首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Average annual net change in soil carbon stocks under past and current management is needed as part of national reporting of greenhouse gas emissions and to evaluate the potential for soils as sinks to mitigate increasing atmospheric CO2. We estimated net soil C stock changes for US agricultural soils during the period from 1982 to 1997 using the IPCC (Intergovernmental Panel on Climate Change) method for greenhouse gas inventories. Land use data from the NRI (National Resources Inventory; USDA-NRCS) were used as input along with ancillary data sets on climate, soils, and agricultural management. Our results show that, overall, changes in land use and agricultural management have resulted in a net gain of 21.2 MMT C year(-1) in US agricultural soils during this period. Cropped lands account for 15.1 MMT C year(-1), while grazing land soil C increased 6.1 MMT C year(-1). The land use and management changes that have contributed the most to increasing soil C during this period are (1) adoption of conservation tillage practices on cropland, (2) enrollment of cropland in the Conservation Reserve Program, and (3) cropping intensification that has resulted in reduced use of bare fallow.  相似文献   

2.
Soil carbon dynamics in cropland and rangeland   总被引:36,自引:0,他引:36  
Most soils in the Midwestern USA have lost 30 to 50% of their original pool, or 25 to 40 Mg C/ha, upon conversion from natural to agricultural ecosystems. About 60 to 70% of the C thus depleted can be resequestered through adoption of recommended soil and crop management practices. These practices include conversion from plow till to no till, frequent use of winter cover crops in the rotation cycle, elimination of summer fallow, integrated nutrient management along with liberal use of biosolids and biological nitrogen fixation, precision farming to minimize losses and enhance fertilizer use efficiency, and use of improved varieties with ability to produce large root biomass with high content of lignin and suberin. The gross rate of soil organic carbon (SOC) sequestration ranges from 500 to 800 kg/ha/year in cold and humid regions and 100 to 300 kg/ha/year in dry and warm regions. The rate of SOC sequestration can be measured with procedures that are cost effective and credible at soil pedon level, landscape level, regional or national scale. In addition to SOC, there is also a large potential to sequester soil inorganic carbon (SIC) in arid and semi-arid regions. Soil C sequestration has numerous ancillary benefits. It is truly a win-win situation: extremely cost-effective, and a bridge to the future until alternative energy options take effect.  相似文献   

3.
Environmental Science and Pollution Research - Inappropriate farm management practices can lead to increased agricultural inputs and changes in atmospheric greenhouse gas (GHG) emissions, impacting...  相似文献   

4.
We have examined how some major catchment disturbances may affect the aquatic greenhouse gas fluxes in the boreal zone, using gas flux data from studies made in 1994-1999 in the pelagic regions of seven lakes and two reservoirs in Finland. The highest pelagic seasonal average methane (CH(4)) emissions were up to 12 mmol x m(-2) x d(-1) from eutrophied lakes with agricultural catchments. Nutrient loading increases autochthonous primary production in lakes, promoting oxygen consumption and anaerobic decomposition in the sediments and this can lead to increased CH(4) release from lakes to the atmosphere. The carbon dioxide (CO(2)) fluxes were higher from reservoirs and lakes whose catchment areas were rich in peatlands or managed forests, and from eutrophied lakes in comparison to oligotrophic and mesotrophic sites. However, all these sites were net sources of CO(2) to the atmosphere. The pelagic CH(4) emissions were generally lower than those from the littoral zone. The fluxes of nitrous oxide (N(2)O) were negligible in the pelagic regions, apparently due to low nitrate inputs and/or low nitrification activity. However, the littoral zone, acting as a buffer for leached nitrogen, did release N(2)O. Anthropogenic disturbances of boreal lakes, such as increasing eutrophication, can change the aquatic greenhouse gas balance, but also the gas exchange in the littoral zone should be included in any assessment of the overall effect. It seems that autochthonous and allochthonous carbon sources, which contribute to the CH(4) and CO(2) production in lakes, also have importance in the greenhouse gas emissions from reservoirs.  相似文献   

