首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Previous research has demonstrated that many urban soils are enriched in Pb, Cd and Zn. Culture of vegetable crops in these soils could allow transfer of potentially toxic metals to foods. Tanya lettuce (Lactuca sativa L.) was grown in pots of five urban garden soils and one control agricultural soil to assess the effect of urban-soil metal enrichment, and the effect of soil amendments, on heavy metal uptake by garden vegetables. The amendments included NPK fertilizer, limestone, Ca(H2PO4)2, and two rates of limed sewage sludge compost. Soil Cd ranged from 0.08 to 9.6 mg kg–1; soil Zn from 38 to 3490 mg kg–1; and soil Pb from 12 to 5210 mg kg–1. Lettuce yield on the urban garden soils was as great as or greater than that on the control soil. Lettuce Cd, Zn and Pb concentrations increased from 0.65, 23, and 2.2 mg kg–1 dry matter in the control soil to as high as 3.53, 422 and 37.0 mg kg–1 on the metal-rich urban garden soils. Adding limestone or limed sewage sludge compost raised soil pH and significantly reduced lettuce Cd and Zn, while phosphate fertilizer lowered soil pH and had little effect on Zn but increased Cd concentration in lettuce. Urban garden soils caused a significant increase in lettuce leaf Pb concentration, especially on the highest Pb soil. Adding NPK fertilizer, phosphate, or sludge compost to two high Pb soils lowered lettuce Pb concentration, but adding limestone generally did not. On normally fertilized soils, Pb uptake by lettuce was not exceptionally high until soil Pb substantially exceeded 500 mg kg–1. Comparing garden vegetables and soil as potential sources of Pb risk to children, it is clear that the risk is greater through ingestion of soil or dust than through ingestion of garden vegetables grown on the soil. Urban dwellers should obtain soil metal analyses before selecting garden locations to reduce Pb risk to their children.  相似文献   

2.
The monitoring of chemical properties, including heavy metals, in soils is necessary if better management and remediation practices are to be established for polluted soils. The National Institute of Agricultural Science and Technology initiated a monitoring study that investigated fertility and heavy metal contents of the benchmarked soils. The study covered paddy soils, upland soils, and horticultural soils in the plastic film houses, and orchard soils throughout the Korea from 1990 to 1998. Likewise,4047 samples of paddy and 2534 samples of plastic house in 1999 and 2000 were analyzed through the Soil Environment Conservation Act. Soil chemical properties such as pH, organic matter, availablephosphate and extractable calcium, magnesium and potassium contents, and heavy metal contentssuch as cadmium, copper, lead, zinc, arsenic, mercury, and cobalt contents were analyzed. The studyshowed that the average contents of organic matter, available phosphate, and extractable potassiumrapidly increased in plastic house soils than in upland or paddy soils. Two kinds of fertilizer recommendation systems were established for the study: the standard levels by national soil average data for 77 crops and the recommendation by soil test for 70 crops. Standard nitrogen fertilizer application levels for cereal crops changed from 94 kg/ha in 1960s, 99 kg/ha in 1970s, 110 kg/ha in 1980s to 90 kg/ha in 1990s. The K2O-fertilizer also changed from 67 kg/ha in 1960s, 76 kg/ha in 1970s, 92 kg/ha in 1980s, andonly 44 kg/ha in 1990s. In rice paddy fields, the average contents of Cd, Cu, Pb, and Zn in surface soils(0–15 cm depth) were 0.11 mg kg–1(ranged from 0 to 1.01), 4.70 mg kg–1(0–41.59), 4.84 mg kg–1(0–66.44), and 4.47 mg kg–1(0–96.70), respectively. In the uplands, the average contents of Cd, Cu, Pb, Zn,and As in surface soils (0–15 cm depth) were 0.135 mg kg–1(ranged from 0 to 0.660), 2.77 mg kg–1(0.07–78.24), 3.47 mg kg–1(0–43.00), 10.70 mg kg–1(0.30–65.10), and 0.57 mg kg–1(0.21–2.90), respectively. In plastic film houses, the average contents of Cd, Cu, Pb, Zn, and As in surface soil were 0.12 mg kg–1(ranging from 0 to 1.28), 4.82 mg kg–1(0–46.50), 2.68 mg kg–1(0–46.50), 31.19 mg kg–1(0.19–252.0), and 0.36 mg kg–1(0–4.98), respectively. In orchard fields, the averagecontents of Cd, Cu, Pb, Zn, As, and Hg in surface soils (0–20 cm depth) were 0.11 mg kg–1(ranged from 0–0.49), 3.62 mg kg–1(0.03–45.30), 2.30 mg kg–1(0–27.80), 16.60 mg kg–1(0.33–105.50),0.44 mg kg–1(0–4.14), and 0.05 mg kg–1(0.01–0.54), respectively. For polluted soils with over thewarning content levels of heavy metals, fine red earth application, land reconsolidation and soilamelioration such as lime, phosphate, organic manure, and submerging were recommended. For the countermeasure areas, cultivation of non-edible crops such as garden trees, flowers, and fiber crops; landreformation; and heavy application of finered earth (up to 30 cm) were strongly recommended. Landuse techniques should be changed to beharmonious with the environment to increase yield andincome. Soil function characteristics should betaken into account.  相似文献   

