首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Tillage erosion and its effect on soil properties and crop yield in Denmark   总被引:1,自引:0,他引:1  
Tillage erosion had been identified as a major process of soil redistribution on sloping arable land. The objectives of our study were to investigate the extent of tillage erosion and its effect on soil quality and productivity under Danish conditions. Soil samples were collected to a 0.45-m depth on a regular grid from a 1.9-ha site and analyzed for 137Cs inventories, as a measure of soil redistribution, soil texture, soil organic carbon (SOC) contents, and phosphorus (P) contents. Grain yield was determined at the same sampling points. Substantial soil redistribution had occurred during the past decades, mainly due to tillage. Average tillage erosion rates of 2.7 kg m(-2) yr(-1) occurred on the shoulderslopes, while deposition amounted to 1.2 kg m(-2) yr(-1) on foot- and toeslopes. The pattern of soil redistribution could not be explained by water erosion. Soil organic carbon and P contents in soil profiles increased from the shoulder- toward the toeslopes. Tillage translocation rates were strongly correlated with SOC contents, A-horizon depth, and P contents. Thus, tillage erosion had led to truncated soils on shoulderslopes and deep, colluvial soils on the foot- and toeslopes, substantially affecting within-field variability of soil properties. We concluded that tillage erosion has important implications for SOC dynamics on hummocky land and increases the risk for nutrient losses by overland flow and leaching. Despite the occurrence of deep soils across the study area, evidence suggested that crop productivity was affected by tillage-induced soil redistribution. However, tillage erosion effects on crop yield were confounded by topography-yield relationships.  相似文献   

2.
The importance of agricultural practices to greenhouse gas mitigation is examined worldwide. However, there is no consensus on soil organic carbon (SOC) content and CO emissions as affected by soil management practices and their relationships with soil texture. No-till (NT) agriculture often results in soil C gain, though, not always. Soil net CO exchange rate (NCER) and environmental factors (SOC, soil temperature [T], and water content [W]), as affected by soil type (loam and sandy loam), tillage (conventional, reduced, and NT), and fertilization, were quantified in long-term field experiments in Lithuania. Soil tillage and fertilization affected total CO flux (heterotrophic and autotrophic) through effect on soil SOC sequestration, water, and temperature regime. After 11 yr of different tillage and fertilization management, SOC content was 23% more in loam than in sandy loam. Long-term NT contributed to 7 to 27% more SOC sequestration on loam and to 29 to 33% more on sandy loam compared with reduced tillage (RT) or conventional tillage (CT). Soil water content in loam was 7% more than in sandy loam. Soil gravimetric water content, averaged across measurement dates and fertilization treatments, was significantly less in NT than CT and RT in both soils. Soil organic carbon content and water storage capacity of the loam and sandy loam soils exerted different influences on NCER. The NCER from the sandy loam soil was 13% greater than that from the loam. In addition, NCER was 4 to 9% less with NT than with CT and RT systems on both loam and sandy loam soils. Application of mineral NPK fertilizers promoted significantly greater NCER from loam but suppressed NCER by 15% from sandy loam.  相似文献   

3.
Soil C change and CO2 emission due to different tillage systems need to be evaluated to encourage the adoption of conservation practices to sustain soil productivity and protect the environment. We hypothesize that soil C storage and CO2 emission respond to conservation tillage differently from conventional tillage because of their differential effects on soil properties. This study was conducted from 1998 through 2001 to evaluate tillage effects on soil C storage and CO2 emission in Clarion-Nicollet-Webster soil association in a corn [Zea mays L.]-soybean [Glycine max (L.) Merr.] rotation in Iowa. Treatments included no-tillage with and without residue, strip-tillage, deep rip, chisel plow, and moldboard plow. No-tillage with residue and strip-tillage significantly increased total soil organic C (TC) and mineral fraction C (MFC) at the 0- to 5- and 5- to 10-cm soil depths compared with chisel plow after 3 yr of tillage practices. Soil CO2 emission was lower for less intensive tillage treatments compared with moldboard plow, with the greatest differences occurring immediately after tillage operations. Cumulative soil CO2 emission was 19 to 41% lower for less intensive tillage treatments than moldboard plow, and it was 24% less for no-tillage with residue than without residue during the 480-h measurement period. Estimated soil mineralizable C pool was reduced by 22 to 66% with less intensive tillage treatments compared with moldboard plow. Adopting less intensive tillage systems such as no-tillage, strip-tillage, deep rip, and chisel plow and better crop residue cover are effective in reducing CO2 emission and thus improving soil C sequestration in a corn-soybean rotation.  相似文献   