5.
The decoupling of fossil-fueled electricity production from atmospheric CO2 emissions via CO2 capture and sequestration (CCS) is increasingly regarded as an important means of mitigating climate change at a reasonable cost. Engineering analyses of CO2 mitigation typically compare the cost of electricity for a base generation technology to that for a similar plant with CO2 capture and then compute the carbon emissions mitigated per unit of cost. It can be hard to interpret mitigation cost estimates from this plant-level approach when a consistent base technology cannot be identified. In addition, neither engineering analyses nor general equilibrium models can capture the economics of plant dispatch. A realistic assessment of the costs of carbon sequestration as an emissions abatement strategy in the electric sector therefore requires a systems-level analysis. We discuss various frameworks for computing mitigation costs and introduce a simplified model of electric sector planning. Results from a "bottom-up" engineering-economic analysis for a representative U.S. North American Electric Reliability Council (NERC) region illustrate how the penetration of CCS technologies and the dispatch of generating units vary with the price of carbon emissions and thereby determine the relationship between mitigation cost and emissions reduction.  相似文献   

6.
Wang Y  Xue M  Zheng X  Ji B  Du R  Wang Y 《Chemosphere》2005,58(2):205-215
The fluxes of N2O emission from and CH4 uptake by the typical semi-arid grasslands in the Inner Mongolia, China were measured in 1998-1999. Three steppes, i.e. the ungrazed Leymus chinensis (LC), the moderately grazed Leymus chinensis (LC) and the ungrazed Stipa grandis (SG), were investigated, at a measurement frequency of once per week in the growing seasons and once per month in the non-growing seasons of the LC steppes. In addition, four diurnal-cycles of the growing seasons of the LC steppes, each in an individual stage of grass growth, were measured. The investigated steppes play a role of source for the atmospheric N2O and sink for the atmospheric CH4, with a N2O emission flux of 0.06-0.21 kg N ha(-1) yr(-1) and a CH4 uptake flux of 1.8-2.3 kg C ha(-1) yr(-1). Soil moisture primarily and positively regulates the spatial and seasonal variability of N2O emission. The usual difference in soil moisture among various semi-arid steppes does not lead to significantly different CH4 uptake intensities. Soil moisture, however, negatively regulates the seasonal variability in CH4 uptake. Soil temperature of the most top layer might be the primary driving factor for CH4 uptake when soil moisture is relatively low. The annual net emission of N2O and CH4 from the ungrazed LC steppe, the moderately grazed LC steppe and the ungrazed SG steppe is at a CO2 equivalent rate of 7.7, 0.8 and -7.5 kg CO2-C ha(-1) yr(-1), respectively, which is at an ignorable level. This implies that the role of the semi-arid grasslands in the atmospheric greenhouse effect in terms of net emission of greenhouse gases (CO2, CH4 and N2O) may exclusively depend upon the net exchange of net ecosystem CO2 exchange.  相似文献   

7.
The carbon-sequestration potential of municipal wastewater treatment   总被引:1,自引:0,他引:1  
Rosso D  Stenstrom MK 《Chemosphere》2008,70(8):1468-1475
The lack of proper wastewater treatment results in production of CO(2) and CH(4) without the opportunity for carbon sequestration and energy recovery, with deleterious effects for global warming. Without extending wastewater treatment to all urban areas worldwide, CO(2) and CH(4) emissions associated with wastewater discharges could reach the equivalent of 1.91 x 10(5) t(CO2)d(-1) in 2025, with even more dramatic impact in the short-term. The carbon sequestration benefits of wastewater treatment have enormous potential, which adds an energy conservation incentive to upgrading existing facilities to complete wastewater treatment. The potential greenhouse gases discharges which can be converted to a net equivalent CO(2) credit can be as large as 1.91 x 10(5) t(CO2)d(-1) in 2025 by 2025. Biomass sequestration and biogas conversion energy recovery are the two main strategies for carbon sequestration and emission offset, respectively. The greatest potential for improvement is outside Europe and North America, which have largely completed treatment plant construction. Europe and North America can partially offset their CO(2) emissions and receive benefits through the carbon emission trading system, as established by the Kyoto protocol, by extending existing technologies or subsidizing wastewater treatment plant construction in urban areas lacking treatment. This strategy can help mitigate global warming, in addition to providing a sustainable solution for extending the health, environmental, and humanitarian benefits of proper sanitation.  相似文献   