3.
Despite its being highly mineralised, the Hope Mine area has become a residential district. Composite soil samples taken from 91 allotments show values for cadmium: < 2–220 mg kg–1, lead: 6–38,000 mg kg–1, and zinc: 66–40,000 mg kg–1. Water samples from adits contain 52–86 g kg–1 of lead and < 1–2 hg kg–1 of cadmium. The soil contents of cadmium and lead in at least two areas suggest that remedial actions should be considered. Blood lead levels for 33 children aged between ten months and seven years are in the range 5.7–57 g dl–1; haemoglobin levels vary between 9.7 and 12.7 mg dl–1. There is no obvious relationship between Pb and haemoglobin levels. Further geochemical work to define fully the spatial extent of the polluted region and epidemiological studies including intelligence testing to define further the effects of lead on children in this environment would be valuable.To whom correspondence should be addressed.  相似文献   

4.
Cadmium contents of cultivated soils exposed to contamination in Poland   总被引:2,自引:0,他引:2  
Cadmium was measured in soils limed with industrial solid wastes, in cultivated lands located near waste yards and in soils of allotment gardens exposed to contamination. The median level and range of cadmium in soils of varying exposure to contamination was respectively: 0.3 mg kg–1 and 0.01–107 mg kg–1, 0.2 mg kg–1 and 0.02–2,198 mg kg–1, 0.4 mg kg–1 and 0.05–161 mg kg 1. Cadmium levels exceeded the value of 3 mg kg–1 considered permissible for arable soils in the samples of soils limed with wastes from the chemical industry (2.4%), the mining industry and metallurgy sites (2.1 %), in 12.4% samples of soils located in the neighbourhood of industrial waste storage yards and in 17.2% samples of soils from allotment gardens located on lands formerly used for waste storage.  相似文献   

5.
This paper reports a study of the distribution of organo-chlorine pesticides (DDT and HCH) between rice plants and the soil system by spraying before the heading stage at four different dosage levels – control, normal dosage (15 kg ha–1 of 6% HCH and 7.5 kg ha–1 of 25% DDT), double dosage and four times dosage. Soil and plant samples were taken respectively at the 1st h, 3rd, 10th, 20th, and 40th day after spraying and at the harvest time. The results indicate that less than 5% of HCH and 15% of DDT were absorbed by the surface of rice leaves for normal dosage. Most of both pesticides moved into the soil in solution after spraying. Compared with DDT, HCH was degraded and run off more easily. HCH residues in the surface soil layer (1–3 cm) were already below 6.4 g kg–1 at the mature stage, lower than Chinese Environmental Quality Standard for Agricultural Soils: HCH <0.05 mg kg–1. However DDT residues in the surface soil layer remained 172 g kg–1, higher than the national standard: DDT <0.05 mg kg–1. According to the test f OCP residues in rice seeds, it can be concluded that the OCP sprayed onto the surface of rice leaves can move into rice plants and accumulate in the seeds at the mature stage. HCH residues in rice seeds of the double and four times dosage treatments, and DDT residues in all treatments, exceeded the Chinese National Food Standard (HCH <0.10 mg kg–1, DDT <0.20 mg kg–1).  相似文献   

