首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
An experiment was conducted in microplots (4 m x 4 m) with two insecticides, phorate and carbofuran at rates of 1.5 and 1.0 kga.i.ha(-1) respectively, to investigate its effect on the population and distribution of bacteria, actinomycetes and fungi as well as the persistence of the insecticidal residues in rhizosphere soils of rice (Oryza sativa L., variety IR-50). Application of the insecticides stimulated the population of bacteria, actinomycetes and fungi in the rhizosphere soils, and the stimulation was more pronounced with phorate as compared to carbofuran. Both the insecticides did not have marked effect on the numbers of Streptomyces and Nocardia in the rhizosphere soils. However, the growth of Bacillus, Escherichia, Flavobacterium, Micromonospora, Penicillium, Aspergillus and Trichoderma with phorate and that of Bacillus, Corynebacterium, Flavobacterium, Aspergillus and Phytophthora with carbofuran were increased. On the other hand, the numbers of Staphylococcus, Micrococcus, Fusarium, Humicola and Rhizopus under phorate and Pseudomonas, Staphylococcus, Micrococcus, Klebsiella, Fusarium, Humicola and Rhizopus under carbofuran were inhibited. Both the insecticides persisted in the rhizosphere soil for a short period of time and the rate of dissipation of carbofuran was higher than that of phorate in the soil depicting the half-life (T1/2) 9.1 and 10.4 days, respectively.  相似文献   

2.
In May 1983, granular formulations of carbofuran, chlorpyrifos, disulfoton, fonofos, isofenphos, phorate, and terbufos were applied in incorporated bands to duplicate 2 m2 field plots of clay loam. Insecticide concentrations were determined in the bands at 0,1,2,3,4,6,8,10,12,16, and 20 wk. Following spring cultivation, the insecticides were applied to the same plots in 1984 and 1985. In addition, carbofuran was applied to previously untreated plots in 1984 and all 7 materials were applied to previously untreated plots in 1985. Sampling and analysis were carried out as in 1983. Persistence was assessed on the basis of the disappearance rates measured for the 1st 8 wk and of a calculated Effectiveness Potential (the ratio of the average residue in the upper 5 cm of the band at 8, 10 and 12 wk and the published LC95 for western corn rootworm in clay loam soil). Soils treated with carbofuran and isofenphos in 1984 and all soils treated in 1985 were tested for anti-insecticide activity. Soil cores from some carbofuran, chlorpyrifos and terbufos treated plots were sectioned vertically to establish the distribution of the insecticides during 1985. In addition, granular and pure chemical forms of isofenphos and carbofuran were applied at 10 ppm to anti-isofenphos and anti-carbofuran active and control soils (from field plots) maintained at 10 and 20% moisture in the laboratory to assess the effect of formulation and moisture on persistence in active soils. Insecticide concentrations were determined at 0,1,3,7, 10,14,21,28, and 35 days. The persistence of chlorpyrifos, terbufos and phorate was relatively constant over the 3 years and between plots receiving single and multiple treatments. Disulfoton and fonofos behavior was more variable and that of carbofuran and isofenphos was extremely variable. Anti-insecticide activity against carbofuran and isofenphos was detectable 2 wk after an initial application and was still present the following spring. Anti-insecticide activity against fonofos, terbufos sulfoxide, phorate sulfone and disulfoton sulfone was also generated in this soil. Anti-insecticide activity against chlorpyrifos, disulfoton, terbufos and phorate was not present. Carbofuran, chlorpyrifos and terbufos (+ metabolites) present in the upper 5 cm of soil averaged 93, 94 and 94%, respectively, of the total core contents over 12 wk. Significant moisture dependent differences were observed between the behavior of granular carbofuran and granular isofenphos in anti-insecticide active soils.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

3.
In laboratory incubation studies with three soils of varying physicochemical characteristics, phorate was more persistent in nonflooded (60% water holding capacity) soils than in flooded soils. Phorate sulphoxide was recovered as the only metabolite of phorate in nonflooded soils while three metabolites (diethyl dithiophosphate, triethyl dithiophosphate and an unidentified metabolite) were formed in flooded soils. Study indicates that in nonflooded soils phorate is degraded via oxidation while in flooded soils hydrolysis is the major degradation process. Degradation of phorate was accelerated by an increase in incubation temperature. Preexposure or repeated application of soils to phorate slightly decreased the persistence of phorate or its metabolites. Decreased persistence of phorate and its metabolites formed in nonsterile soils compared to sterile soils suggested the role of microorganisms in their transformation.  相似文献   