8.
Temperate grasslands are vast terrestrial ecosystems that may be an important component of the global carbon (C) cycle; however, annual C flux data for these grasslands are limited. The Bowen ratio/energy balance (BREB) technique was used to measure CO2 fluxes over a grazed mixed-grass prairie and a seeded western wheatgrass [Pascopyrum smithii (Rybd) L?ve] site at Mandan, ND from 24 April to 26 October in 1996, 1997, and 1998. Above-ground biomass and leaf area index (LAI) were measured about every 21 days throughout the season. Root biomass and soil organic C and N content were determined to 110 cm depth in selected increments about mid-July each year. Peak above-ground biomass and LAI coincided with peak fluxes and occurred between mid-July to early August. Biomass averaged 1227 and 1726 kg ha(-1) and LAI 0.44 and 0.59, for prairie and western wheatgrass, respectively. Average CO2 flux for the growing season was 279 g CO2 m(-2) for prairie and 218 g CO2 m(-2) for western wheatgrass (positive flux is CO2 uptake and negative flux is CO2 loss to the atmosphere). Using prior measured dormant season CO2 fluxes from the prairie sites gave annual flux estimates that ranged from -131 to 128 g CO2 m(-2) for western wheatgrass and from -70 to 189 g CO2 m(-2) for the prairie. This wide range in calculated annual fluxes suggests that additional research is required concerning dormant season flux measurements to obtain accurate estimates of annual CO2 fluxes. These results suggest Northern Great Plains mixed-grass prairie grasslands can either be a sink or a source for atmospheric CO2 or near equilibrium, depending on the magnitude of the dormant season flux.  相似文献   

9.
Particulate matter (PM) has long been recognized as an air pollutant due to its adverse health and environmental impacts. As emission of PM from agricultural operations is an emerging air quality issue, the Agricultural Particulate Matter Emissions Indicator (APMEI) has been developed to estimate the primary PM contribution to the atmosphere from agricultural operations on Census years and to assess the impact of practices adopted to mitigate these emissions at the soil landscape polygon scale as part of the agri-environmental indicator report series produced by Agriculture and Agri-Food Canada. In the APMEI, PM emissions from animal feeding operations, wind erosion, land preparation, crop harvest, fertilizer and chemical application, grain handling, and pollen were calculated and compared for the Census years of 1981–2006. In this study, we present the results for PM10 and PM2.5, which exclude chemical application and pollen sources as they only contribute to total suspended particles. In 2006, PM emissions from agricultural operations were estimated to be 652.6 kt for PM10 and 158.1 kt for PM2.5. PM emissions from wind erosion and land preparation account for most of PM emissions from agricultural operations in Canada, contributing 82% of PM10 and 76% of PM2.5 in 2006. Results from the APMEI show a strong reduction in PM emissions from agricultural operations between 1981 and 2006, with a decrease of 40% (442.8 kt) for PM10 and 47% (137.7 kt) for PM2.5. This emission reduction is mainly attributed to the adoption of conservation tillage and no-till practices and the reduction in the area of summerfallow land.

Implications: Increasing sustainability in agriculture often means adapting management practices to have a beneficial impact on the environment while maintaining or increasing production and economic benefits. We developed an inventory of primary PM emissions from agriculture in Canada to better quantify the apportionment, spatial distribution, and trends for Census years 1981–2006. We found major reductions of 40% in PM10 and 47% in PM2.5 emissions over the 25-yr period as a co-benefit of increasing carbon sequestration in agricultural soils. Indeed, farmers adopted conservation tillage/no-till practices, increased usage of cover crops, and reduced summerfallow, in order to increase soil organic matter and reduce carbon dioxide emissions, which also reduced primary PM emissions, although the agricultural production increased over the period.  相似文献   

10.
Assessing the long-term exchange of trace gases and energy between terrestrial ecosystems and the atmosphere is an important priority of the current climate change research. In this regard, it is particularly significant to provide valid data on simultaneous fluxes of carbon, water vapor and pollutants over representative ecosystems. Eddy covariance measurements and model analyses of such combined fluxes over a subalpine coniferous forest in southern Wyoming (USA) are presented. While the exchange of water vapor and ozone are successfully measured by the eddy covariance system, fluxes of carbon dioxide (CO(2)) are uncertain. This is established by comparing measured fluxes with simulations produced by a detailed biophysical model (FORFLUX). The bias in CO(2) flux measurements is partially attributed to below-canopy advection caused by a complex terrain. We emphasize the difficulty of obtaining continuous long-term flux data in mountainous areas by direct measurements. Instrumental records are combined with simulation models as a feasible approach to assess seasonal and annual ecosystem exchange of carbon, water and ozone in alpine environments. The viability of this approach is demonstrated by: (1) showing the ability of the FORFLUX model to predict observed fluxes over a 9-day period in the summer of 1996; and (2) applying the model to estimate seasonal dynamics and annual totals of ozone deposition and carbon, and water vapor exchange at our study site. Estimated fluxes above this subalpine ecosystem in 1996 are: 195 g C m(-2) year(-1) net ecosystem production, 277 g C m(-2) year(-1) net primary production, 535 mm year(-1) total evapo-transpiration, 174 mm year(-1) canopy transpiration, 2.9 g m(-2) year(-1) total ozone deposition, and 1.72 g O(3) m(-2) year(-1) plant ozone uptake via leaf stomata. Given the large portion of non-stomatal ozone uptake (i.e. 41% of the total annual flux) predicted for this site, we suggest that future research of pollution-vegetation interactions should relate plant response to actively assimilated ozone by foliage rather than to total deposition. In this regard, we propose the Physiological Ozone Uptake Per Unit of Leaf Area (POUPULA) as a practical index for quantifying vegetation vulnerability to ozone damage. We estimate POUPULA to be 0.614 g O(3) m(-2) leaf area year(-1) at our subalpine site in 1996.  相似文献   