6.
We studied copper uptake by maize grown on soils that have been contaminated with CuSO4. In soil the total copper level ranged from 24 to 135 mg kg–1. The copper distribution in soil fractions was assessed by sequential extraction, showing that anthropogenic copper is mainly concentrated in oxides fractions. The copper concentration of maize at the maturity stage reached values from 36.3 to 65.9 mg kg–1 compared to copper levels usually found in non-contaminated crops (5–30 mg kg–1). Here we demonstrate that copper can be accumulated by maize and that copper concentration in maize can be predicted by equations including copper concentration of soil fractions.  相似文献   

7.
In order to assess the potential of As and heavy metal contamination derived from past mining activity and to estimate the human bioavailability quotients for As and heavy metals. Tailings, soils and crop samples were collected and analysed for As, Cd, Cu, Pb and Zn. The mean concentrations of As, Cd, Cu, Pb and Zn in the tailings were 68.5, 7.8, 99, 3,754 and 733 µg g–1, respectively. Maximum Pb concentration in tailings was up to 90 times higher than its tolerable level. The concentrations of these metals were highest in the soils from the dressing plant area, and decreased in the order: farmland soil to paddy soil. In particular, some of the soils from the dressing plant area contained more than 1% of Pb and Zn. The pollution index ranged from 0.19 to 1.93 in paddy soils, and from 1.47 to 3.60 in farmland soils. The average concentrations of heavy metals in crops collected from farmland were higher than those in rice stalks or rice grains, and higher than the internationally accepted limits for vegetables. Element concentrations extracted from farmland soils within the simulated human stomach for 1 h are 9.4 mg kg–1 As, 3.8 mg kg–1 Cd, 37 mg kg–1 Cu, 250 mg kg–1 Pb and 301 mg kg–1 Zn. In particular, the extracted concentrations of Cd, Pb and Zn are in excess of the tolerable levels. The results of the simple bioavailability extraction test (SBET) indicate that regular ingestion (by inhalation and from dirty hands) of soils by the local population could pose a potential health threat due to long-term toxic element exposure.  相似文献   

8.
The background levels of lead in Jamaica in soils and sediments, estimated at 37 mg kg–1, are relatively high compared with world averages. Several areas have values in excess of this due to mineralisation and pollution. One such is the residential Hope Flats/Kintyre area in which levels of lead up to 2.5% are found in the soils and up to 8 g kg–1 in the water of the nearby Hope River. The blood lead levels of a sample of children were in the range 5.7–57 g dl–1. The high lead levels suggest a potential health risk, particularly for the children. This can be minimised by programmes which include community education, case management and abatement to reduce the lead exposure.  相似文献   

9.
Beryllium and aluminium contents in uncontaminated soils from six countries are reported. The means and ranges of beryllium in the surface soils were as follows: 1.43(0.20–5.50)g g–1 in Thailand (n=28), 0.7 (0.31–1.03) g g–1 in Indonesia (n=12), 0.99(0.82–1.32) g g–1 in New Zealand (n=3), 0.58(0.08-1.68)g g–1 in Brazil (n=16), 3.52(2.49–4.97)g g–1 in the former Yugoslavia (n=10), and 1.56(1.01–2.73) g g–1 in the former USSR (n=8). The mean and range of beryllium contents of the surface soils in Japan (1.17(0.27–1.95)g g–1 n=27) are situated within the values of the soils from these countries except for the Yugoslav soils derived from limestones. The mean of the mean beryllium contents of the surface soils in all these countries is 1.42 g g–1 which will be used as a tentative average content of beryllium in uncontaminated surface soils, except for the soils derived from parent materials high in beryllium content. The beryllium contents of the subsoils were higher than those of the surface soils in New Zealand and Yugoslavia as is the case with Japan. The correlation coefficient between the contents of beryllium and aluminium in all the soil samples (n=113) including surface soils and subsoils was 0.505 (p < 0.001).  相似文献   