4.
One hundred days after field-application of fonofos as bands under the onion seed, 39 to 59% of that material was present in 3 moderately humified organic soils of pH varying from 5.4 to 6.7. In a low humified organic soil, only 21 to 24% of the applied fonofos remained. Thus humus enhanced the persistence of fonofos and curtailed the stimulating effect of fonofos on soil microbial populations. An assessment of low damage caused by onion maggot was found in a poorly humified soil with an even higher natural infestation than in a moderately humified soil. The effects of fonofos in other soils and of the low rate of carbofuran applied to four different types of soils on the numbers of fungi, bacteria, and actinomycetes were difficult to assess.  相似文献   

5.
Based upon 16S rDNA sequence homology, 15 phorate-degrading bacteria isolated from sugarcane field soils by selective enrichment were identified to be different species of Bacillus, Pseudomonas, Brevibacterium, and Staphylococcus. Relative phorate degradation in a mineral salt medium containing phorate (50 μg ml?1) as sole carbon source established that all the bacterial species could actively degrade more than 97 % phorate during 21 days. Three of these species viz. Bacillus aerophilus strain IMBL 4.1, Brevibacterium frigoritolerans strain IMBL 2.1, and Pseudomonas fulva strain IMBL 5.1 were found to be most active phorate metabolizers, degrading more than 96 % phorate during 2 days and 100 % phorate during 13 days. Qualitative analysis of phorate residues by gas liquid chromatography revealed complete metabolization of phorate without detectable accumulation of any known phorate metabolites. Phorate degradation by these bacterial species did not follow the first-order kinetics except the P. fulva strain IMBL 5.1 with half-life period (t½) ranging between 0.40 and 5.47 days.  相似文献   

6.
Persistence of 14C-carbonyl carbofuran was measured in Pacific Northwest soils that had received 1-14 applications of the insecticide for root weevil control on perennial crops. Insecticide decay curves were obtained in nonautoclaved soil and several autoclaved soil samples from previously-treated fields and in nonautoclaved soils from paired control sites not previously treated with carbofuran. The insecticide usually degraded faster in soil from previously-treated fields than in soil from corresponding control fields. Among 26 previously-treated fields, the pseudo half-life (time for 50% loss) of carbofuran was less than one wk in 11 soils, 1-3 wks in 8 soils and greater than 4 wks in the remaining soils. Among the nontreated control fields the pseudo half-life was greater than 2 wks in all cases and greater than 15 wks in 5 of the soils. The carbofuran decay curve always possessed an initial lag phase where soil mixing enhanced insecticide decline. Carbofuran degraded very slowly in autoclaved soil samples. The half-life of carbofuran exceeded 16 wk in all autoclaved soils tested and in most instances 85-90% of the original dosage remained when the tests were terminated 112 days after treatment. These results provided evidence that many of the soils which received applications of carbofuran over the past several years have developed a capacity to degrade carbofuran very rapidly.  相似文献   

7.
Bacterial, azotobacter, actinomycetes, and fungal populations were determined in groundnut (Arachis hypogaea L.) fields between July and November for three consecutive years (1997-1999) after insecticide treatments. Diazinon was applied for both seed and soil treatments. However, imidacloprid and lindane were used for seed treatments. An average half-life (t1/2) of diazinon in seed- and soil-treated fields was found to be 29.32 and 34.87 days, respectively. Its residues were found for 60 days in both cases. In diazinon seed treatment, an increase in azotobacter, fungi, and actinomycetes populations was observed in samples from the 15th and 30th days, and this trend continued until crop harvest. However, the bacterial population had not been affected by this treatment. The diazinon soil treatment had indicated some significant adverse effects on fungi and actinomycetes population, which recovered after 30 days. The population of bacteria and azotobacter increased significantly in this treatment. The residues of imidacloprid and lindane were found for 90 and 120 days with an average half-life of 40.9 and 53.3 days, respectively. Imidacloprid had no significant effect on fungi and actinomycetes populations up to 15 days, and between 15 to 60 days some adverse effects were indicated. However, some significant increases in bacterial and azotobacter population were observed. Lindane had no effect on bacterial and fungal population. However, its adverse effects were observed in actinomycetes and azotobacter populations between 30 to 60 days.  相似文献   

