首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Finland is a forested country with a large export oriented forest industry. In addition to domestic forest extraction, roundwood is imported, thus displacing the environmental impacts of harvests. In this paper, we analyse the international carbon flows of forest industries in Finland from a consumption-based perspective. Quantitative analyses are available on trade embedded emissions of CO2 from fossil fuel combustion, and here we address in a similar way the impact of trade on the carbon budget of the forest products sector in Finland. Carbon flows through the forest industry system increased substantially between 1991 and 2005. We show that the annual carbon balance related to forests and forest industry system in Finland functioned as a sink in 1991, whereas in 2005 the system was a sink on a national level, but not on a global level. Through calculating the carbon content in traded forest industry products and emissions embodied in forest industry activities, we further show that the direct impacts of the forest industry in Finland are only a minor fraction of the total CO2 emissions related to Finnish production. Nearly all of the emissions were caused due to production of exports. Yet, direct carbon dioxide emissions of the industrial production are reported to Finland in the production based inventories.  相似文献   

2.
Tropical forests in countries like thePhilippines are important sources and sinks of carbon(C). The paper analyzes the contribution of Philippineforests in climate change mitigation. Since the 1500s,deforestation of 20.9 M ha (106 ha) of Philippineforests contributed 3.7 Pg (1015 g) of C to theatmosphere of which 2.6 Pg were released this century. At present, forest land uses store 1091 Tg(1012 g) of C and sequester 30.5 Tg C/yr whilereleasing 11.4 Tg C/yr through deforestation andharvesting. In the year 2015, it is expected that thetotal C storage will decline by 8% (1005 Tg) andtotal rate of C sequestration will increase by 17%(35.5 Tg/yr). This trend is due to the decline innatural forest area accompanied by an increase intree plantation area. We have shown that uncertaintyin national C estimates still exists because they arereadily affected by the source of biomass and Cdensity data. Philippine forests can act as C sink by:conserving existing C sinks, expanding C stocks, andsubstituting wood products for fossil fuels. Here weanalyze the possible implications of the provisions ofthe Kyoto Protocol to Philippine forests. Finally, wepresent current research and development efforts ontropical forests and climate change in the Philippinesto improve assessments of their role in the nations Cbudgets.  相似文献   

3.
The carbon (C) sinks and sources of trees that may be accounted for under Article 3.3 of the Kyoto Protocol during the first commitment period from 2008 to 2012 were estimated for the countries of the European Union (EU) based on existing forest inventory data. Two sets of definitions for the accounted activities, afforestation, reforestation and deforestation, were applied. Applying the definitions by the Food and Agricultural Organization of the United Nations (FAO), the trees were estimated to be a C source in eight and a C sink in seven countries, and in the whole EU a C source of 5.4 Tg year−1. Applying the definitions by the Intergovernmental Panel of Climate Change (IPCC), the trees were estimated to be a C source in three and a C sink in 12 countries, and in the whole EU a C sink of 0.1 Tg year−1. These estimates are small compared with the C sink of trees in all EU forests, 63 Tg year−1, the anthropogenic CO2 emissions of the EU, 880 Tg C year−1, and the reduction target of the CO2 emissions, 8%. In individual countries, the estimated C sink of the trees accounted for under Article 3.3 was at largest 8% and the C source 12% compared with the CO2 emissions.  相似文献   