11.
Costs of reforestation projects determine their competitiveness with alternative measures to mitigate rising atmospheric CO2 concentrations. We quantify carbon sequestration in above-ground biomass and soils of plantation forests and secondary forests in two countries in South America-Ecuador and Argentina-and calculate costs of temporary carbon sequestration. Costs per temporary certified emission reduction unit vary between 0.1 and 2.7 USD Mg(-1) CO2 and mainly depend on opportunity costs, site suitability, discount rates, and certification costs. In Ecuador, secondary forests are a feasible and cost-efficient alternative, whereas in Argentina reforestation on highly suitable land is relatively cheap. Our results can be used to design cost-effective sink projects and to negotiate fair carbon prices for landowners.  相似文献   

12.
Historically, the function of Arctic ecosystems in terms of cycles of nutrients and carbon has led to low levels of primary production and exchanges of energy, water and greenhouse gases have led to low local and regional cooling. Sequestration of carbon from atmospheric CO2, in extensive, cold organic soils and the high albedo from low, snow-covered vegetation have had impacts on regional climate. However, many aspects of the functioning of Arctic ecosystems are sensitive to changes in climate and its impacts on biodiversity. The current Arctic climate results in slow rates of organic matter decomposition. Arctic ecosystems therefore tend to accumulate organic matter and elements despite low inputs. As a result, soil-available elements like nitrogen and phosphorus are key limitations to increases in carbon fixation and further biomass and organic matter accumulation. Climate warming is expected to increase carbon and element turnover, particularly in soils, which may lead to initial losses of elements but eventual, slow recovery. Individual species and species diversity have clear impacts on element inputs and retention in Arctic ecosystems. Effects of increased CO2 and UV-B on whole ecosystems, on the other hand, are likely to be small although effects on plant tissue chemisty, decomposition and nitrogen fixation may become important in the long-term. Cycling of carbon in trace gas form is mainly as CO2 and CH4. Most carbon loss is in the form of CO2, produced by both plants and soil biota. Carbon emissions as methane from wet and moist tundra ecosystems are about 5% of emissions as CO2 and are responsive to warming in the absence of any other changes. Winter processes and vegetation type also affect CH4 emissions as well as exchanges of energy between biosphere and atmosphere. Arctic ecosystems exhibit the largest seasonal changes in energy exchange of any terrestrial ecosystem because of the large changes in albedo from late winter, when snow reflects most incoming radiation, to summer when the ecosystem absorbs most incoming radiation. Vegetation profoundly influences the water and energy exchange of Arctic ecosystems. Albedo during the period of snow cover declines from tundra to forest tundra to deciduous forest to evergreen forest. Shrubs and trees increase snow depth which in turn increases winter soil temperatures. Future changes in vegetation driven by climate change are therefore, very likely to profoundly alter regional climate.  相似文献   

13.
Aboveground net primary production (ANPP) and belowground gross primary production (BGPP) of all vegetation were measured in eight young, paired plots on a north and south aspect in western Montana. Stands of high and low overstory tree leaf area index (LAI) were compared. BGPP increased with ANPP, though they were not directly proportional. ANPP ranged from 1550 to 4400 kg C ha(-1) year(-1) and BGPP ranged from 1360 to 3500 kg C ha(-1) year(-1). ANPP and BGPP were both significantly related to LAI and aspect, where both were greater on the north aspect at any given LAI. Litterfall represented the largest share of ANPP; increases in overstory biomass represented the next largest share. Soil CO2 flux was higher on the north aspect. We conclude that growth differences were not simply a matter of re-allocating carbon between root production and ANPP. Rather, both production and allocation were different among the sites.  相似文献   