8.
Abstract

Persistence of 14C‐carbonyl carbofuran was measured in Pacific Northwest soils that had received 1–14 applications of the insecticide for root weevil control on perennial crops. Insecticide decay curves were obtained in nonautoclaved soil and several autoclaved soil samples from previously‐treated fields and in nonautoclaved soils from paired control sites not previously treated with carbofuran. The insecticide usually degraded faster in soil from previously‐treated fields than in soil from corresponding control fields. Among 26 previously‐treated fields, the pseudo half‐life (time for 50% loss) of carbofuran was < one wk in 11 soils, 1–3 wks in 8 soils and > 4 wks in the remaining soils. Among the nontreated control fields the pseudo half‐life was > than 2 wks in all cases and > than 15 wks in 5 of the soils. The carbofuran decay curve always possessed an initial lag phase where soil mixing enhanced insecticide decline. Carbofuran degraded very slowly in autoclaved soil samples. The half‐life of carbofuran exceeded 16 wk in all autoclaved soils tested and in most instances 85–90% of the original dosage remained when the tests were terminated 112 days after treatment. These results provided evidence that many of the soils which received applications of carbofuran over the past several years have developed a capacity to degrade carbofuran very rapidly.  相似文献   

9.
Enhanced biodegradation of carbofuran (2, 3-dihydro-2, 2 dimethyl-7-benzofuranyl methyl carbamate) is an economically significant, but poorly understood, microbial phenomenon in soil. A series of experiments was conducted to examine short term changes in soil bacterial populations stimulated by carbofuran application at field rates. In the field experiment, commercially formulated carbofuran and butylate (S-ethyl diisobutyl carbamothioate) were applied at 5.6 kg ai ha-1 and 8.4 kg ai ha-1, respectively, on a soil (Putnam silt loam) exhibiting enhanced degradation of carbofuran. In laboratory studies, technical grade carbofuran (20 mg kg-1 soil) was applied to samples of the field soil. Bacterial populations were estimated using non-selective (tryptic soy agar) and selective media containing carbofuran or butylate. Largest population increases in pesticide-treated soil were observed between 7 and 15 days after treatment (DAT) compared to populations in non-treated soil. Significant increases (P less than 0.05) in total bacterial populations and presumed carbofuran-degraders due to carbofuran application were associated with increased populations of Pseudomonas spp. and Flavobacterium spp. Application of carbofuran appeared to provide a competitive advantage to these species over actinomycetes persisting beyond 20 DAT. Growth responses of bacteria to carbofuran in the Putnam soil were compared to those in a native prairie soil (Mexico silt loam), which exhibited a much slower rate of carbofuran degradation. Bacterial population response to carbofuran was measurable, but small and short-lived. Perpetuation of the enhanced degradation phenomenon may lie in a persistent pesticide-induced competitive advantage given to a very small segment of the microbial population. This advantage may not be detectable after 20 days using conventional plating techniques.  相似文献   

10.
The fate of carbosulfan (seed treatment dry powder) was studied in rice field ecosystem, and a simple and reliable analytical method was developed for determination of carbosulfan, carbofuran, and 3-hydroxyl carbofuran in brown rice, rice straw, paddy water, and soil. The target compounds were extracted using acetonitrile or dichloromethane, cleaned up on acidic alumina or florisil solid phase extraction (SPE) cartridge, and analyzed by gas chromatography. The average recoveries of carbosulfan, carbofuran and 3-hydroxy carbofuran in brown rice, rice straw, paddy water, and soil ranged from 72.71% to 105.07%, with relative standard deviations of 2.00–8.80%. The limits of quantitation (LOQs) of carbosulfan, carbofuran and 3-hydroxy carbofuran in the samples (brown rice, rice straw, paddy water and soil) were 0.011, 0.0091, 0.014, 0.010 mg kg?1, 0.016, 0.019, 0.025, 0.013 mg kg?1, and 0.031, 0.039, 0.035, 0.036 mg kg?1, respectively. The trials results showed that the half-lives of carbosulfan, carbofuran and 3-hydroxy carbofuran in rice straw were 4.0, 2.6 days, 3.9, 6.0 days, and 5.8, 7.0 days in Zhejiang and Hunan, respectively. Carbosulfan, carbofuran and 3-hydroxy carbofuran were detected in soils. Carbosulfan and 3-hydroxy carbofuran were almost undetectable in paddy water. Carbofuran was detected in paddy water. The final residues of carbosulfan, carbofuran and 3-hydroxy carbofuran in brown rice were lower than 0.05 mg kg?1, which were lower than 0.5 mg kg?1 (MRL of carbosulfan) or 0.1 mg kg?1 (MRL of carbofuran). Therefore, a dosage of 420 g active ingredient per 100 kg seed was recommended, which could be considered as safe to human beings and animals. These would contribute to provide the scientific basis of using this insecticide.  相似文献   