4.
Growing demand for corn due to the expansion of ethanol has increased concerns that environmentally sensitive lands retired from agricultural production and enrolled into the Conservation Reserve Program (CRP) will be cropped again. Iowa produces more ethanol than any other state in the United States, and it also produces the most corn. Thus, an examination of the impacts of higher crop prices on CRP land in Iowa can give insight into what we might expect nationally in the years ahead if crop prices remain high. We construct CRP land supply curves for various corn prices and then estimate the environmental impacts of cropping CRP land through the Environmental Policy Integrated Climate (EPIC) model. EPIC provides edge-of-field estimates of soil erosion, nutrient loss, and carbon sequestration. We find that incremental impacts increase dramatically as higher corn prices bring into production more and more environmentally fragile land. Maintaining current levels of environmental quality will require substantially higher spending levels. Even allowing for the cost savings that would accrue as CRP land leaves the program, a change in targeting strategies will likely be required to ensure that the most sensitive land does not leave the program.  相似文献   

5.
Past agricultural management practices have contributed to the loss of soil organic carbon (SOC) and emission of greenhouse gases (e.g., carbon dioxide and nitrous oxide). Fortunately, however, conservation-oriented agricultural management systems can be, and have been, developed to sequester SOC, improve soil quality, and increase crop productivity. Our objectives were to (i) review literature related to SOC sequestration in cotton (Gossypium hirsutum L.) production systems, (ii) recommend best management practices to sequester SOC, and (iii) outline the current political scenario and future probabilities for cotton producers to benefit from SOC sequestration. From a review of 20 studies in the region, SOC increased with no tillage compared with conventional tillage by 0.48 +/- 0.56 Mg C ha(-1) yr(-1) (H(0): no change, p < 0.001). More diverse rotations of cotton with high-residue-producing crops such as corn (Zea mays L.) and small grains would sequester greater quantities of SOC than continuous cotton. No-tillage cropping with a cover crop sequestered 0.67 +/- 0.63 Mg C ha(-1) yr(-1), while that of no-tillage cropping without a cover crop sequestered 0.34 +/- 47 Mg C ha(-1) yr(-1) (mean comparison, p = 0.04). Current government incentive programs recommend agricultural practices that would contribute to SOC sequestration. Participation in the Conservation Security Program could lead to government payments of up to Dollars 20 ha(-1). Current open-market trading of C credits would appear to yield less than Dollars 3 ha(-1), although prices would greatly increase should a government policy to limit greenhouse gas emissions be mandated.  相似文献   

