首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The fireball from a vented dust explosion presents a danger to personnel who may be within the vicinity of the event. The risk of serious injury to people caught within the fireball is great, and anyone just outside the fireball may be at risk from thermal radiation. This report describes a project in which the effects of thermal radiation from vented dust explosions was studied. The aim was to establish the areas around a fireball in which people would be at risk from thermal radiation. Six dusts were tested in a large vented vessel and external fireballs were generated under a range of conditions. The fireball geometry and the heat flux from the fireball were studied. A range of material samples were exposed to the fireball. The safe areas around the fireballs were established for each of the six dusts. Generally, the larger vent areas resulted in the larger fireballs and high heat pulse values. However, the fireball was usually too brief to ignite fabric samples unless they were very close to the fireball. The work has shown that in most cases the safe area was relatively close to the surface of the largest fireball.  相似文献   

2.
A completely adiabatic pipe that is similar to a coal-mine coal or rock roadway was simulated using the computational software AutoReaGas. A partially adiabatic pipe was established using an experimental steel pipe with heat-insulating material installed in the inner wall, and a non-adiabatic pipe was also established using the experimental steel pipe without the heat-insulating material. Premixed methane/air deflagrations were studied in the three types of pipe to reveal the influence of the condition of the pipe wall on gas explosions. The results showed that in the completely adiabatic pipe, the maximum explosion overpressure was dynamic and decreased and increased with increasing distance; however, the flame-propagation speed increased gradually. In the partially adiabatic pipe and the non-adiabatic pipe, the maximum explosion overpressure and flame-propagation speed increased initially and then gradually decreased with increasing distance. The majority of explosion overpressure and flame-propagation speed values at each gauge in the completely adiabatic pipe were larger than those of the partially adiabatic pipe. Both measurements at each gauge in the partially adiabatic pipe were much greater than those of the non-adiabatic pipe. The condition of the pipe wall has a large influence on the maximum explosion overpressure and the flame-propagation speed. In future explosion experiments, heat insulating materials should be installed in the inner wall of steel pipes to obtain data for application to the prevention and control of gas explosions in underground coal mines.  相似文献   

3.
In order to explore flame propagation characteristics during wood dust explosions in a semi-closed tube, a high-speed camera, a thermal infrared imaging device and a pressure sensor were used in the study. Poplar dusts with different particle size distributions (0–50, 50–96 and 96–180 μm) were respectively placed in a Hartmann tube to mimic dust cloud explosions, and flame propagation behaviors such as flame propagation velocity, flame temperature and explosion pressure were detected and analyzed. According to the changes of flame shapes, flame propagations in wood dust explosions were divided into three stages including ignition, vertical propagation and free diffusion. Flame propagations for the two smaller particles were dominated by homogeneous combustion, while flame propagation for the largest particles was controlled by heterogeneous combustion, which had been confirmed by individual Damköhler number. All flame propagation velocities for different groups of wood particles in dust explosions were increased at first and then decreased with the augmentation of mass concentration. Flame temperatures and explosion pressures were almost similarly changed. Dust explosions in 50–96 μm wood particles were more intense than in the other two particles, of which the most severe explosion appeared at a mass concentration of 750 g/m3. Meanwhile, flame propagation velocity, flame propagation temperature and explosion pressure reached to the maximum values of 10.45 m/s, 1373 °C and 0.41 MPa. In addition, sensitive concentrations corresponding to the three groups of particles from small to large were 500, 750 and 1000 g/m3, separately, indicating that sensitive concentration in dust explosions of wood particles was elevated with the increase of particle size. Taken together, the finding demonstrated that particle size and mass concentration of wood dusts affected the occurrence and severity of dust explosions, which could provide guidance and reference for the identification, assessment and industrial safety management of wood dust explosions.  相似文献   