11.
Abstract

The persistence of the methylcarbamate pesticide carbaryl was studied in four soils under flooded conditions. A substantial portion of the pesticide was recovered from all soils even after 15 days of its application, with the recovery ranging from 37% in an alluvial soil to 73% in an acid sulfate soil. The degradation of carbaryl was more rapid under flooded conditions than under nonflooded conditions. A bacterium, Pseudomonas cepacia, isolated from a flooded soil amended with a related methylcarbamate pesticide carbofuran, degraded carbaryl in a mineral medium supplemented with yeast extract.  相似文献   

12.
Soil/water interactions with the insecticide fensulfothion and its sulfide and sulfone metabolites and described. Adsorption to, and desorption from four soils were studied. There was a general inverse relationship between water solubilities of the three chemicals and their adsorption K values. Order of adsorption was f. sulfide greater than f. sulfone greater than fensulfothion. Adsorption K values correlated significantly with soil organic content. Desorption of fensulfothion and the sulfone were similar whereas the less soluble sulfide desorbed to a lesser extent. To facilitate comparison of desorption tendencies of the three compounds of desorption index was developed. Mobilities through the soils were directly related to the water solubilities of the three chemicals. Mobilities in decreasing order were - fensulfothion greater than f. sulfone greater than f. sulfide. Persistence of fensulfothion was similar in both sterile and non-sterile natural water - about 50% remaining at the end of the 16 wk experiment. Under reducing conditions fensulfothion disappeared from water in 8-12 wk with almost complete conversion to the sulfide.  相似文献   

13.
Abstract

The pH‐disappearance rate profiles were determined at ca. 25°C for 24 insecticides at 4 or 5 pH values over the range 4.5 to 8.0 in sterile phosphate buffers prepared in water‐ethanol (99: 1 v/v). Half‐lives measured at pH 8 were generally smaller than at lower pH values. Changes in half lives between pH 8.0 and 4.5 were largest (>1000x) for the aryl carbamates, carbofuran and carbaryl, the oxime carbamate, oxamyl, and the organophosphorus insecticide, trichlorfon. In contrast, half lives of phorate, terbufos, heptachlor, fensulfothion and aldicarb were affected only slightly by pH changes. Under the experimental conditions described half lives at pH8 varied from 1–2 days for trichlorfon and oxamyl to >1 year for fensulfothion and cyper‐methrin. Insecticide persistence on alumina (acid, neutral and basic), mineral soils amended with aluminum sulfate or calcium hydroxide to different pH values and four natural soils of different pH was examined. No correlation was observed between the measured pH of these solids and the rate of disappearance of selected insecticides applied to them. These observations demonstrate the difficulty of extrapolating the pH dependent disappearance behaviour observed in homogeneous solution to partially solid heterogeneous systems such as soil.  相似文献   

14.
Abstract

Pretreatment of a Drummer‐Catlin soil mixture with granular formulations of carbofuran or trimethacarb enhanced biodegradation of subsequent treatments with the technical formulations. Degradation of carbofuran was enhanced by pretreatments with trimethacarb, and degradation of trimethacarb was enhanced by pretreatments with carbofuran. Bendiocarb degradation was enhanced by pretreatments of soil with carbofuran or trimethacarb. In bioassays with southern corn rootworm larvae, biological activity of carbofuran, trimethacarb, and bendiocarb was rapidly lost in soils pretreated with granular formulations. Pretreatment of soil with granular terbufos did not enhance the biodegradation of subsequent applications of technical terbufos. Several microbial biomass assays showed an increase in specific carbofuran‐degrading bacteria in soils that were pretreated with carbofuran. Bacteria were isolated that could grow on carbofuran and apparently degrade it when present with another carbon source.  相似文献   