10.
The EPA lead model predicts mean blood lead levels and risk of elevated blood lead levels in children based on lead uptake from multiple sources. In the latest model versions, environmental data from individual homes within a community can be used to predict the overall blood lead distribution and percent risk of exceeding a specific blood lead level (i.e. 10 g dl–1). Recent criteria used by the EPA to evaluate this information include no more than 5% of houses with a greater than 5% lead risk, and a community weighted-average risk below 5%. Environmental (primarily soil) and blood lead data from a residential community near a smelter were used to illustrate recent uses of the model. Scheduled remediation in the community will remove soil for approximately 60% of the houses (i.e. those with lead levels > 1000 mg kg–1). After remediation, the model results indicate a relatively low community risk (0.5–1.9%), although the percentage of houses with lead risks above 5% ranged from 3 to as high as 13%, depending on the variation in blood lead and assuming the model's 7 g dl–1 increase in blood lead with each 1000 mg kg–1 increase in soil lead level. A comparison of the limited blood lead data with soil lead levels below 1000 mg kg–1, however, indicated no apparent relationship. Given these uncertainties, less invasive actions than additional soil removal (e.g. exposure intervention, monitoring conditions, and follow-up as necessary) may be appropriate under the new EPA guidance for lead in soil.  相似文献   

11.
An exposure assessment was conducted on naturally metal enriched topsoils of the city of Port Macquarie in order to establish whether the soils pose any threat to human health. Surface soils (0–10 cm depth, <2 mm) were investigated for their total, bioavailable and leachable Cr and Ni concentrations. Total metal concentrations ranged from 145 to 4540 mg Cr kg–1 and 20 to 2030 mg Ni kg–1, whereas soil extractions revealed low leachable contaminant concentrations (EDTA extraction: <0.1–0.2 mg Cr L–1 and <0.1–4.7 mg Ni L–1; acetic acid extraction: <0.1 mg L–1 Cr and Ni). Thus the bioavailability of Cr and Ni to plants is low, the leaching of metals into ground and surface waters is insignificant and the pathways of these metal pollutants from topsoils into residents are limited to the inadvertent ingestion, inhalation and skin adsorption of soil metals. Simulated gastric experiments, using hydrochloric acid, indicated that less than 0.01% of the total Cr and 0.1–2.4% of the total Ni ingested are soluble and available, for uptake into the human body. Critical receptors, such as small children would have to ingest considerable soil quantities (> 11.8 g per day) over long periods of time to experience an appreciable risk of deleterious effects. Thus, although Cr and Ni are present in high concentrations, the effective uptake of Cr and Ni from soil by the majority of residents is insignificant. The possibility that the Ni enriched topsoil induces allergic contact dermatitis in sensitised individuals remains to be evaluated.  相似文献   

12.
Effects of Cadmium on Nutrient Uptake and Translocation by Indian Mustard   总被引:1,自引:0,他引:1  
Plants that hyperaccumulate metals are ideal subjects for studying the mechanisms of metal and mineral nutrient uptake in the plant kingdom. Indian Mustard (Brassica juncea) has been shown to accumulate moderate levels of Cd, Pb, Cr, Ni, Zn, and Cu. In this experiment, 10 levels of Cd concentration treatments were imposed by adding 10–190 mg Cd kg–1 to the soils as cadmium nitrate [Cd(NO3)2]. The effect of Cd on phosphorus (P), potassium (K), calcium (Ca), magnesium (Mg), and the micronutrients iron (Fe), manganese (Mn), copper (Cu), and zinc (Zn) in B. juncea was studied. Plant growth was affected negatively by Cd, root biomass decreased significantly at 170 mg Cd kg–1 dry weight soils treatment. Cadmium accumulation both in shoots and roots increased with increasing soil Cd treatments. The highest concentration of Cd was up to 300 mg kg–1 d.w. in the roots and 160 mg kg–1 d.w. in the shoots. The nutrients mainly affected by Cd were P, K, Ca, Fe, and Zn in the roots, and P, K, Ca, and Cu in the shoots. K and P concentrations in roots increased significantly when Cd was added at 170 mg kg–1, and this was almost the same level at which root growth was inhibited. Zn concentrations in roots decreased significantly when added Cd concentration was increased from 50 to 110 mg kg–1, then remained constant with Cd treatments from 110 to 190 mg kg–1. However, Zn concentrations in the shoots seemed less affected by Cd. It is possible that Zn uptake was affected by the Cd but not the translocation of Zn within the plant. Ca and Mg accumulation in roots and shoots showed similar trends. This result indicates that Ca and Mg uptake is a non-specific process.  相似文献   