4.
This paper examines the energy and carbon balance of two residential house alternatives; a typical wood frame home using more conventional materials (brick cladding, vinyl windows, asphalt shingles, and fibreglass insulation) and a similar wood frame house that also maximizes wood use throughout (cedar shingles and siding, wood windows, and cellulose insulation) in place of the more typical materials used – a wood-intensive house. Carbon emission and fossil fuel consumption balances were established for the two homes based on the cumulative total of three subsystems: (1) forest harvesting and regeneration; (2) cradle-to-gate product manufacturing, construction, and replacement effects over a 100-year service life; and (3) end-of-life effects – landfilling with methane capture and combustion or recovery of biomass for energy production.The net carbon balance of the wood-intensive house showed a complete offset of the manufacturing emissions by the credit given to the system for forest re-growth. Including landfill methane emissions, the wood-intensive life cycle yielded 20 tons of CO2e emissions compared to 72 tons for the typical house. The wood-intensive home's life cycle also consumed only 45% of the fossil fuels used in the typical house.Diverting wood materials from the landfill at the end of life improved the life cycle balances of both the typical and wood-intensive houses. The carbon balance of the wood-intensive house was 5.2 tons of CO2e permanently removed from the atmosphere (a net carbon sink) as compared to 63.4 of total CO2e emissions for the typical house. Substitution of wood fuel for natural gas and coal in electricity production led to a net energy balance of the wood-intensive house that was nearly neutral, 87.1 GJ energy use, 88% lower than the scenario in which the materials were landfilled.Allocating biomass generation and carbon sequestration in the forest on an economic basis as opposed to a mass basis significantly improves the life cycle balances of both houses. Employing an economic allocation method to the forest leads to 3–5 times greater carbon sequestration and fossil fuel substitution attributable to the house, which is doubled in forestry regimes that remove stumps and slash as fuel. Thus, wood use has the potential to create a significantly negative carbon footprint for a house up to the point of occupancy and even offset a portion of heating and cooling energy use and carbon emissions; the wood-intensive house is energy and carbon neutral for 34–68 years in Ottawa and has the potential to be a net carbon sink and energy producer in a more temperate climate like San Francisco.  相似文献   

5.
The carbon (C) reservoir of wood products in Finnishconstruction and civil engineering was estimated by three inventoriesincluding the years 1980, 1990 and 1995. The inventory method ismainly based on the statistics of Finnish building stock. The use of differentconstruction materials in different parts of buildings is estimated for eachbuilding type. Information collected through building permits includes thematerials of bearing frames and facades. More information about the useof wood products in construction is gathered by many enquiries. The mixof construction materials has changed during each decade. Furthermore, thetimber stocks in construction not subject to permission and in civilengineering (e.g. bridges) were estimated. The C reservoir is calculated onthe basis of dry matter content of wooden construction materials. The timeparameters of a simple exponential decay model and a more detailed Cbalance model of wood products were calibrated to the inventory resultsusing the estimated wood flows to construction as model inputs.According to the inventories the C pool in sawn wood and wood-basedpanels of the Finnish building stock was 8.7 Tg C in 1980, 10.7 Tg C in1990 and 11.5 Tg C in 1995. The mean annual increases, 0.20 Tg Cfrom 1980 to 1990 and 0.15 Tg C from 1990 to 1995, areapproximately 1.3% and 0.8% of the fossil fuel C emissions in Finlandduring the same periods. When also taking into account construction notsubject to permission and civil engineering works, the estimated C stock ofwood products in Finland was 16.5 Tg C in 1995, which is about 3.3 MgC per capita and approximately 2.4% of the C reservoir in Finnish forestbiomass. The total C reservoir of wood products (excluding wood wasteand paper products) coming from Finnish forests might be as much as 7%of the standing biomass if exported wood products are also included. Theaverage lifetime of sawn wood in Finnish construction is less than 40 years.  相似文献   

6.
Preventing dangerous climate change requires actions on several sectors. Mitigation strategies have focused primarily on energy, because fossil fuels are the main source of global anthropogenic greenhouse gas emissions. Another important sector recently gaining more attention is the forest sector. Deforestation is responsible for approximately one fifth of the global emissions, while growing forests sequester and store significant amounts of carbon. Because energy and forest sectors and climate change are highly interlinked, their interactions need to be analysed in an integrated framework in order to better understand the consequences of different actions and policies, and find the most effective means to reduce emissions. This paper presents a model, which integrates energy use, forests and greenhouse gas emissions and describes the most important linkages between them. The model is applied for the case of Finland, where integrated analyses are of particular importance due to the abundant forest resources, major forest carbon sink and strong linkage with the energy sector. However, the results and their implications are discussed in a broader perspective. The results demonstrate how full integration of all net emissions into climate policy could increase the economic efficiency of climate change mitigation. Our numerical scenarios showed that enhancing forest carbon sinks would be a more cost-efficient mitigation strategy than using forests for bioenergy production, which would imply a lower sink. However, as forest carbon stock projections involve large uncertainties, their full integration to emission targets can introduce new and notable risks for mitigation strategies.  相似文献   