6.
Agricultural soils are responsible for the majority of nitrous oxide (N(2)O) emissions in the USA. Irrigated cropping, particularly in the western USA, is an important source of N(2)O emissions. However, the impacts of tillage intensity and N fertilizer amount and type have not been extensively studied for irrigated systems. The DAYCENT biogeochemical model was tested using N(2)O, crop yield, soil N and C, and other data collected from irrigated cropping systems in northeastern Colorado during 2002 to 2006. DAYCENT uses daily weather, soil texture, and land management information to simulate C and N fluxes between the atmosphere, soil, and vegetation. The model properly represented the impacts of tillage intensity and N fertilizer amount on crop yields, soil organic C (SOC), and soil water content. DAYCENT N(2)O emissions matched the measured data in that simulated emissions increased as N fertilization rates increased and emissions from no-till (NT) tended to be lower on average than conventional-till (CT). However, the model overestimated N(2)O emissions. Lowering the amount of N(2)O emitted per unit of N nitrified from 2 to 1% helped improve model fit but the treatments receiving no N fertilizer were still overestimated by more than a factor of 2. Both the model and measurements showed that soil NO(3)(-) levels increase with N fertilizer addition and with tillage intensity, but DAYCENT underestimated NO(3)(-) levels, particularly for the treatments receiving no N fertilizer. We suggest that DAYCENT could be improved by reducing the background nitrification rate and by accounting for the impact of changes in microbial community structure on denitrification rates.  相似文献   

7.
Long-term cropping system effects on carbon sequestration in eastern Oregon   总被引:1,自引:0,他引:1  
Soil organic carbon (SOC) has beneficial effects on soil quality and productivity. Cropping systems that maintain and/or improve levels of SOC may lead to sustainable crop production. This study evaluated the effects of long-term cropping systems on C sequestration. Soil samples were taken at 0- to 10-, 10- to 20-, 20- to 30-, and 30- to 40-cm soil depth profiles from grass pasture (GP), conventional tillage (CT) winter wheat (Triticum aestivum L.)-fallow (CTWF), and fertilized and unfertilized plots of continuous winter wheat (WW), spring wheat (SW), and spring barley (Hordeum vulgare L.) (SB) monocultures under CT and no-till (NT). The samples were analyzed for soil organic matter (SOM) and SOC was derived. Ages of experiments ranged from 6 to 73 yr. Compared to 1931 SOC levels (initial year), CTWF reduced SOC by 9 to 12 Mg ha(-1) in the 0- to 30-cm zone. Grass pasture increased SOC by 6 Mg ha(-1) in the 0- to 10-cm zone but decreased SOC by 3 Mg ha(-1) in the 20- to 30-cm zone. Continuous CT monocultures depleted SOC in the top 0- to 10-cm zone and the bottom 20- to 40-cm zone but maintained SOC levels close to 1931 SOC levels in the 10- to 20-cm layer. Continuous NT monocultures accumulated more SOC in the 0- to 10-cm zone than in deeper zones. Total SOC (0- to 40-cm zone) was highest under GP and continuous cropping and lowest under CTWF. Fertilizer increased total SOC only under CTWW and CTSB by 13 and 7 Mg ha(-1) in 13 yr, respectively. Practicing NT for only 6 yr had started to reverse the effect of 73 yr of CTWF. Compared to CTWF, NTWW and NTSW sequestered C at rates of 2.6 and 1.7 Mg ha(-1) yr(-1), respectively, in the 0- to 40-cm zone. This study showed that the potential to sequester C can be enhanced by increasing cropping frequency and eliminating tillage.  相似文献   

8.
The Indo‐Gangetic plain is characterized by intensive agriculture, largely by resource‐poor small and marginal farmers. Vast swathes of salt‐affected areas in the region provide both challenges and opportunities to bolster food security and sequester carbon after reclamation. Sustainable management of reclaimed soils via resource conservation strategies, such as residue retention, is key to the prosperity of the farmer, as well as increases the efficiency of expensive initiatives to further reclaim sodic land areas, which currently lay barren. After five years of experimentation on resource conservation strategies for rice‐wheat systems on partially reclaimed sodic soils of the Indo‐Gangetic region, we evaluated changes in different soil carbon pools and crop yield. Out of all resource conservation techniques which were tested, rice‐wheat crop residue addition (30% of total production) was most effective in increasing soil organic carbon (SOC). In rice, without crop residue addition (WCR), soils under zero‐tillage with transplanting, summer ploughing with transplanting and direct seeding with brown manuring showed a significant increase in SOC over the control (puddling in rice, conventional tillage in wheat). In these treatments relatively higher levels of carbon were attained in all aggregate fractions compared to the control. Soil aggregate sizes in meso (0.25‐2.0 mm) and macro (2‐8 mm) ranges increased, whereas micro (< 0.25 mm) fractions decreased in soils under zero‐till practices, both with and without crop residue addition. Direct seeding with brown manuring and zero tillage with transplanting also showed an increase of 135% and 95%, respectively, over the control in microbial biomass carbon, without crop residue incorporation. In zero tillage with transplanting treatment, both with and without crop residue showed significant increase in soil carbon sequestration potential. Though the changes in accrued soil carbon did not bring about significant differences in terms of grain yield, overall synthesis in terms of balance between yield and carbon sequestration indicated that summer ploughing with transplanting and zero tillage with transplanting sequestered significantly higher rates of carbon, yet yielded on par with conventional practices. These could be appropriate alternatives to immediately replace conventional tillage and planting practices for rice‐wheat cropping systems in the sodic soils of the Indo‐Gangetic region.  相似文献   