4.
To reveal the effects of particle characteristics on the mechanisms of flame propagation during organic dust explosions clearly, three long chain monobasic alcohols which are solids at room temperature and have similar physical–chemical properties were chosen to carry out experiments in a half-closed small chamber. A high-speed video camera was used to record the flame propagation process and to obtain the direct light emission photographs. Flame temperature was detected by a fine thermocouple. Based on the experimental results above, analysis was conducted on flame propagation characteristics and temperature profiles of organic particle cloud. As a result, it was found that the particle materials, especially volatility, strongly affected the flame propagation behavior. Particle concentration also affects the combustion zone propagation process significantly. With increasing the particle concentration, the maximum temperature of the combustion zone increases at the lower concentration, reaches a maximum value, and then decreases at the higher concentration. The propagation velocity of the combustion zone has a linear relationship with the maximum temperature, which implies conductive heat transfer is dominant in the flame propagation process of the three different volatile dusts.  相似文献   

5.
To reveal clearly the effects of particle thermal characteristics on flame microstructures during organic dust explosions, three long-chain monobasic alcohols, solid at room temperature and similar in physical-chemical properties, were chosen to conduct experiments in a half-closed chamber. In the experiments, the dust materials were dispersed into the chamber by air to form dust clouds and the hybrids were ignited by an electrical spark. A high-speed optical schlieren system was used to record the flame propagation behaviors. A fine thermocouple and an ion current probe were respectively used to measure the flame temperature profile and the reaction behaviors of the combustion zone. Based on the experimental results, combustion behaviors and flame microstructures in dust clouds with different thermal characteristics were analyzed in detail. As a result, it was found that the dust flame surfaces were completely covered by cellular structures that significantly increased the flame frontal areas. Flame propagated more quickly and the number of the cellular cells increased as increasing the volatility of the particles. On the contrary, maximum temperature and the thickness of the preheated zone decreased as increasing the volatility of the particles. According to the ion current profile, the particles in the preheat zone were pyrolyzed to intermediate radicals and the radicals' fraction in the higher volatile dust flame was higher than that in the lower volatile dust flame.  相似文献   

6.
Accidental gas explosions occurred at a refuse-derived-fuel (RDF) storage in Japan, and two fire fighters on duty were dead. The flammable gases, which caused the gas explosions generated during a RDF fire. It means that gas explosions could occur in the use of solid fuels under certain conditions. This study has been conducted for exploring the process to gas explosions in the RDF storage. The temperature at a part of the RDF pile in the storage was inferred to spontaneously increase, and the prediction of the temperature increase was attempted on the basis of the Frank-Kamenetskii theory. It was shown that the critical temperature of RDF for spontaneous temperature rise depends on the size of the pile. Larger the pile, lower the critical temperature. The possibility of accumulation of flammable gas in the space of the RDF storage is discussed. It is indicated that the spread rate of thermal wave is slow and a high temperature region likely established. After the RDF pile ignites, the oxygen concentration near the burning site becomes low and the flammable species components in the generated gas increases. Those species pass through surrounding low temperature region and come out into the space over the RDF pile without combustion. An explosion would occur when a fresh air comes into the storage, mixes with the flammable gas coming out from the pile to form a flammable mixture, and then the flammable mixture ignites. The most effective means to prevent accidental explosions is to avoid spontaneous ignition by cooling the heated RDF. If spontaneous ignition occurs, elimination of flammable gases from the storage should be strongly recommended.  相似文献   

7.
The formation of nitrile rubber (NBR) dust clouds during processing can lead to a potential dust explosion under certain conditions. However, the potential explosion hazard posed by NBR dust is usually overlooked by enterprises. In this paper, the explosive properties of NBR dust are investigated using a Hartmann tube, a G-G furnace, and a 20 L explosion chamber. The results showed that NBR dust could cause explosions severe enough to be classified as St-1. In addition, the thermal decomposition behavior of NBR dust under combustion conditions was investigated using a combination of thermogravimetric analysis coupled with Fourier transform infrared spectroscopy (TGA-FTIR). The results indicated that in the early stage, NBR dust mainly undergoes self-thermal decomposition to produce a large amount of combustible gas, which combines with oxygen to form a mixed gas and cause a gas-phase explosion. In addition, the participation of oxygen could lower the initial temperature of NBR dust thermal decomposition. As a result, decomposition occurred more quickly and a large amount of combustible gas was produced, thus expanding the range of dust explosions. Furthermore, these combustible gases exhibit varying degrees of toxicity, seriously affecting the life and health safety of relevant personnel. This work provides theoretical guidance for the development of safe procedures to prevent and address problems during NBR dust processing in enterprises.  相似文献   