7.
Full accounting of the greenhouse gas budget in the forestry of China   总被引:1,自引:0,他引:1  
Forest management to increase carbon (C) sinks and reduce C emissions and forest resource utilization to store C and substitute for fossil fuel have been identified as attractive mitigation strategies. However, the greenhouse gas (GHG) budget of carbon pools and sinks in China are not fully understood, and the forestry net C sink must be determined. The objective of this study was to analyze potential forest management mitigation strategies by evaluating the GHG emissions from forest management and resource utilization and clarify the forestry net C sink, and its driving factors in China via constructing C accounting and net mitigation of forestry methodology. The results indicated that the GHG emissions under forest management and resource utilization were 17.7 Tg Ce/year and offset 8.5% of biomass and products C sink and GHG mitigation from substitution effects from 2000 to 2014, resulting in a net C sink of 189.8 Tg Ce/year. Forest resource utilization contributed the most to the national forestry GHG emissions, whereas the main driving factor underlying regional GHG emissions varied. Afforestation dominated the GHG emissions in the southwest and northwest, whereas resource utilization contributed the most to GHG emissions in the north, northeast, east, and south. Furthermore, decreased wood production, improved product use efficiency, and forests developed for bioenergy represented important mitigation strategies and should be targeted implementation in different regions. Our study provided a forestry C accounting in China and indicated that simulations of these activities could provide novel insights for mitigation strategies and have implications for forest management in other countries.  相似文献   

8.
In this study a method is suggested to compare the net carbon dioxide (CO2) emission from the construction of concrete- and wood-framed buildings. The method is then applied to two buildings in Sweden and Finland constructed with wood frames, compared with functionally equivalent buildings constructed with concrete frames. Carbon accounting includes: emissions due to fossil fuel use in the production of building materials; the replacement of fossil fuels by biomass residues from logging, wood processing, construction and demolition; carbon stock changes in forests and buildings; and cement process reactions. The results show that wood-framed construction requires less energy, and emits less CO2 to the atmosphere, than concrete-framed construction. The lifecycle emission difference between the wood- and concrete-framed buildings ranges from 30 to 130 kg C per m2 of floor area. Hence, a net reduction of CO2 emission can be obtained by increasing the proportion of wood-based building materials, relative to concrete materials. The benefits would be greatest if the biomass residues resulting from the production of the wood building materials were fully used in energy supply systems. The carbon mitigation efficiency, expressed in terms of biomass used per unit of reduced carbon emission, is considerably better if the wood is used to replace concrete building material than if the wood is used directly as biofuel.  相似文献   

9.
A method is presented for estimating the global warming impact of forest biomass life cycles with respect to their functionally equivalent alternatives based on fossil fuels and non-renewable material sources. In the method, absolute global warming potentials (AGWP) of both the temporary carbon (C) debt of forest biomass stock and the C credit of the biomass use cycle displacing the fossil and non-renewable alternative are estimated as a function of the time frame of climate change mitigation. Dimensionless global warming potential (GWP) factors, GWPbio and GWPbiouse, are derived. As numerical examples, 1) bioenergy from boreal forest harvest residues to displace fossil fuels and 2) the use of wood for material substitution are considered. The GWP-based indicator leads to longer payback times, i.e. the time frame needed for the biomass option to be superior to its fossil-based alternative, than when just the cumulative balance of biogenic and fossil C stocks is considered. The warming payback time increases substantially with the residue diameter and low displacement factor (DF) of fossil C emissions. For the 35-cm stumps, the payback time appears to be more than 100 years in the climate conditions of Southern Finland when DF is lower than 0.5 in instant use and lower than 0.6 in continuous stump use. Wood use for construction appears to be more beneficial because, in addition to displaced emissions due to by-product bioenergy and material substitution, a significant part of round wood is sequestered into wood products for a long period, and even a zero payback time would be attainable with reasonable DFs.  相似文献   