9.
Subsurface tile drains are a key source of nitrate N (NO3-N) losses to streams in parts of the north central USA. In this study, the Erosion Productivity Impact Calculator (EPIC) model was evaluated by comparing measured vs. predicted tile flow, tile NO3-N loss, soil profile residual NO3-N, crop N uptake, and yield, using 4 yr of data collected at a site near Lamberton, MN, for three crop rotations: continuous corn (Zea mays L.) or CC, corn-soybean [Glycine max (L.) Merr.] or CS, and continuous alfalfa (Medicago sativa L.) or CA. Initially, EPIC was run using standard Soil Conservation Service (SCS) runoff curve numbers (CN2) for CC and CS; monthly variations were accurately tracked for tile flow (r2 = 0.86 and 0.90) and NO3-N loss (r2 = 0.69 and 0.52). However, average annual CC and CS tile flows were underpredicted by -32 and -34%, and corresponding annual NO3-N losses were underpredicted by -11 and -52%. Predicted average annual tile flows and NO3-N losses generally improved following calibration of the CN2; tile flow underpredictions were -9 and - 12%, whereas NO3-N losses were 0.6 and -54%. Adjusting a N parameter further improved predicted CS NO3-N losses. Predicted monthly tile flows and NO3-N losses for the CA simulation compared poorly with observed values (r2 values of 0.27 and 0.19); the annual drainage volumes and N losses were of similar magnitude to those measured. Overall, EPIC replicated the relative impacts of the three cropping systems on N fate.  相似文献   

10.
This work builds on a previous study of long-term tillage trials that found use of no-tillage (NT) practices increased soil organic carbon (SOC) sequestration at Monmouth, IL (silt loam soil) by increasing the soil's protective capacity, but did not alter SOC storage in DeKalb, IL (silty clay loam), where higher clay contents provided a protective capacity not affected by tillage. The least limiting water range (LLWR), a multi-factor index of structural quality, predicted observed soil CO2 efflux patterns. Here we consider whether LLWR can predict sequestration trends at a third site, Perry, IL (silt loam soil) where SOC content is lower and bulk density is higher than in previously considered sites, and determine whether pore size characteristics can help explain the influence use of NT practices has had on SOC sequestration at all three locations. At Perry, LLWR was again related with differences in specific soil organic carbon mineralization rates (RESPsp) (2000-2001). Reduced RESPsp rates explain increases in SOC storage under NT management observed only after 17 yr. Trends in RESPsp suggest use of NT practices only enhance physical protection of SOC where soil bulk density is relatively high (approximately 1.4 g cm(-3)). In those soils (Monmouth and Perry), use of NT management reduced the volume of small macropores (15-150 microm) thought to be important for microbial activity. Physical properties appear to determine whether or not use of NT practices will enhance C storage by increasing physical protection of SOC. By refining the functions used to compute the LLWR and our understanding of the interactions between management, pore structure, and SOC mineralization, we should be able to predict the influence of tillage practices on SOC sequestration.  相似文献   