14.
Biomass burning is a common agricultural practice, because it allows elimination of postharvesting residues; nevertheless, it involves an inefficient combustion process that generates atmospheric pollutants emission, which has implications on health and climate change. This work focuses on the estimation of emission factors (EFs) of PM2.5, PM10, organic carbon (OC), elemental carbon (EC), carbon monoxide (CO), carbon dioxide (CO2), and methane (CH4) of residues from burning alfalfa, barley, beans, cotton, maize, rice, sorghum, and wheat in Mexico. Chemical characteristics of the residues were determined to establish their relationship with EFs, as well as with the modified combustion efficiency (MCE). Essays were carried out in an open combustion chamber with isokinetic sampling, following modified EPA 201-A method. EFs did not present statistical differences among different varieties of the same crop, but were statistically different among different crops, showing that generic values of EFs for all the agricultural residues can introduce significant uncertainties when used for climatic and atmospheric pollutant inventories. EFs of PM2.5 ranged from 1.19 to 11.30 g kg?1, and of PM10 from 1.77 to 21.56 g kg?1. EFs of EC correlated with lignin content, whereas EFs of OC correlated inversely with carbon content. EFs of EC and OC in PM2.5 ranged from 0.15 to 0.41 g kg?1 and from 0.33 to 5.29 g kg?1, respectively, and in PM10, from 0.17 to 0.43 g kg?1 and from 0.54 to 11.06 g kg?1. CO2 represented the largest gaseous emissions volume with 1053.35–1850.82 g kg?1, whereas the lowest was CH4 with 1.61–5.59 g kg?1. CO ranged from 28.85 to 155.71 g kg?1, correlating inversely with carbon content and MCE. EFs were used to calculate emissions from eight agricultural residues burning in the country during 2016, to know the potential mitigation of climatic and atmospheric pollutants, provided this practice was banned.

Implications: The emission factors of particles, short-lived climatic pollutants, and atmospheric pollutants from the crop residues burning of eight agricultural wastes crops, determined in this study using a standardized method, provides better knowledge of the emissions of those species in Latin America and other developing countries, and can be used as inputs in air quality models and climatic studies. The EFs will allow the development of more accurate inventories of aerosols and gaseous pollutants, which will lead to the design of effective mitigation strategies and planning processes for sustainable agriculture.  相似文献   

15.
二氧化碳储存技术的研究现状和展望   总被引:19,自引:0,他引:19  
为了减少因温室效应造成的危害,必须大量减少CO2的人为排放.将化石燃料燃烧产生的CO2进行储存(尤其是地下储存)能够长期、有效地阻止大气中CO2浓度的增加.通过对CO2储存技术研究现状的介绍,对中国今后开展CO2地下储存技术提出了建议和研究方向.  相似文献   

16.
Globally, blue carbon (i.e., carbon in coastal and marine ecosystems) emissions have been seriously augmented due to the devastating effects of anthropogenic pressures on coastal ecosystems including mangrove swamps, salt marshes, and seagrass meadows. The greening of aquaculture, however, including an ecosystem approach to Integrated Aquaculture-Agriculture (IAA) and Integrated Multi-Trophic Aquaculture (IMTA) could play a significant role in reversing this trend, enhancing coastal ecosystems, and sequestering blue carbon. Ponds within IAA farming systems sequester more carbon per unit area than conventional fish ponds, natural lakes, and inland seas. The translocation of shrimp culture from mangrove swamps to offshore IMTA could reduce mangrove loss, reverse blue carbon emissions, and in turn increase storage of blue carbon through restoration of mangroves. Moreover, offshore IMTA may create a barrier to trawl fishing which in turn could help restore seagrasses and further enhance blue carbon sequestration. Seaweed and shellfish culture within IMTA could also help to sequester more blue carbon. The greening of aquaculture could face several challenges that need to be addressed in order to realize substantial benefits from enhanced blue carbon sequestration and eventually contribute to global climate change mitigation.  相似文献   