10.
While bioenergy plays a key role in strategies for increasing renewable energy deployment, studies assessing greenhouse gas (GHG) emissions from forest bioenergy systems have identified a potential trade-off of the system with forest carbon stocks. Of particular importance to national GHG inventories is how trade-offs between forest carbon stocks and bioenergy production are accounted for within the Agriculture, Forestry and Other Land Use (AFOLU) sector under current and future international climate change mitigation agreements. Through a case study of electricity produced using wood pellets from harvested forest stands in Ontario, Canada, this study assesses the implications of forest carbon accounting approaches on net emissions attributable to pellets produced for domestic use or export. Particular emphasis is placed on the forest management reference level (FMRL) method, as it will be employed by most Annex I nations in the next Kyoto Protocol Commitment Period. While bioenergy production is found to reduce forest carbon sequestration, under the FMRL approach this trade-off may not be accounted for and thus not incur an accountable AFOLU-related emission, provided that total forest harvest remains at or below that defined under the FMRL baseline. In contrast, accounting for forest carbon trade-offs associated with harvest for bioenergy results in an increase in net GHG emissions (AFOLU and life cycle emissions) lasting 37 or 90 years (if displacing coal or natural gas combined cycle generation, respectively). AFOLU emissions calculated using the Gross-Net approach are dominated by legacy effects of past management and natural disturbance, indicating near-term net forest carbon increase but longer-term reduction in forest carbon stocks. Export of wood pellets to EU markets does not greatly affect the total life cycle GHG emissions of wood pellets. However, pellet exporting countries risk creating a considerable GHG emissions burden, as they are responsible for AFOLU and bioenergy production emissions but do not receive credit for pellets displacing fossil fuel-related GHG emissions. Countries producing bioenergy from forest biomass, whether for domestic use or for export, should carefully consider potential implications of alternate forest carbon accounting methods to ensure that potential bioenergy pathways can contribute to GHG emissions reduction targets.  相似文献   

11.
Specific fossil carbon (C) emissions and primary energy useassociated with the manufacture of different wood product groups inFinland are estimated and expressed as emissions or energy use per amountof wood-based C in raw material and per amount in end product. Thecalculation includes both emissions from supplied fuels within the forestindustries, and from electricity and district heat purchased from externalsources. The results are compared to fossil C emissions from the wholelifecycle of harvested wood products. The results of the study show, forinstance, that the emission of fossil C per wood-based C in end products(MgC/MgC) is of the order of 0.07 for sawn wood and 0.3–0.6 for paperin the manufacturing stage. The primary energy use per wood-based C inend product is of the order of 2 MWh/MgC for sawn wood, whereas forvirgin paper grades the figure is between 17 and 19 MWh/MgC. Theprimary energy content is highest in papers based on chemical pulping, butaround 60% of the energy used is produced in this case from by-productwood wastes (black liquor, bark etc.). The specific fossil C emission andprimary energy divided by the estimated service life of the wood productare measures for the relative burden of maintaining the corresponding woodproduct pool. These figures should be kept in mind when considering woodproducts as a potential C sink option.  相似文献   

12.
Forestry projects can mitigate the net flux of carbon (C) to the atmosphere in four ways: (1) C is stored in forest biomass—trees, litter and soil, (2) C is stored in durable wood products, (3) biomass fuels displace consumption of fossil fuels, and (4) wood products often require less fossil-fuel energy for their production and use than do alternate products that provide the same service. We use a mathematical model of C stocks and flows (GORCAM) to illustrate the inter-relationships among these impacts on the C cycle and the changing C balance over time. The model suggests that sustainable management for the harvest of forest products will yield more net C offset than will forest protection when forest productivity is high, forest products are produced and used efficiently, and longer time periods are considered. Yet it is very difficult to attribute all of the C offsets to the forestry projects. It is, at least in concept, straightforward to measure, verify, and attribute the C stored in the forests and in wood products. It is more challenging to measure the amount of fossil fuel saved directly because of the use of biomass fuels and to give proper attribution to a mitigation project. The amount of fossil fuel saved indirectly because biomass provides materials and services that are used in place of other materials and services may be very difficult to estimate and impossible to allocate to any project. Nonetheless, over the long run, these two aspects of fossil fuel saved may be the largest impacts of forestry projects on the global C cycle.  相似文献   