13.
Environmental Accumulation of Airborne Fluorides in Romania   总被引:2,自引:0,他引:2  
The nature and extent of pollution from an aluminium smelter and a fertiliser factory in Romania were studied. These are large industrial complexes, and both types of industry are known to release fluorides into the atmosphere. In grass samples collected from around the aluminium smelter, the maximum fluoride levels were found to be 4023mgkg–1 and 162mgkg–1 in unwashed and washed grass samples respectively, and 89mgkg–1 in soils. For the fertiliser factory, the maximum levels in washed grasses were found to be 207mgkg–1, and 11mgkg–1 in the soils. In both locations, these maximum values were obtained in samples collected from within 200m of the factory limits, and compare with regional background levels of less than 10mgkg–1 for grasses and 2mgkg–1 for soils. The high fluoride levels of fluoride in the grasses are sufficient to give cause for concern for the effects that these could have on the local population and on grazing animals.  相似文献   

14.
Much attention is paid to soil health and environmental safety. Earthworms are an important indicator of soil ecosystem health and safety. Ecological toxicity of acetochlor and excessive urea, in both their single and joint effects, on earthworm Esisenia foelide was thus studied using the soil-culture method. Acetochlor had an enhanced toxicity from low concentration to high concentration. The mortality of earthworms after a 6-day exposure was changed from 0 to 86.7%, and the weight change rate ranged from 7.86 to –30.43%, when the concentration of acetochlor was increased from 164 to 730 mg kg–1. Urea expressed its positive and beneficial effects on earthworms when its concentration was lower than 500 mg kg–1. Strongly toxic effects took place when the concentration of urea was higher than 1000 mg kg–1. The mortality of earthworms exposed to urea reached 100% when its concentration was more than 1500 mg kg–1. When the concentration of urea was lower than 500 mg kg–1, there were antagonistic effects between the two agrochemicals on earthworms; when the concentration of urea was higher than 500 mg kg–1, joint toxic effects of acetochlor and excessive urea on earthworms were synergic. In any case, excessive urea application is very harmful to the health of soil ecosystems.  相似文献   

15.
The purpose of this study was to assess the oral bioavailability of lead in soil collected from a former smelter site in Sandy, Utah, USA. Sprague-Dawley rats (approximately 4 weeks of age, 5 of each sex in group) were given either soil lead or lead acetate mixed in a purified diet (AIN-93G ) at four different concentrations for 31 consecutive days. Food consumption measurements were used to compute mean daily lead exposures for the soil lead and lead acetate groups. The lead acetate treatment yielded higher concentrations of lead in the blood and bone than the soil lead treatment. Mean blood lead values ranged from below the detection limit (3 g dL–1) to 27.25 g lead dL–1 for the lead acetate groups at dose levels of 0.10–2.91 mg lead kg body weight–1 and from below the detection limit to 8.8 g lead dL–1 for the soil lead groups at doses of 0.11–3.43 mg lead kg body weight–1. At these same doses, mean bone values ranged from 0.52 to 26.92 g lead g–1 for the lead acetate groups and from 0.64 to 13.1 g lead g–1 for the soil lead groups. Relative per cent bioavailability was estimated by modelling the dose-blood concentration curves for the lead acetate treatment and the dosed soil lead treatment, and then comparing doses that produce an equivalent blood lead concentration. The ratio of the doses of lead acetate and soil lead that produced the same tissue response (i.e., concentration) provided an index of relative bioavailability. For lead, the bioavailability of soil lead relative to lead acetate was 41% at a blood concentration of 6 g lead dL–1.  相似文献   