11.
Soil organic C (SOC) content can increase by managing land use practices in which the rates of organic C input exceed those of organic C mineralization. Understanding the changes in SOC content of Black soils (mainly Typic Halpudoll) in northeast China is necessary for sustainable using of soil resources there. We used the RothC model to estimate SOC levels of Black soils under monoculture cropping corn in a long-term fertilization trial at Gongzhuling, Jilin Province, China. The model outputs for the changes in SOC were compared with measured data in this long-term fertilization/manure trial. The sound performance of model in simulating SOC changes suggests that RothC is feasible with Black soils in the temperate climatic region of northeast China. The modeled and measured results indicated that the treatment without fertilizer/farmyard manure (FYM) addition led to a continuous decline in SOC during the study period and N and NPK fertilization were inadequate to maintain the SOC levels in the plow layer (upper 20 cm) unless FYM was added under the current conventional management associated with no above-ground crop residues returning into the soil. Soil organic carbon could follow the same path of decline if the same management practices are maintained. Model results indicate that returning above-ground crop residues to the soil from 2002 to 2022 would increase SOC by 26% for the treatment without fertilization addition, 40% for N treatment, 45% for NPK treatment, and 38% and 46% for N and NPK treatments with FYM addition, compared to the levels in the corresponding treatments in 2002. The simulation results suggest that the RothC model is a feasible tool to assess SOC trend under different management practices, and returning above-ground crop residues into the soil would lead to a remarkable increase in SOC of Black soils in the region.  相似文献   

12.
Soil carbon sequestration (SCS) has the potential to attenuate increasing atmospheric CO2 and mitigate greenhouse warming. Understanding of this potential can be assisted by the use of simulation models. We evaluated the ability of the EPIC model to simulate corn (Zea mays L.) yields and soil organic carbon (SOC) at Arlington, WI, during 1958-1991. Corn was grown continuously on a Typic Argiudoll with three N levels: LTN1 (control), LTN2 (medium), and LTN3 (high). The LTN2 N rate started at 56 kg ha(-1) (1958), increased to 92 kg ha(-1) (1963), and reached 140 kg ha(-1) (1973). The LTN3 N rate was maintained at twice the LTN2 level. In 1984, each plot was divided into four subplots receiving N at 0, 84, 168, and 252 kg ha(-1). Five treatments were used for model evaluation. Percent errors of mean yield predictions during 1958-1983 decreased as N rate increased (LTN1 = -5.0%, LTN2 = 3.5%, and LTN3 = 1.0%). Percent errors of mean yield predictions during 1985-1991 were larger than during the first period. Simulated and observed mean yields during 1958-1991 were highly correlated (R2 = 0.961, p < 0.01). Simulated SOC agreed well with observed values with percent errors from -5.8 to 0.5% in 1984 and from -5.1 to 0.7% in 1990. EPIC captured the dynamics of SOC, SCS, and microbial biomass. Simulated net N mineralization rates were lower than those from laboratory incubations. Improvements in EPIC's ability to predict annual variability of crop yields may lead to improved estimates of SCS.  相似文献   