13.
The goal of the Climate Convention and its Kyoto Protocol is to stabilize greenhouse gas concentrations in the atmosphere at a safe level. This requires both strict limits on emissions from fossil fuels and effective management of biotic carbon stocks. If fossil fuel emissions from 1990 to 2100 are limited to 600 PgC, biotic carbon stocks must increase by 120 PgC to stabilize CO2 concentrations at 450 ppmv. Establishing an appropriate policy regime to accomplish this goal is complicated by a factor of six discrepancy between estimates of the current biotic sink based on national emissions inventories compared with global carbon cycle model calculations. Appropriate policies must also be designed to create incentives for technological innovation in the energy sector and minimize the risk of granting emission credits for biotic carbon sequestration that proves to be temporary.  相似文献   

14.
This study investigates the global impact of wood as a building material by considering emissions of carbon dioxide to the atmosphere. Wood is compared with other materials in terms of stored carbon and emissions of carbon dioxide from fossil fuel energy used in manufacturing. An analysis of typical forms of building construction shows that wood buildings require much lower process energy and result in lower carbon emissions than buildings of other materials such as brick, aluminium, steel and concrete. If a shift is made towards greater use of wood in buildings, the low fossil fuel requirement for manufacturing wood compared with other materials is much more significant in the long term than the carbon stored in the wood building products.As a corollary, a shift from wood to non-wood materials would result in an increase in energy requirements and carbon emissions.The results presented in this paper show that a 17% increase in wood usage in the New Zealand building industry could result in a 20% reduction in carbon emissions from the manufacture of all building materials, being a reduction of about 1.5% of New Zealand’s total emissions. The reduction in emissions is mainly a result of using wood in place of brick and aluminium, and to a lesser extent steel and concrete, all of which require much more process energy than wood. There would be a corresponding decrease of about 1.5% in total national fossil fuel consumption. These figures have implications for the global forestry and building industries. Any increases in wood use must be accompanied by corresponding increases in areas of forest being managed for long term sustained yield production.  相似文献   

15.
玻璃行业是我国能源消耗和碳排放量较大的行业之一,为分析占玻璃行业30%以上产量的日用玻璃行业的碳排放特征,本文基于排放系数法对2015—2020年行业碳排放量进行了核算,在此基础上,提出了相应的碳减排措施. 结果表明:我国日用玻璃行业碳排放量由2015年的2 617.04×104 t逐步降至2020年的2 149.95×104 t,且随着行业技术进步、清洁燃料的推广使用,单位产品碳排放量不断下降;从排放构成看,行业碳排放主要包括化石燃料燃烧产生的直接排放和外购电力及热力产生的间接排放,其排放量占排放总量的88.75%~92.27%,原料碳酸盐分解产生的过程排放相对较少,占比为7.73%~11.25%. 研究显示,降低日用玻璃生产过程中的能源消耗是减少碳排放的重要方向,调整能源结构、提高能源利用效率和优化原料结构是减少碳排放的主要措施.   相似文献   