15.
The effects of pesticides (a herbicide and a fungicide) on the microbial community structure and their activity were analyzed in soil from four alpine pasture grasslands in Slovakia. Specifically, the effects of the herbicide, Gesagard (prometryn active ingredient), and fungicide, Fundazol 50 WP (benomyl active ingredient), on the microbial respiration activity (CO2 production), the numbers of selective microbial physiological groups (CFU.g?1) and the structure (relative abundance) of soil microbial communities [(phospholipid fatty acid (PLFA)] were analyzed under controlled laboratory conditions. All treatments including the treatments with pesticides increased (statistically significantly) the production of CO2 in all fields during 21 days of incubation and posed a statistically insignificant negative influence on the numbers of the observed physiological groups of microorganisms. The significantly negative influence was evaluated only in the numbers of two physiological groups; spores of bacteria utilizing organic nitrogen and bacteria, and their spores utilizing inorganic nitrogen. A shift in the microbial composition was evident when the PLFA patterns of samples from different sites and treatments were compared by the Principal Component Analysis (PCA). According to the second component PCA 2 (15.95 %) the locations were grouped into two clusters. The first one involved the Donovaly and Dubakovo sites and the second one contained the Velka Fatra and Mala Fatra locations. The PLFA composition of the soils showed important changes after the treatment with pesticides according to PCA 1 (66.06 %). Other treatments had not had a significant effect on the soil microbial community with the exception of the population of fungi. The lower relative abundance (significant effect) of Gram-positive bacteria, actinomycetes and general group of bacteria were determined in samples treated by the herbicide Gesagard. The application of fungicide Fundazol decreased (statistically significantly) the relative abundance of actinomycetes and general group of bacteria and paradoxically increased the population of fungi.  相似文献   

16.
Abstract

In a laboratory study, the persistence of carbofuran and its 3‐hydroxy‐ and 3‐keto‐metabolites was examined separately over 16 wk in sterile and natural organic (muck) and mineral (loam) soils. Carbofuran was relatively persistent in sterile soils; at 8 wk 77% remained in the sterile muck and about 50% remained in the sterile loam. In the natural muck 25% of initial carbofuran remained at 8 wk whereas in the natural loam carbofuran had completely disappeared by that time. The 3‐ketocarbofuran was very short‐lived even in the sterile muck where only 50% remained at 1 wk. The 3‐hydroxycarbofuran degraded appreciably on zero day in the natural soils (with conversion to 3‐ketocarbofuran) and about 90% had disappeared in 1 wk. A more detailed study of the persistence of 3‐hydroxycarbofuran in the natural soils showed complete disappearance in 2 days in loam and in 3 days in muck. The 3‐ketocarbofuran produced from the 3‐hydroxy‐carbofuran reached a maximum concentration in 1 day and then disappeared within 4 days in loam and about 1 wk in muck.  相似文献   

17.
Abstract

Volatilization of 14C‐lindane from water in planchets and under flooded soil ecosystem was investigated. Lindane disappeared faster than parathion from planchets. More rapid loss of both insecticides occurred from water than from chloroform. Loss of lindane and parathion was related to measured losses of water by evaporation. During 5‐day incubation under flooded soil conditions, disappearance of lindane was faster from open vials than from sealed vials, whereas in nonflooded soil, no volatile loss of the insecticide was evident despite water evaporation. Over 5 day incubation under flooded conditions, greater volatile loss of lindane occurred in sandy soil than in alluvial soil apparently due to greater adsorption to the soil colloids decreasing the insecticide concentration in the standing water of the laterite soil. Under identical conditions of water evaporation, lindane loss was directly proportional to its initial concentration in the water. These results suggest that considerable loss of soil applied pesticides can occur by volatilization from the standing water in flooded rice fields, particularly under tropical conditions.  相似文献   