13.
Quantification of soil carbon (C) cycling as influenced by management practices is needed for C sequestration and soil quality improvement. We evaluated the 10-yr effects of tillage, cropping system, and N source on crop residue and soil C fractions at 0- to 20-cm depth in Decatur silt loam (clayey, kaolinitic, thermic, Typic Paleudults) in northern Alabama, USA. Treatments were incomplete factorial combinations of three tillage practices (no-till [NT], mulch till [MT], and conventional till [CT]), two cropping systems (cotton [Gossypium hirsutum L.]-cotton-corn [Zea mays L.] and rye [Secale cereale L.]/cotton-rye/cotton-corn), and two N fertilization sources and rates (0 and 100 kg N ha(-1) from NH(4)NO(3) and 100 and 200 kg N ha(-1) from poultry litter). Carbon fractions were soil organic C (SOC), particulate organic C (POC), microbial biomass C (MBC), and potential C mineralization (PCM). Crop residue varied among treatments and years and total residue from 1997 to 2005 was greater in rye/cotton-rye/cotton-corn than in cotton-cotton-corn and greater with NH(4)NO(3) than with poultry litter at 100 kg N ha(-1). The SOC content at 0 to 20 cm after 10 yr was greater with poultry litter than with NH(4)NO(3) in NT and CT, resulting in a C sequestration rate of 510 kg C ha(-1) yr(-1) with poultry litter compared with -120 to 147 kg C ha(-1) yr(-1) with NH(4)NO(3). Poultry litter also increased PCM and MBC compared with NH(4)NO(3). Cropping increased SOC, POC, and PCM compared with fallow in NT. Long-term poultry litter application or continuous cropping increased soil C storage and microbial biomass and activity compared with inorganic N fertilization or fallow, indicating that these management practices can sequester C, offset atmospheric CO(2) levels, and improve soil and environmental quality.  相似文献   

14.
Decisionmakers are in the process of selecting remedial measures for controlling nonpoint pollution runoff. Conservation tillage (CT) is being looked to as one of the major recommended practices. Many different systems exist and vary in the amount of crop residue left and soil roughness produced. Therefore, varying results occur in terms of yield and potential water quality impacts. Differences vary with type of tillage system, soils, geographic region, and the farmer's management. The purpose of this review is to provide material to decisionmakers that points out the assets and liabilities of the various CT systems. Tillage effects on soil characteristics and plant growth are presented and include a discussion of soil moisture and temperature, weed and insect control, nutrient availability, and yields. Water quality aspects are addressed through a discussion of the effects CT systems have on sediment, water, pesticide, and phosphorus loss.This work was supported by the Soil Science Department, College of Agriculture and Life Sciences, University of Wisconsin-Madison, and the U.S. Environmental Protection Agency, Region V, Chicago, Illinois. (Grant No. G005139-01).  相似文献   

15.
Long-term use of conventional tillage and wheat (Triticum aestivum L.)-fallow systems in the northern Great Plains have resulted in low soil organic carbon (SOC) levels. We examined the effects of two tillage practices [conventional till (CT) and no-till (NT)], five crop rotations [continuous spring wheat (CW), spring wheat-fallow (W-F), spring wheat-lentil (Lens culinaris Medic.) (W-L), spring wheat-spring wheat-fallow (W-W-F), and spring wheat-pea (Pisum sativum L.)-fallow (W-P-F)], and Conservation Reserve Program (CRP) planting on plant C input, SOC, and particulate organic carbon (POC). A field experiment was conducted in a mixture of Scobey clay loam (fine-loamy, mixed, Aridic Argiborolls) and Kevin clay loam (fine, montmorillonitic, Aridic Argiborolls) from 1998 to 2003 in Havre, MT. Total plant biomass returned to the soil from 1998 to 2003 was greater in CW (15.5 Mg ha(-1)) than in other rotations. Residue cover, amount, and C content in 2004 were 33 to 86% greater in NT than in CT and greater in CRP than in crop rotations. Residue amount (2.47 Mg ha(-1)) and C content (0.96 Mg ha(-1)) were greater in NT with CW than in other treatments, except in CT with CRP and W-F and in NT with CRP and W-W-F. The SOC at the 0- to 5-cm depth was 23% greater in NT (6.4 Mg ha(-1)) than in CT. The POC was not influenced by tillage and crop rotation, but POC to SOC ratio at the 0- to 20-cm depth was greater in NT with W-L (369 g kg(-1) SOC) than in CT with CW, W-F, and W-L. From 1998 to 2003, SOC at the 0- to 20-cm depth decreased by 4% in CT but increased by 3% in NT. Carbon can be sequestered in dryland soils and plant residue in areas previously under CRP using reduced tillage and increased cropping intensity, such as NT with CW, compared with traditional practice, such as CT with W-F system, and the content can be similar to that in CRP planting.  相似文献   