16.
Short rotation bioenergy crops for energy production are considered an effective means to mitigate the greenhouse effect, mainly due to their ability to substitute fossil fuels. Alternatively, carbon can be sequestered and stored in the living biomass. This paper compares the two land use categories (forest land and non-forest land) for two management practices (short rotation vs. long rotation) to study mitigation potential of afforestation and fossil fuel substitution as compared to carbon storage. Significant carbon benefit can be obtained in the long run from using lands for growing short rotation energy crops and substituting fossil fuels by the biomass thus produced, as opposed to sequestering carbon in the biomass of the trees. When growth rates are high and harvest is used in a sustainable manner (i.e., replanting after every harvest), the opportunities for net carbon reductions appear to be fossil fuel substitution, rather than storage in ecosystem biomass. Our results suggest that at year 100 a total of 216 Mg C ha−1 is sequestered for afforestation/reforestation using long rotation sal (Shorea robusta Gaertn.f) species, as opposed to offset of 412 Mg C ha−1 for carbon storage and fossil fuel substitution for short rotation poplar (Populus Deltoides Marsh) plantations. The bioenergy option results in a continuous stream of about 3 Mg C ha−1 yr−1 of carbon benefits per year on forest land and 4 Mg C ha−1 yr−1 on non-forest land. Earlier studies have shown that in India waste land availability for establishing energy plantations is in the range of 9.6 to 36.5 Mha. Thus, using the 758 Tg biomass per year generated from 9.6 Mha waste land gives a mitigation potential in the range of 227 to 303 Tg C per year for carbon storage and fossil fuel substitution from poplar plantation for substituting coal based power generation. Depending upon the land availability for plantation, the potential for energy generation is in the range of 11,370 PJ, possibly amounting to a bioenergy supply of 43% of the total projected energy consumption in 2015. Further studies are needed to estimate the mitigation potential of other species with different productivities for overall estimation of the economic feasibility and social acceptability in a tropical country like India.  相似文献   

17.
A dynamic growth model (CO2FIX) was used for estimating the carbon sequestration potential of sal (Shorea Robusta Gaertn. f.), Eucalyptus (Eucalyptus Tereticornis Sm.), poplar (Populus Deltoides Marsh), and teak (Tectona Grandis Linn. f.) forests in India. The results indicate that long-term total carbon storage ranges from 101 to 156 Mg C?ha?1, with the largest carbon stock in the living biomass of long rotation sal forests (82 Mg C?ha?1). The net annual carbon sequestration rates were achieved for fast growing short rotation poplar (8 Mg C?ha?1?yr?1) and Eucalyptus (6 Mg C?ha?1?yr?1) plantations followed by moderate growing teak forests (2 Mg C?ha?1?yr?1) and slow growing long rotation sal forests (1 Mg C?ha?1?yr?1). Due to fast growth rate and adaptability to a range of environments, short rotation plantations, in addition to carbon storage rapidly produce biomass for energy and contribute to reduced greenhouse gas emissions. We also used the model to evaluate the effect of changing rotation length and thinning regime on carbon stocks of forest ecosystem (trees?+?soil) and wood products, respectively for sal and teak forests. The carbon stock in soil and products was less sensitive than carbon stock of trees to the change in rotation length. Extending rotation length from the recommended 120 to 150 years increased the average carbon stock of forest ecosystem (trees?+?soil) by 12%. The net primary productivity was highest (3.7 Mg ha?1?yr?1) when a 60-year rotation length was applied but decreased with increasing rotation length (e.g., 1.7 Mg ha?1?yr?1) at 150 years. Goal of maximum carbon storage and production of more valuable saw logs can be achieved from longer rotation lengths. ‘No thinning’ has the largest biomass, but from an economical perspective, there will be no wood available from thinning operations to replace fossil fuel for bioenergy and to the pulp industry and such patches have high risks of forest fires, insects etc. Extended rotation lengths and reduced thinning intensity could enhance the long-term capacity of forest ecosystems to sequester carbon. While accounting for effects of climate change, a combination of bioenergy and carbon sequestration will be best to mitigation of CO2 emission in the long term.  相似文献   

