首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Indoor air quality in elementary schools of Lisbon in spring   总被引:1,自引:0,他引:1  
Analysis of indoor air quality (IAQ) in schools usually reveals higher levels of pollutants than in outdoor environments. The aims of this study are to measure indoor and outdoor concentrations of NO2, speciated volatile organic compounds (VOCs) and carbonyls at 14 elementary schools in Lisbon, Portugal. The investigation was carried out in May–June 2009. Three of the schools were selected to also measure comfort parameters, such as temperature and relative humidity, carbon dioxide (CO2), carbon monoxide (CO), total VOCs, and bacterial and fungal colony-forming units per cubic metre. Indoor concentrations of CO2 in the three main schools indicated inadequate classroom air exchange rates. The indoor/outdoor (I/O) NO2 ratio ranged between 0.36 and 0.95. At the three main schools, the total bacterial and fungal colony-forming units (CFU) in both indoor and outdoor air were above the advised maximum value of 500 CFU/m3 defined by Portuguese legislation. The aromatic compounds benzene, toluene, ethylbenzene and xylenes, followed by ethers, alcohols and terpenes, were usually the most abundant classes of VOCs. In general, the indoor total VOC concentrations were markedly higher than those observed outdoors. At all locations, indoor aldehyde levels were higher than those observed outdoors, particularly for formaldehyde. The inadequate ventilation observed likely favours accumulation of pollutants with additional indoor sources.  相似文献   

2.
为了解秋冬季室内外空气颗粒物PM10、PM2.5以及其有机碳和元素碳的污染特征,于2009年10月及12月对武汉大学医学部学生宿舍室内、外PM10、PM2.5进行了两周连续采样。结果表明:秋季室内PM10和PM2.5的平均浓度分别为121.8和91.3μg/m3,室外为153.9和104.2μg/m3;冬季室内PM10...  相似文献   

3.
医院室内空气质量直接影响着院内每个人的身体健康,对医院空气进行定期监测是预防和控制医院感染的重要措施。对中国南部沿海某城市10所医院门诊空气质量状况进行了调查。结果发现,所调查门诊中室内二氧化碳、一氧化碳和可吸入颗粒物浓度均达至良好级别。但是,分别有两家门诊的室内温度和相对湿度未能达到良好级别,而且有8家门诊的空气中细菌总数未能达到良好级别。因此,本文建议相关医院采取相应的措施加强对门诊室内空气质量(尤其是细菌数量)的控制。  相似文献   

4.
Levels of polybrominated diphenyl ether (PBDE) flame retardants have been increasing in humans and the environment for the past few decades. Human levels are markedly higher in the US than Europe. Although food appears to be a significant route of intake, food PBDE levels are not substantially higher in the US than Europe. House and office dust appear to be major routes of exposure with air believed to usually provide a lesser route of intake. Because there are very few measurements of airborne PBDE that have been performed in relevant microenvironments in the US, increased efforts to assess airborne PBDE in the US as sources of exposure are needed. This study reports, for the first time from a Southwestern US city in Texas, the results of measurements of airborne PBDE in multiple locations, two outdoor and six indoor (residential and office) from active air sampling with collection of a combination of both vapor- and particulate-phase PBDE. Higher PBDE levels were measured in indoor than outdoor air, which confirms previous findings. Of 11 measured congeners including BDE 209, total PBDE levels in two outdoor air samples were 112 and 125 pg m?3 and the indoor air levels ranged from 175 to 1232 pg m?3 with a median of 572 pg m?3. These findings suggest that sources of air contamination with PBDE may be similar in Texas as elsewhere in North America. However, more sampling is required to (1) better determine if this is the case and (2) attempt to characterize potential sources of PBDE contamination in both indoor and outdoor air by analysis of congener patterns.  相似文献   

5.
Xu  Hongmei  Guinot  Benjamin  Ho  Steven Sai Hang  Li  Yaqi  Cao  Junji  Shen  Zhenxing  Niu  Xinyi  Zhao  Zhuohui  Liu  Suixin  Lei  Yali  Zhang  Qian  Sun  Jian 《Environmental geochemistry and health》2018,40(2):849-863