16.
Soil microbial populations can fluctuate in response to environmental changes and, therefore, are often used as biological indicators of soil quality. Soil chemical and physical parameters can also be used as indicators because they can vary in response to different management strategies. A long-term field trial was conducted to study the effects of different tillage systems (NT: no tillage, DH: disc harrow, and MP: moldboard plough), P fertilization (diammonium phosphate), and cattle grazing (in terms of crop residue consumption) in maize (Zea mays L.), sunflower (Heliantus annuus L.), and soybean (Glycine max L.) on soil biological, chemical, and physical parameters. The field trial was conducted for four crop years (2000/2001, 2001/2002, 2002/2003, and 2003/2004). Soil populations of Actinomycetes, Trichoderma spp., and Gliocladium spp. were 49% higher under conservation tillage systems, in soil amended with diammonium phosphate (DAP) and not previously grazed. Management practices also influenced soil chemical parameters, especially organic matter content and total N, which were 10% and 55% higher under NT than under MP. Aggregate stability was 61% higher in NT than in MP, 15% higher in P-fertilized soil, and also 9% higher in not grazed strips, bulk density being 12% lower in NT systems compared with MP. DAP application and the absence of grazing also reduced bulk density (3%). Using conservation tillage systems, fertilizing crops with DAP, and avoiding grazing contribute to soil health preservation and enhanced crop production.  相似文献   

17.
Agricultural lands have the potential to contribute to greenhouse gas mitigation by sequestering organic carbon within the soil. Credible and consistent estimates will be necessary to design programs and policies to encourage management practices that increase carbon sequestration. Because a nationwide survey of soil carbon by the wide range of natural resources and management conditions of the United States is prohibitively expensive, a simulation modeling approach must be used. The National Nutrient Loss Database (NNLD) is a modeling and database system designed and built jointly by the USDA– Natural Resources Conservation Service (NRCS) and Texas A&M University to provide science-based inferences on environmental impacts from changes in agricultural management practices and programs at the regional and national level. Currently, the NNLD simulates 16 crops and covers 1.35 × 108 ha. For estimating soil carbon sequestration, the database will be populated with 1.5 × 106 field-level model runs using the EPIC (Environmental Policy Impact Calculator) model, which includes newly incorporated carbon equations consistent with those in the Century model. Each run will represent a unique situation defined by state, crop, climate, soil, irrigation type, conservation practice, tillage system, and nutrient management treatment (nutrient rate, application frequency, application timing, and manure category). Results are to be assigned to specific National Resource Inventory points (NRI) to simulate regional and national baselines. In this article we present the modeling approach and discuss the strengths and limitations. Published online  相似文献   

18.
Soil carbon (C) sequestration in tilled and nontilled areas can be influenced by crop management practices due to differences in plant C inputs and their rate of mineralization. We examined the influence of four cover crops {legume [hairy vetch (Vicia villosa Roth)], nonlegume [rye (Secale cereale L.)], biculture of legume and nonlegume (vetch and rye), and no cover crops (or winter weeds)} and three nitrogen (N) fertilization rates (0, 60 to 65, and 120 to 130 kg N ha(-1)) on C inputs from cover crops, cotton (Gossypium hirsutum L.), and sorghum [Sorghum bicolor (L.) Moench)], and soil organic carbon (SOC) at the 0- to 120-cm depth in tilled and nontilled areas. A field experiment was conducted on Dothan sandy loam (fine-loamy, siliceous, thermic Plinthic Paleudults) from 1999 to 2002 in central Georgia. Total C inputs to the soil from cover crops, cotton, and sorghum from 2000 to 2002 ranged from 6.8 to 22.8 Mg ha(-1). The SOC at 0 to 10 cm fluctuated with C input from October 1999 to November 2002 and was greater from cover crops than from weeds in no-tilled plots. In contrast, SOC values at 10 to 30 cm in no-tilled and at 0 to 60 cm in chisel-tilled plots were greater for biculture than for weeds. As a result, C at 0 to 30 cm was sequestered at rates of 267, 33, -133, and -967 kg C ha(-1) yr(-1) for biculture, rye, vetch, and weeds, respectively, in the no-tilled plot. In strip-tilled and chisel-tilled plots, SOC at 0 to 30 cm decreased at rates of 233 to 1233 kg C ha(-1) yr(-1). The SOC at 0 to 30 cm increased more in cover crops with 120 to 130 kg N ha(-1) yr(-1) than in weeds with 0 kg N ha(-1) yr(-1), regardless of tillage. In the subtropical humid region of the southeastern United States, cover crops and N fertilization can increase the amount of C input and storage in tilled and nontilled soils, and hairy vetch and rye biculture was more effective in sequestering C than monocultures or no cover crop.  相似文献   