17.
Guenther A 《Chemosphere》2002,47(8):837-844
From November 1998 to October 2000, measurements of soil respiration were performed on the Spanish plateau for two patches of non-irrigated barley, one managed with conventional tillage (CT) and the other with reduced tillage (RT). Soil CO2 flux showed seasonal variation on both patches, with an increase from March to October, peaking in May, and a decrease during the winter period by a factor of around 2. The mean value for both combined years was 2.03 and 1.70 micromol m(-2) S(-1), in the CT and RT patches, respectively. In order to analyse the influence of RT on soil CO2 flux, two tests were performed. The first one was the Kruskal-Wallis test to compare whether the differences between the medians in both patches were statistically significant. The results obtained revealed statistically significant differences during the second year, at a 85% and 95% significance level, use being made of annual data and that recorded during the period of maximum interest, March-October, respectively. The decrease in soil respiration in the RT patch was around 24%. The second test was aimed at describing and comparing the influence of soil temperature on soil CO2 flux. By using the data of both patches recorded during the first year, an empirical equation on 10-cm soil temperature was fitted and tested on the data corresponding to the second year in each of the patches. Then, a comparison between the medians of the differences between the estimated and observed values was again performed by means of the Kruskal-Wallis test. The over-prediction of the model in the RT patch, statistically significant at a 90% significance level, was roughly 23%, confirming again the decrease in soil respiration one year after this agricultural management practice had been implemented.  相似文献   

18.
Study on active and labile carbon-pools can serve as a clue for soil organic carbon dynamics on exposure to elevated level of CO2. Therefore, an experimental study was conducted in a Typic Haplustept in sub-tropical semi-arid India with wheat grown in open top chambers at ambient (370 micromol mol-1) and elevated (600 micromol mol-1) concentrations of atmospheric CO2. Elevated atmospheric CO2 caused increase in yield and carbon uptake by all plant parts, and their preferential partitioning to root. Increases in fresh root weight, volume and length have also been observed. Relative contribution of medium-sized root to total root length increased at the expense of very fine roots at elevated CO2 level. All active carbon-fractions gained due to elevated atmospheric CO2 concentration, and the order followed their relative labilities. All the C-pools have recorded a significant increase over initial status, and are expected to impart short-to-medium-term effect on soil carbon sequestration.  相似文献   

19.
A review of the export of carbon in river water: fluxes and processes   总被引:3,自引:0,他引:3  
This review summarizes data on exports of carbon from a large number of temperate and boreal catchments in North America, Europe and New Zealand. Organic carbon losses, usually dominated by dissolved organic matter, show relatively little variation, most catchments exporting between 10 and 100 kg C ha(-1) yr(-1). Inorganic carbon exports occur at a similar rate. However, a lack of information on the flux of particulate organic carbon and dissolved CO2 is highlighted, particularly for rivers in Europe. Processes regulating the flux of organic carbon to streams and its subsequent fate in-stream are reviewed, along with the effects of land use and acidification on these processes. The size of the global riverine flux of carbon in relation to the global carbon cycle and the possible effects of environmental change on the export of carbon in rivers are considered.  相似文献   

20.
Agricultural practices affect the production and emission of carbon dioxide (CO2) from paddy soils. It is crucial to understand the effects of tillage and N fertilization on soil CO2 flux and its influencing factors for a better comprehension of carbon dynamics in subtropical paddy ecosystems. A 2-yr field study was conducted to assess the effects of tillage (conventional tillage [CT] and no-tillage [NT]) and N fertilization (0 and 210 kg N ha?1) on soil CO2 fluxes during the 2008 and 2009 rice growing seasons in central China. Treatments were established following a split-plot design of a randomized complete block with tillage practices as the main plot and N fertilizer level as the split-plot treatment. The soil CO2 fluxes were measured 24 times in 2008 and 17 times in 2009. N fertilization did not affect soil CO2 emissions while tillage affected soil CO2 emissions, where NT had similar soil CO2 emissions to CT in 2008, but in 2009, NT significantly increased soil CO2 emissions. Cumulative CO2 emissions were 2079–2245 kg CO2–C ha?1 from NT treatments, and 2084–2141 kg CO2–C ha?1 from CT treatments in 2008, and were 1257–1401 kg CO2–C ha?1 from NT treatments, and 1003–1034 kg CO2–C ha?1 from CT treatments in 2009, respectively. Cumulative CO2 emissions were significantly related to aboveground biomass and soil organic C. Before drainage of paddy fields, soil CO2 fluxes were significantly related to soil temperature with correlation coefficients (R) of 0.67–0.87 in 2008 and 0.69–0.85 in 2009; moreover, the Q10 values ranged from 1.28 to 1.55 and from 2.10 to 5.21 in 2009, respectively. Our results suggested that NT rice production system appeared to be ineffective in decreasing carbon emission, which suggested that CO2 emissions from integrated rice-based system should be taken into account to assess effects of tillage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号