Air pollutant measurement and respiratory inflammatory tests were conducted at a junior secondary school in Xi’an, Northwestern China. Hazardous substances including particulate matters (PMs), black carbon (BC) and particle-bounded polycyclic aromatic hydrocarbons (PAHs) were quantified both indoors and outdoors of the school. Source characterization with organic tracers and particle-size distribution demonstrated that the school’s air was mostly polluted by combustion emissions from the surrounding environment. The evaluation of health assessment related to air quality was conducted by two methods, including potential risk estimation of air pollutants and direct respiratory inflammatory test. The incremental lifetime cancer risks associated with PAHs were estimated and were 1.62 × 10−6 and 2.34 × 10−6, respectively, for indoor and outdoor fine PMs. Both the values exceeded the threshold value of 1 × 10−6, demonstrating that the carcinogenic PAHs are a health threat to the students. Respiratory inflammatory responses of 50 students who studied in the sample classroom were examined with a fractional exhaled nitric oxide (FeNO) test, with the aid of health questionnaires. The average FeNO concentration was 17.4 ± 8.5 ppb, which was slightly lower than the recommended level of 20 ppb established by the American Thoracic Society for children. However, a wide distribution and 6% of the values were > 35 ppb, suggesting that the potentials were still high for eosinophilic inflammation and responsiveness to corticosteroids. A preliminary interpretation of the relationship between air toxins and respiratory inflammatory response demonstrated the high exposure cancer risks and inflammatory responses of the students to PMs in the city.

  相似文献   

6.
Recently, the problem of indoor particulate matter pollution has received much attention. An increasing number of epidemiological studies show that the concentration of atmospheric particulate matter has a significant effect on human health, even at very low concentrations. Most of these investigations have relied upon outdoor particle concentrations as surrogates of human exposures. However, considering that the concentration distribution of the indoor particulate matter is largely dependent on the extent to which these particles penetrate the building and on the degree of suspension in the indoor air, human exposures to particles of outdoor origin may not be equal to outdoor particle concentration levels. Therefore, it is critical to understand the relationship between the particle concentrations found outdoors and those found in indoor micro-environments. In this study, experiments were conducted using a naturally ventilated office located in Qingdao, China. The indoor and outdoor particle concentrations were measured at the same time using an optical counter with four size ranges. The particle size distribution ranged from 0.3 to 2.5 μm, and the experimental period was from April to September, 2016. Based on the experimental data, the dynamic and mass balance model based on time was used to estimate the penetration rate and deposition rate at air exchange rates of 0.03–0.25 h?1. The values of the penetration rate and deposition velocity of indoor particles were determined to range from 0.45 to 0.82 h?1 and 1.71 to 2.82 m/h, respectively. In addition, the particulate pollution exposure in the indoor environment was analyzed to estimate the exposure hazard from indoor particulate matter pollution, which is important for human exposure to particles and associated health effects. The conclusions from this study can serve to provide a better understanding the dynamics and behaviors of airborne particle entering into buildings. And they will also highlight effective methods to reduce exposure to particles in office buildings.  相似文献   

7.
In this study, we collected particles with aerodynamic diameter ?2.5 μm (PM2.5) from three different public indoor places (a supermarket, a commercial office, and a university dining hall) in Jinan, a medium-sized city located in northern China. Water-soluble inorganic ions of PM2.5 and particle size distributions were also measured. Both indoor and outdoor PM2.5 levels (102.3–143.8 μg·m?3 and 160.2–301.3 μg·m?3, respectively) were substantially higher than the value recommended by the World Health Organization (25 μg·m?3), and outdoor sources were found to be the major contributors to indoor pollutants. Diurnal particle number size distributions were different, while the maximum volume concentrations all appeared to be approximately 300 nm in the three indoor locations. Concentrations of indoor and outdoor PM2.5 were shown to exhibit the same variation trends for the supermarket and dining hall. For the office, PM2.5 concentrations during nighttime were observed to decrease sharply. Among others, SO 4 2? , NH 4 + and NO 3 ? were found to be the dominant water-soluble ions of both indoor and outdoor particles. Concentrations of NO 3 ? in the supermarket and office during the daytime were observed to decrease sharply, which might be attributed to the fact that the indoor temperature was much higher than the outdoor temperature. In addition, domestic activities such as cleaning, water usage, cooking, and smoking also played roles in degraded indoor air quality. However, the results obtained here might be negatively impacted by the small number of samples and short sampling durations.  相似文献   