8.
To reveal the effects of particle characteristics, including particle thermal characteristics and size distributions, on flame propagation mechanisms during dust explosions clearly, the flame structures of dust clouds formed by different materials and particle size distributions were recorded using an approach combining high-speed photography and a band-pass filter. Two obviously different flame propagation mechanisms were observed in the experiments: kinetics-controlled regime and devolatilization-controlled regime. Kinetics-controlled regime was characterized by a regular shape and spatially continuous combustion zone structure, which was similar to the premixed gas explosions. On the contrary, devolatilization-controlled regime was characterized by a complicated structure that exhibited heterogeneous combustion characteristics, discrete blue luminous spots appeared surrounding the yellow luminous zone. It was also demonstrated experimentally that the flame propagation mechanisms transited from kinetics-controlled to devolatilization-controlled while decreasing the volatility of the materials or increasing the size of the particles. Damköhler number was defined as the ratio of the heating and devolatilization characteristic time to the combustion reaction characteristic time, to reflect the transition of flame propagation mechanisms in dust explosions. It was found that the kinetics-controlled regime and devolatilization-controlled regime can be categorized by whether Damköhler number was less than 1 or larger than 1.  相似文献   

9.
利用实验室自行设计的20L球形爆炸装置,对煤尘及甲烷煤尘混合物的爆炸特性进行了研究。结果表明:无论有无甲烷,煤尘的最大爆炸压力随煤尘浓度增加呈现先升高后降低的变化趋势,并且均在在煤尘浓度为600g/m3时均达到最大值。同时,甲烷的加入明显提高了煤尘最大爆炸压力值,而且随着甲烷浓度的增加,最大爆炸压力增幅先增加后降低,在甲烷5%时增幅最大。煤尘的爆炸持续时间随煤尘浓度增加呈现先降低后升高的特点,甲烷存在时有同样规律,但是有甲烷时爆炸持续时间明显降低,而且随着甲烷含量的增加,煤尘的爆炸持续时间降低幅度不断增加,在甲烷5%以后趋于稳定。实验结果对生产实践有一定的指导作用。  相似文献   

10.
Knowledge of the mechanism of combustion zone propagation during dust explosion is of great importance to prevent damage caused by accidental dust explosions. In this study, the temperature profile across the combustion zone propagating through an iron particle cloud is measured experimentally by a thermocouple to elucidate the propagation mechanism. The measured temperature starts to increase slowly at a position about 5 mm ahead of the leading edge of the combustion zone, increases quickly at a position about 3 mm ahead of the leading edge, reaches a maximum value near the end of the combustion zone, and then decreases. As the iron particle concentration increases, the maximum temperature increases at lower concentration, takes a maximum value, and then decreases at higher concentration. The relation between the propagation velocity of the combustion zone and the maximum temperature is also examined. It is found that the propagation velocity has a linear relationship with the maximum temperature. This result suggests that the conductive heat transfer is dominant in the propagation process of the combustion zone through an iron particle cloud.  相似文献   

11.
火球热辐射后果计算动态模型的应用   总被引:2,自引:0,他引:2  
为了精确地评估火球的热辐射后果,需要深入研究火球热负荷对影响区域暴露人员所造成的伤害.详细介绍了具有时间属性的火球热辐射动态模型,以实例描绘了火球直径、高度以及目标接受到的热通量等火球参数的动态变化规律.结果表明:具有时间属性的火球热辐射动态模型计算出的热辐射值小于静态模型计算的值,动态模型有可能更准确地描述火球参数的实际动态变化,进而合理地确定火球热辐射的人员伤亡区域,并为过热可燃液体容器的安全设计及风险分析提供一种新的后果评估技术及方法.  相似文献   