19.
The negative health effects of repeated dust exposure have been well documented. In California's San Joaquin Valley, agricultural operations may contribute substantially to airborne particulates. We evaluated four management systems to assess impacts on dust production and soil properties for a cotton (Gossypium hirsutum L.)-tomato (Lycopersicon esculentum Mill.) rotation: standard tillage with (STCC) and without (STNO) cover crop, and conservation tillage with (CTCC) and without (CTNO) cover crop. Gravimetric analysis of total dust (TD, <100-mum aerodynamic diameter) and respirable dust (RD, 4-mum aerodynamic diameter) samples collected in the plume generated by field implements showed that dust concentrations for CTNO treatments were about one-third of their STNO counterparts for both cumulative TD and RD measured throughout the two-year rotation, primarily due to fewer in-field operations. The TD and RD production for STNO and STCC was comparable, whereas the CTCC system produced about twice as much TD and RD as CTNO. Energy dispersive spectroscopy (EDS) analyses showed absolute increases of 8 and 39% organic fragments in STCC and CTCC over STNO and CTNO, respectively, while organic fragments in the TD increased by 6% in both cover crop treatments. Soil C content was positively correlated with clay content and increased by an average of 0.12 and 0.07% in the cover crop and non-cover crop treatments, respectively, although soil C for each treatment showed a distinct response to a field texture gradient. While dust emissions show an immediate decrease due to fewer field operations for the conservation tillage treatments, long-term sampling is necessary to determine the effects that increased aggregation through organic matter additions may have on dust production.  相似文献   

20.
Since intensive farming practices are essential to produce enough food for the increasing population, farmers have been using more inorganic fertilizers, pesticides, and herbicides. Agricultural lands are currently one of the major sources of non-point source pollution. However, by changing farming practices in terms of tillage and crop rotation, the levels of contamination can be reduced and the quality of soil and water resources can be improved. Thus, there is a need to investigate the amalgamated hydrologic effects when various tillage and crop rotation practices are operated in tandem. In this study, the Soil Water Assessment Tool (SWAT) was utilized to evaluate the individual and combined impacts of various farming practices on flow, sediment, ammonia, and total phosphorus loads in the Little Miami River basin. The model was calibrated and validated using the 1990–1994 and 1980–1984 data sets, respectively. The simulated results revealed that the SWAT model provided a good simulation performance. For those tested farming scenarios, no-tillage (NT) offered more environmental benefits than moldboard plowing (MP). Flow, sediment, ammonia, and total phosphorus under NT were lower than those under MP. In terms of crop rotation, continuous soybean and corn–soybean rotation were able to reduce sediment, ammonia, and total phosphorus loads. When the combined effects of tillage and crop rotation were examined, it was found that NT with continuous soybean or corn–soybean rotation could greatly restrain the loss of sediments and nutrients to receiving waters. Since corn–soybean rotation provides higher economic revenue, a combination of NT and corn–soybean rotation can be a viable system for successful farming.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号