18.
Atmospheric carbon dioxide (CO2) has increased from a preindustrial concentration of about 280 ppm to about 367 ppm at present. The increase has closely followed the increase in CO2 emissions from the use of fossil fuels. Global warming caused by increasing amounts of greenhouse gases in the atmosphere is the major environmental challenge for the 21st century. Reducing worldwide emissions of CO2 requires multiple mitigation pathways, including reductions in energy consumption, more efficient use of available energy, the application of renewable energy sources, and sequestration. Sequestration is a major tool for managing carbon emissions. In a majority of cases CO2 is viewed as waste to be disposed; however, with advanced technology, carbon sequestration can become a value-added proposition. There are a number of potential opportunities that render sequestration economically viable. In this study, we review these most economically promising opportunities and pathways of carbon sequestration, including reforestation, best agricultural production, housing and furniture, enhanced oil recovery, coalbed methane (CBM), and CO2 hydrates. Many of these terrestrial and geological sequestration opportunities are expected to provide a direct economic benefit over that obtained by merely reducing the atmospheric CO2 loading. Sequestration opportunities in 11 states of the Southeast and South Central United States are discussed. Among the most promising methods for the region include reforestation and CBM. The annual forest carbon sink in this region is estimated to be 76 Tg C/year, which would amount to an expenditure of $11.1–13.9 billion/year. Best management practices could enhance carbon sequestration by 53.9 Tg C/year, accounting for 9.3% of current total annual regional greenhouse gas emission in the next 20 years. Annual carbon storage in housing, furniture, and other wood products in 1998 was estimated to be 13.9 Tg C in the region. Other sequestration options, including the direct injection of CO2 in deep saline aquifers, mineralization, and biomineralization, are not expected to lead to direct economic gain. More detailed studies are needed for assessing the ultimate changes to the environment and the associated indirect cost savings for carbon sequestration.  相似文献   

19.
The application of bio-char (charcoal or biomass-derived black carbon (C)) to soil is proposed as a novel approach to establish a significant, long-term, sink for atmospheric carbon dioxide in terrestrial ecosystems. Apart from positive effects in both reducing emissions and increasing the sequestration of greenhouse gases, the production of bio-char and its application to soil will deliver immediate benefits through improved soil fertility and increased crop production. Conversion of biomass C to bio-char C leads to sequestration of about 50% of the initial C compared to the low amounts retained after burning (3%) and biological decomposition (< 10–20% after 5–10 years), therefore yielding more stable soil C than burning or direct land application of biomass. This efficiency of C conversion of biomass to bio-char is highly dependent on the type of feedstock, but is not significantly affected by the pyrolysis temperature (within 350–500 C common for pyrolysis). Existing slash-and-burn systems cause significant degradation of soil and release of greenhouse gases and opportunies may exist to enhance this system by conversion to slash-and-char systems. Our global analysis revealed that up to 12% of the total anthropogenic C emissions by land use change (0.21 Pg C) can be off-set annually in soil, if slash-and-burn is replaced by slash-and-char. Agricultural and forestry wastes such as forest residues, mill residues, field crop residues, or urban wastes add a conservatively estimated 0.16 Pg C yr−1. Biofuel production using modern biomass can produce a bio-char by-product through pyrolysis which results in 30.6 kg C sequestration for each GJ of energy produced. Using published projections of the use of renewable fuels in the year 2100, bio-char sequestration could amount to 5.5–9.5 Pg C yr−1 if this demand for energy was met through pyrolysis, which would exceed current emissions from fossil fuels (5.4 Pg C yr−1). Bio-char soil management systems can deliver tradable C emissions reduction, and C sequestered is easily accountable, and verifiable.  相似文献   

20.
Greenhouse gas emission has been scientifically shown to be the primary cause of observed global climate change. The reduction of greenhouse gas levels in the atmosphere deserves international attention. Aside from strategies to reduce emissions, increasing carbon (C) storage by forests has become an alternative method to lower carbon dioxide (CO2) levels. The present study assesses the potential of C storage to decrease gas emission by restoring cleared and disturbed spruce (picea) forests in the Qilian Mountains, northwestern China. We first introduced and tested a new method for live aboveground biomass (AGB) estimation. We then used the method to define the relationship of AGB with topographic wetness index (TWI) and precipitation seasonality for total AGB estimation and quantification of the realized C storage in the live AGB of existing spruce forests. The same strategies were adopted to estimate the total AGB and the related potential C storage in the projected potential spruce forest distribution. A species distribution model was used, and the results showed that the AGB of the Qinghai spruce forests ranged between 2.30 and 4.96 Mg per plot (0.021 ha), i.e., 110 Mg ha-1 to 236 Mg ha-1). Actual total AGB was measured at 33 Tg, and C storage was 17.3 Tg in existing spruce forests. Potential total AGB and potential C storage were greater if the cleared and the potential C storage was ~50 Tg.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号