12.
The current study estimates the radiation flux emitted from hot extended gas clouds characteristic of vapour cloud explosions along with the corresponding level of irradiance posed on particles suspended in the unburnt part of the cloud ahead of an advancing flame front. The data presented permits an assessment of the plausibility of combustion initiation by such particles due to forward thermal radiation. The thermal radiation will depend on the emissivity of the burned volume, which relates to the concentration of gaseous and particulate combustion products. A sensitivity analysis has been carried out to account for variations in the equivalence ratio, mixture pressure and radiative heat losses. The spatial distribution of irradiance ahead of the flame front has been computed by introducing appropriate geometrical factors to explore the impact of cloud size. Using fuel rich ethylene-air mixtures it has been shown that high flame emissivities can be achieved at path lengths of order 1 m even in the presence of very low soot volume fractions. The emissivity of gas-soot mixtures will hence be mainly determined by the soot concentration and to a lesser extent by the mixture temperature. Our analysis suggests that the role of forward thermal radiation as a contributing factor to flame propagation in large scale vapour cloud explosions can not currently be ruled out.  相似文献   

13.
瓦斯爆炸中的火球伤害效应   总被引:4,自引:0,他引:4  
针对瓦斯爆炸事故3种危害中的高温热辐射伤害进行研究,结合火灾爆炸事故中的火球热辐射的传播公式,得出适合井下瓦斯爆炸事故的火球传播规律公式.依据该公式划分了瓦斯爆炸事故中火球热辐射的死亡、重伤、轻伤的半径公式,为瓦斯爆炸事故安全评价提供了理论基础.  相似文献   

14.
Experiments using an open space dust explosion apparatus and a standard 20 L explosion apparatus on nano and micron polymethyl methacrylate dust explosions were conducted to reveal the differences in flame and pressure evolutions. Then the effect of combustion and flame propagation regimes on the explosion overpressure characteristics was discussed. The results showed that the flame propagation behavior, flame temperature distribution and ion current distribution all demonstrated the different flame structures for nano and micron dust explosions. The combustion and flame propagation of 100 nm and 30 μm PMMA dust clouds were mainly controlled by the heat transfer efficiency between the particles and external heat sources. Compared with the cluster diffusion dominant combustion of 30 μm dust flame, the premixed-gas dominant combustion of 100 nm dust flame determined a quicker pyrolysis and combustion reaction rate, a faster flame propagation velocity, a stronger combustion reaction intensity, a quicker heat release rate and a higher amount of released reaction heat, which resulted in an earlier pressure rise, a larger maximum overpressure and a higher explosion hazard class. The complex combustion and propagation regime of agglomerated particles strongly influenced the nano flame propagation and explosion pressure evolution characteristics, and limited the maximum overpressure.  相似文献   

15.
Sensitivity and severity parameters are critical for risk assessment and safety management of dust explosions. In this paper, to reveal the effects of material thermal characteristics on dust explosions parameters during monobasic alcohols dust explosions, three long chain monobasic alcohols, being solid at room temperature and similar in physical–chemical properties, were chosen to carry out experiments in different functional test apparatus according to the internationally accepted ASTM standards. As a result, it was found that the material thermal characteristics strongly affected these basic explosive parameters. On the one hand, for the sensitivity parameters, Minimum Ignition Temperature, Minimum Ignition Energy and Electrical Resistivity were the highest in the Eicosanol dust cloud, while Minimum Explosible Concentration in this cloud was the lowest. On the other hand, for severity parameters, Maximum Explosion Pressure in Eicosanol dust cloud always maintained the highest values as varying the dust concentrations. In contrast, Deflagration Index showed a complex trend.  相似文献   

16.
The prevention and suppression of explosions is a very topical field of research because annually hundreds of coal mine workers became their victims. In this research a very effective powder “powder for suppression of explosions” (“PSE”) for the suppression of explosions has been developed and tested. The experiments on suppression of explosions of a methane–air mixture (MAM) at a laboratory conditions using “PSE”-powder have been carried out. The possibility of lowering the power of coal-dust explosion with the help of a “PSE”-powder has been investigated. The feasibility of almost instantaneous disperse of powders using intentionally created mini-explosions (ammonal) was investigated. The barrel-suppressor of explosion in the experimental adit (tunnel) was studied and the large-scale tests for suppression of MAM-explosions in experimental adit were also subjects of study.  相似文献   