16.
The problems of contamination caused by arsenic (As) and other toxic metals in groundwater, surface water and soils in the Bengal basin of Bangladesh have been studied. Altogether 10 groundwater, seven surface water and 31 soil samples were collected from arsenic-affected areas and analysed chemically. The geologic and anthropogenic sources of As and other toxic metals are discussed in this paper. The chemical results show that the mean As concentrations in groundwater in the Char Ruppur (0.253mg As L–1), Rajarampur (1.955mg As L–1) and Shamta areas (0.996mg As L–1) greatly exceed the WHO recommended value, which is 0.01mg As L–1. The concentrations of As in groundwater are very high compared to those in surface water and in surface soil in the three (As-affected) areas studied. This indicates that the source of As in groundwater could be bedrock. The relatively high concentrations of Cr, Cu, Ni, Pb and Zn in surface water, compared to world typical value, are due to the solubility of metal ions, organometalic complexes, coprecipitation or co-existance with the colloidal clay fraction. In the soil, the elevated concentrations of As, Cr, Cu, Ni, Pb and Zn are due to their strong affinity to organic matter, hydrous oxides of Fe and Mn, and clay minerals.  相似文献   

17.
Lead in New Orleans soils: New images of an urban environment   总被引:7,自引:0,他引:7  
This paper describes a survey of lead in soil and computer generated maps that have been derived for New Orleans, Louisiana. The soil survey included streetside, houseside and open space samples. Because the survey covered every census tract in the metropolitan area it was possible to construct a computer-generated map of the distribution of lead dust in the soils of the urban environment. The data base consists of coordinates, site characteristics and lead analytical results of 3,704 soil samples. The resulting graphics show peaks of lead ranging from 600–1,200 g per g in the streetside soil of the inner-city and a steeply declining slope to the suburban areas of the city where the lead content of streetside soils is less than 75 g/g. In the inner-city, the amount of lead in soils found near building foundations is 10 to 20 times higher than the soils adjacent to streets where the median lead content of soils is over 300 g g–1. In areas surrounding the city core (mid-city), the amount of lead next to the foundation and adjacent to the street are equivalent with medians of 110 g g–1. In suburban locations, the median lead content of soil along streetsides is 86 g g–1. Soils adjacent to surburban foundations has a median Pb content of 50 g g–1. The lowest median lead content in soil is found in open spaces, ranging from 212 to 40 to 28 g g–1, respectively, for the inner-city, mid-city, and suburbs. These observations are consistent with the production and consumer use of lead-based paint and leaded-fuels within the modern city.  相似文献   

18.
Soil, water and vegetation samples were collected from the Triada area of Central Euboea and analysed for heavy metals in order to evaluate their environmental impact. The geology of the area studied includes ultrabasic rocks that are overlaid by Upper Cretaceous limestones whereas Fe–Ni mineralisation is intercalated between either the ultrabasic parent rocks or the karstified Jurassic/Triassic carbonates and the transgessive Upper Cretaceous limestones. All the samples were analysed for heavy metals by using atomic absorption spectroscopy. The heavy metal ranges (in g g–1) for soils samples are: Ni 480–4000, Cr 240–2720, Co 40–208, Fe 24,000–380,000, Mn 46–1680, Pb 16–56, Zn 40–144, Cu 2–82. The values of soil samples of the Triada area are much higher than the values found for Ni, Cr, Co and Fe, in normal soils of the world. The heavy metal ranges (in g L–1) for water samples are: Ni 19–24, Cr 19–476, Co <5, Fe <100, Mn <100, Mg 5.7–220.5, As 30–69, Cd <2, Pd <10, Zn 5–11, Cu 2–7. The water samples of the Triada area have Cr and Mg concentrations higher than the permittable values. The heavy metal ranges (in g g–1) for vegetation samples are: Ni 1–135, Cr 0–24, Co 1–21.5, Fe 20–680, Mn 10–206, Cd 0–10, Pb 0–14, Zn 14–70, Cu 0–10.5. The vegetation samples of the Triada area have so high values of Ni, Cr and Co that are considered toxic. The intercorrelated elements Fe, Ni, Cr, Co of the Triada soils, waters and vegetation reflect their association with the ultrabasic rocks and with the Fe–Ni mineralisation.  相似文献   

