCE dechlorination to ethene was observed in 4 out of 6 heated microcosms that were bioaugmented with a highly enriched dechlorinating mixed culture, KB-1, but no electron donor, and also in 4 of 6 microcosms that were augmented with KB-1 and an electron donor (5 mM lactate). These data suggest that electron donor released during heating, was capable of promoting complete dechlorination coincident with bioaugmentation. Heated microcosms demonstrated less methanogenesis than unheated microcosms, even with elevated H2 concentrations and addition of KB-1, which contains methanogens. This suggests that the heating process suppressed the native microbial community, which can decrease competition with the bioaugmented culture and increase the effectiveness of dechlorination following a thermal treatment. Specifically, cDCE removal rates were four to six times higher in heated than unheated bioaugmented microcosms. This study confirms the need for bioaugmentation following a laboratory thermal treatment to obtain complete dechlorination of TCE.  相似文献   

17.
混凝辅助电化学法处理橙黄G染料废水   总被引:1,自引:0,他引:1  
以石墨板为阳极,研究了电化学氧化法对橙黄G染料废水的降解效果。比较了在NaCl、Na2 SO4以及NaCl与FeSO4·7H2O组合的支持电解质体系中的处理效果,同时考察了电压、初始pH、电解质浓度、电极间距和电解时间等因素对废水中橙黄G脱色率及COD去除率的影响。研究结果表明,橙黄G的脱色主要是活性氯的氧化作用,橙黄G分子的矿化可能主要是电解过程中产生的·OH的作用,FeSO4·7H2O的加入增加了混凝作用,使得处理效果进一步提高。最佳脱色条件下橙黄G脱色率和COD的去除率分别为97.6%和56.3%,B/C(BOD/COD)由0.09提高至0.41,可生化性有较大改善,并且随着降解时间的增加,COD去除率逐渐升高。此结果表明,橙黄G废水COD的去除相对于脱色存在滞后性。  相似文献   

18.
采用南京江心洲污水处理厂的厌氧消化污泥作为厌氧折流板反应器(ABR)的接种污泥,研究室温(25±5)℃条件下ABR对邻苯二甲酸二丁酯(DBP)降解的运行特性。结果表明,ABR在室温、容积负荷为0.9-1.8 kg/(m3·d)条件下启动运行30 d可以达到运行稳定,其COD去除率在90%左右。在负荷提高阶段,当水力停留时间(HRT)为12 h,容积负荷为2.0-6.8 kg/(m3·d)时,反应器对COD平均去除率大于85%;当HRT为12 h,容积负荷6.8 kg/(m3·d)时,COD去除率达90.7%,DBP降解率达87.3%。  相似文献   

19.
抗生素废水碱回收与生化处理试验研究   总被引:1,自引:0,他引:1  
为克服抗生素废水难以生化处理的难题,采用废碱液回收利用和生物强化处理的技术手段对废水进行了资源化小试研究。结果显示,经碱液回收后出水的COD、SS、硫酸盐和含盐量分别由13 925、45 700、417和29 900 mg/L降到了2 400、86、25和402 mg/L,色度也由6 000倍降到了5倍;经与综合污水混合后生化强化处理,出水COD、色度和硫酸盐的平均去除率分别达到了91%、84%和96.5%,处理效果理想,资源化技术处理废水可盈利54.19元/t,具有较好的经济性,值得推广应用。  相似文献   

20.
Liou RM  Chen SH  Hung MY  Hsu CS  Lai JY 《Chemosphere》2005,59(1):117-125
FeIII supported on resin as an effective catalyst for oxidation was prepared and applied for the degradation of aqueous phenol. Phenol was selected as a model pollutant and the catalytic oxidation was carried out in a batch reactor using hydrogen peroxide as the oxidant. The influent factors on oxidation, such as catalyst dosage, H2O2 concentration, pH, and phenol concentration were examined by considering both phenol conversion and chemical oxygen demand (COD) removal. The FeIII-resin catalyst possesses a high oxidation activity for phenol degradation in aqueous solution. The experimental results of this study show that almost 100% phenol conversion and over 80% COD removal can be achieved with the FeIII-resin catalyst catalytic oxidation system. A series of prepared resin were investigated for improving the oxidation efficiency. It was found that the reaction temperature and initial pH in solution significantly affected both of phenol conversion and COD removal efficiency. The activity of the catalyst significantly decreased at high pH, which was similar to the Fenton-like reaction mechanism. Results in this study indicate that the FeIII-resin catalytic oxidation process is an efficient method for the treatment of phenolic wastewater.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号