18.
The objective of this research was to assess the degradation of fipronil [5-amino-1-(2,6-dichloro-α,α,α -trifluoro-p-tolyl)-4-trifluoromethylsulfinylpyrazole-3-carbonitrile] in soils from sugar cane fields in Northeastern Brazil. Degradation experiments were carried out under laboratory conditions (controlled temperature and in the dark), where sterile and non-sterile soils (Ustoxs) were incubated [under moisture content of 55% of the water holding capacity (WHC)] and analyzed for fipronil disappearance and metabolite formation. Microbial communities present in the soil degrade fipronil. However, biodegradation seems to be dependent on the bioavailability of the fipronil and the half-life according to the zero-order model. Fipronil degradation rate appeared to be biphasic. Degradation fipronil ranged from 83 days (initial concentration = 978 ng g? 1; short-term experiment) to 200 days (initial concentration = 689 ng g? 1; long-term experiment). This an initial slower rate followed by a faster rate after 90 days of incubation may lead to shorter half-life than that calculated with the zero-order model. The sulfone derivative (an oxidation product) was the predominant metabolite, but the sulfide (a reduction product) and amide (a hydrolysis product) derivatives were also formed under non-sterile conditions after 120 days of incubation. The metabolites underwent further biodegradation, particularly the sulfone derivative. Bioavailability appears to affect fipronil degradation in soils with an effective capacity to adsorb fipronil (such as Ustoxs), while redox potential was important for the formation of metabolites. Despite the fine texture, more aerobic sites were present, thus favoring the formation of the sulfone metabolite over that of the sulfide metabolite. Therefore, microaggregation of Ustoxs, with high clay content, played a very important role in determining the types of metabolites formed.  相似文献   

19.
Abstract

Potatoes were grown during 1992 in 2 m2 plots of loam which had received 1, 2 or 3 annual treatments of Di‐Syston 15G, equivalent to 3.36 kg AI/ha, in furrow at planting. The presence of enhanced degradative activity to the sulfoxide and sulfone metabolites of disulfoton in the soil treated in the previous two years was confirmed by laboratory tests prior to the 1992 treatments. Soil, seed potato and foliage from the three treatments were analyzed for disulfoton and its sulfoxide and sulfone metabolites for 12 wk following planting/treatment. Disulfoton was the major insecticidal component of the soil, a minor component of the seed piece and was not detected (<0.02 ppm) in potato foliage. Disulfoton concentrations in each of the three substrates sampled were similar for the three treatments. Disulfoton sulfoxide and sulfone were the major insecticidal components of the seed piece and foliage. Their maximum concentrations in 1st year soil, seed pieces and foliage were ca. 2x, 2x and 6x, respectively, those measured in the 2nd and 3rd year treatments. The results demonstrate that enhanced microbial degradation of relatively minor insecticidal compounds in the soil can profoundly affect insecticide levels in the plant when these compounds are the major insecticidal components accumulated. The broader implications for crop protection using soil‐applied systemic insecticides are discussed.  相似文献   

20.
Effect of glyphosate on the microbial activity of two Brazilian soils   总被引:15,自引:0,他引:15  
Glyphosate [N-(phosphonomethyl)-glycine] is a broad-spectrum, non-selective, post-emergence herbicide that is widely used in agricultural. We studied, in vitro, changes in the microbial activity of typical Hapludult and Hapludox Brazilian soils, with and without applied glyphosate. Glyphosate was applied at a rate of 2.16 mg glyphosate kg(-1) of soil and microbial activity was measured by soil respiration (evolution of CO(2)) and fluorescein diacetate (FDA) hydrolysis over a period of 32 days. We found an increase of 10-15% in the CO(2) evolved and a 9-19% increase in FDA hydrolyses in the presence of glyphosate compared with the same type of soil which had never received glyphosate. Soil which had been exposed to glyphosate for several years had the strongest response in microbial activity. Most probable number (MPN) counts showed that after 32 days incubation the number of actinomycetes and fungi had increased while the number of bacteria showed a slight reduction. After the incubation period, high pressure liquid chromatography (HPLC) detected the glyphosate metabolite aminomethyl phosphonic acid (AMPA), indicating glyphosate degradation by soil microorganisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号