8.
The relationships between two exposure media, garden soil and house dust, were studied for Pb uptake in Stratoni village in northern Greece, an industrial area of mining and processing of sulphide ore. Lead data for the two media were assessed in terms of total and bioaccessible content, measurement and geochemical variability, and mineralogical composition. It was found that total Pb was enriched in house dust samples by a factor of 2 on average. Total Pb concentration in soil samples had a maximum of 2,040 mg/kg and reached a maximum of 7,000 mg/kg in house dust samples. The estimated variability due to measurement uncertainty was dominated by the sampling process, and the proportion of sampling variance was greater for soil samples, indicating a higher degree of Pb heterogeneity in soil on the given spatial scale of sampling strata. Although the same general spatial trend was observed for both sampling media with decreasing Pb concentration by increasing distance from the ore-processing plant, Pb in dust samples displayed the highest concentrations within a 300–600-m zone from the ore-processing facility. The significant differences which were observed in Pb speciation between the studied media were explained by differences in mineralogical composition of outdoor soil and indoor dust. Lead-enriched Fe and Mn oxides predominated in soil samples while fine galena grains (<10–20 μm diameter) were the major Pb-bearing phase in dust samples. The integrated exposure uptake biokinetic model was used to predict the risk of elevated blood lead levels in children of Stratoni. Model prediction indicated an average probability of 61 % for blood-Pb to exceed 10 μg/dl. The results underline the importance of house dust in risk assessment and highlight the effect of outdoor and indoor conditions on the fate of Pb in the particular environment of Stratoni.  相似文献   

9.

The Angouran Mine, located in northwest Iran, is the largest Zn–Pb producer in the Middle East. This study was designed to investigate the distribution, geochemistry, and mineralogy of the aerosols in the mining area and to assess their likely health impacts on the local residents. For this purpose, 36 aerosol samples were collected from 2014 to 2015 at nine sites located in mine district and upwind and downwind directions. The concentration of potentially toxic elements in the aerosols was determined using AAS instrument. Size, morphology, and mineralogy of the particles were studied using SEM and EDX spectra. The results indicate that the amount of total suspended particles in upwind, mine district, and downwind sites is 95.5, 463.4 and 287.5 µg/m3, respectively. The concentrations of PM2.5 in the three locations are 8.9, 134.7, and 51.8 µg/m3, whereas the PM10 contents are 2.9, 74.4, and 15.5 µg/m3, respectively. These observations point to the impact of mining activities on the concentration of aerosols in the local atmosphere. The values of air quality index also show the probable effects of the mining activities on the health of the local populations, especially for allergic peoples. The average concentration of Zn in the samples collected from the mining district (290 µg/kg) is much higher than its value in the upwind sites (27 µg/kg). The highest concentration of As (70 µg/kg), Cd (10 µg/kg), and Pb (3 µg/kg) is in downwind sites, which shows the negative impact of mining activities on the local air quality. Temporally, the highest concentration of the studied elements is recorded in spring season, especially for PM2.5 collected in downwind stations. Based on the results of SEM and EDX spectra, three groups of minerals, i.e., carbonates, silicates, and sulfides, are present in the aerosol particles, confirming the local source for the aerosols. SEM analyses showed that the aerosol particles with dissimilar chemical composition have different morphologies such as irregular, rounded, elongated, and angular. On the basis of the results, the mining activities in the Angouran Zn–Pb Mine may have various short- and long-term consequences on the public health, especially due to high amount of the finer particles (PM2.5) and the higher concentration of the potentially toxic elements in PM2.5 which can penetrate into the lungs.