17.
Reaction kinetics is fundamental for modelling the thermal oxidation of a solid phase, in processes such as dust explosions, combustion or gasification. The methodology followed in this study consists in i) the experimental identification of the reaction mechanisms involved in the explosion of organic powders, ii) the proposal of simplified mechanisms of pyrolysis and oxidation, iii) the implementation of the model to assess the explosion severity of organic dusts. Flash pyrolysis and combustion experiments were carried out on starch (22 μm) and cellulose (53 μm) at temperatures ranging from 973 K to 1173 K. The gases generated were collected and analyzed by gas chromatography. In this paper, a semi-global pyrolysis model was developed for reactive systems with low Damköhler number. It is in good agreement with the experimental data and shows that both carbon monoxide and hydrogen are mainly generated during the pyrolysis of the solid, the generation of the latter compound being greatly promoted at high temperature. A simplified combustion model was also proposed by adding two oxidation reactions of the pyrolysis products. In parallel, flame propagation tests were performed in a semi open tube in order to assess the burning velocity of such compounds. The laminar burning velocity of cellulose was determined to be 21 cm s−1. Finally, this model will be integrated to a predictive model of dust explosions and its validation will be based on experimental data obtained using the 20 L explosion sphere. The explosion severity of cellulose was determined and will be used to develop and adjust the predictive model.  相似文献   

18.
为提供古建筑火灾数值模拟及风险评估的基础理论,从自然老化角度入手,选取经过长久自然老化的建筑服役木材作为研究对象,通过扫描电镜(SEM)及热物性试验对比分析自然老化木材与参照木材的外观形态及热传导特征;采用差示扫描量热DSC法,研究自然老化木材在燃烧过程中热释放的阶段特性,分析不同升温速率对老化木材热行为影响特征;基于...  相似文献   

19.
锂离子电池在生产生活中扮演着重要角色,为了对其热性能有更全面的了解,对锂离子电池放电条件下的热行为进行了探究。通过采集表面温度、电压、热释放速率等参数后对比发现,在可逆热与不可逆热的作用下,电池放电过程中存在明显的升温。此外,放电处理将导致电池出现更为明显的升温情况,更早发生热失控。最后,经过放电处理的锂电池在外加热源作用进而发生失控的实验过程中有着更剧烈的热失控行为,并最终释放较少的热量。  相似文献   

20.
白宇涛  高飞  于唯  屠越  仪涛 《火灾科学》2023,32(1):19-25
为对比研究开放与受限条件下的电缆火灾燃烧行为,采用CFD数值模拟软件建立了全尺寸电缆燃烧模型,同时考虑了不同间距对电缆燃烧特性的影响,并将开放与受限条件下的计算结果进行对比,分析了两种条件下电缆火灾中各工况的温度、O2浓度。结果表明:开放条件下的电缆燃烧主要属于燃料控制型,而受限条件下的电缆燃烧主要属于先燃料控制型,后通风控制型。在开放条件下,氧气充足,燃烧更为充分,形成的火焰高度及温度更高,更容易引燃上方可燃物体;而在受限条件下,电缆火焰受到顶板限制形成的顶棚射流,会加强火焰对电缆的热辐射作用,有助于电缆燃烧。但由于侧壁的存在,电缆燃烧过程中的空气卷吸受到了一定的限制,由于通风不足,受限空间内的O2浓度逐渐下降,电缆燃烧受到抑制,甚至熄灭,而随着空气的补充,电缆将可能出现复燃现象。此外,两种条件下电缆间距对燃烧的影响均较为明显,当间距较小时,燃烧电缆之间的影响显著,燃烧更为剧烈,而随着电缆间距增大,燃烧电缆间的相互热辐射减弱,更接近于单根电缆的独立燃烧,其中开放条件下相对更为明显。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号