19.
Mycorrhizal and non-mycorrhizal alfalfa (Medicago sativa) was grown in pots containing soil artificially contaminated with various levels of benzo[a]pyrene (B[a]P)(0, 1, 10 and 100 mg kg–1). Soil and plants were sampled after 30, 40, 50, 60 and 90 days and compared with unlanted pots. The percentage of mycorrhizal root length colonized by Glomus caledoniun was not significantly affected by the addition of B[a]P up to 10 mg kg–1 but was significantly lower at 100 mg kg–1B[a]P compared with low concentrations (p < 0.05). There was no difference in soil polyphenol oxidase and dehydrogenase activity among the controls and applications of 1 and 10 mg kg–1 of B[a]P. However, enzyme activities were significantly higher at 100 mg kg–1B[a]P compared with the other three treatments, and there was no mycorrhizal effect. Over a period of 90 days the concentration of B[a]P in soil in which alfalfa was grown was significantly lower than in unplanted soil (p < 0.05). Degradation rates of B[a]P added at 1, 10 and 100 mg kg–1 without G. caledonium were 76, 78 and 53%, and with mycorrhizal inoculation were 86, 87 and 57%. The degradation rate in unplanted soil was significantly lower than in planted soil, and was significantly higher in medium- and low-B[a]P treatments than in the high B[a]P concentration tested. There is a possibility of enhancement phytoremediation of PAHs in rhizosphere soil with arbuscular mycorrhizal fungi.  相似文献   

20.
In Penaeus japonicus, the tolerance to ammonia increased with the development from nauplius to late juvenile. The 48-h LC50 of ammonia in nauplii (III–V), 96-h LC50 in zoeae (I–III), mysis (I–III), post-larvae (PL1) and late juveniles (10.4±1.1 g) were respectively 5.0, 6.1 to 8.1, 9.4 to 10.9, 15.5 and 52.7 mg Nl-1 (0.5, 0.6 to 0.7, 0.9, 1.3 and 3.1 mg NH3–Nl-1). In a chronic experiment (20 d), the LC50 in post-larvae (PL1) was 19.1 (1.4) at 96 h and 16.2 mg Nl-1 (1.3 mg NH3–Nl-1) at 480 h. Osmoregulatory capacity (OC) was calculated as the osmotic gradient between the hemolymph and the external medium at given salinities. The effects of ammonia on OC, Na+ and Cl- regulation and gill Na+–K+ ATPase activity in late juveniles were examined in fullstrength seawater, SW (1050 mosm kg-1, 36 S) and in dilute SW (450 mosm kg-1, 15%.), after 48 or 96 h exposure to various concentrations of ammonia. Ambient ammonia disrupted both hypo- and hyper-osmoregulation; decreased OC resulted from impaired Na+ and Cl- regulation. Gill Na+–K+ ATPase activity increased in SW and was not affected in dilute SW. The decrease of OC was ammonia-dose-dependent. The threshold ammonia concentrations affecting hypo-OC and hyper-OC were, respectively, 16 (1.3) and 32 mg Nl-1 (2.3 NH3–Nl-1) for a 48 h exposure; these concentrations were lower than the 48-h LC50 value, 65.3 mg Nl-1 (3.5 NH3–Nl-1). The time course of exposure to sublethal ammonia (48 mg Nl-1) demonstrated that the effect on osmoregulation was time-dependent. This effect was also temporary, and the exposed shrimps recovered control OC values after removal of excessive ambient ammonia. The possibility of using OC as an indicator of physiological condition in osmoregulating crustaceans and the acting mode of ammonia on osmotic and ionic regulation are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号