  相似文献   

10.
广州夏季办公室内细颗粒中多环芳烃污染特征研究   总被引:1,自引:0,他引:1  
大部分的都市办公人群每天在办公室至少度过8 h。而室外环境的渗透、办公室内吸烟、办公设备使用和中央通风系统均可能导致细颗粒物及多环芳烃(PAHs)在室内积聚而造成微环境污染。2015年5—6月,在广州市3种不同功能区(商住区、高新产业区、工业区)共选取了14间不同类型的办公室,对其室内外PM_(2.5)和多环芳烃进行同步监测。结果表明,(1)14间中有12间办公室内的PM_(2.5)浓度水平高于世界卫生组织(WHO)的推荐值25μg·m-3;(2)与国内外类似研究相比,办公室内外∑16PAHs及Ba P-eq的监测浓度水平均较低,并呈现一致规律:文印>室外>吸烟>多人>单人>无窗(无人),其中Ba P-eq低于欧盟规定的安全限值1 ng·m-3;(3)文印工作和吸烟行为与室内PM_(2.5)和PAHs浓度升高有密切关系,分别对5环和4环PAHs贡献明显;(4)其他无明显内源的办公室的细颗粒中PAHs污染在监测期间主要来源于室外贡献。  相似文献   

11.

Activity levels of natural and artificial radionuclides and content of ten heavy metals (As, Cd, Co, Cr, Cu, Mn, Ni, Pb, Zn and Hg) were investigated in 41 soil samples collected from Toplica region located in the south part of Serbia. Radioactivity was determined by gamma spectrometry using HPGe detector. The obtained mean activity concentrations ± standard deviations of radionuclides 226Ra, 232Th, 40K and 137Cs were 29.9 ± 9.4, 36.6 ± 11.5, 492 ± 181 and 13.4 ± 18.7 Bq kg−1, respectively. According to Shapiro–Wilk normality test, activity concentrations of 226Ra and 232Th were consistent with normal distribution. External exposure from radioactivity was estimated through dose and radiation risk assessments. Concentrations of heavy metals were measured by using ICP-OES, and their health risks were then determined. Enrichment by heavy metals and pollution level in soils were evaluated using the enrichment factor, the geoaccumulation index (Igeo), pollution index and pollution load index. Based on GIS approach, the spatial distribution maps of radionuclides and heavy metal contents were made. Spearman correlation coefficient was used for correlation analysis between radionuclide activity concentrations and heavy metal contents.

  相似文献   

12.
In the indoor environment, settled surface dust often functions as a reservoir of hazardous particulate contaminants. In many circumstances, a major contributing source to the dust pool is exterior soil. Young children are particularly susceptible to exposure to both outdoor derived soil and indoor derived dust present in the indoor dust pool. This is because early in life the exploratory activities of the infant are dominated by touching and mouthing behavior. Inadvertent exposure to dust through mouth contact and hand-to-mouth activity is an inevitable consequence of infant development. Clean-up of indoor dust is, in many circumstances, critically important in efforts to minimize pediatric exposure. In this study, we examine the efficiency of vacuum cleaner removal of footwear-deposited soil on vinyl floor tiles. The study utilized a 5 × 10 foot (c. 152.5 × 305 cm) test surface composed of 1-foot-square (c. 30.5 × 30.5 cm) vinyl floor tiles. A composite test soil with moderately elevated levels of certain elements (e.g., Pb) was repeatedly introduced onto the floor surface by footwear track-on. The deposited soil was subsequently periodically removed from randomly selected tiles using a domestic vacuum cleaner. The mass and loading of soil elements on the tiles following vacuuming were determined both by wet wipe collection and by subsequent chemical analysis. It was found that vacuum cleaner removal eliminated much of the soil mass from the floor tiles. However, a small percentage of the mass was not removed and a portion of this residual mass could be picked up by moistened hand-lifts. Furthermore, although the post-vacuuming tile soil mass was sizably reduced, for some elements (notably Pb) the concentration in the residual soil was increased. We interpret this increased metal concentration to be a particle size effect with smaller particles (with a proportionately higher metal content) remaining in situ after vacuuming.  相似文献   

13.
Air pollution is one of the most important global environmental issues. Urban air quality is generally becoming vulnerable especially in the developing countries due to various developmental activities. Several national and international studies prove that air pollution is harmful to human health and its long term exposure contributes to even mortality. Current study has been designed to determine the vertical floor wise air quality status of the city of Kolkata and the seasonal variation of the pollutants during two consecutive years. Particulate matter (PM10 and suspended particulate matter), oxides of nitrogen, sulfur dioxide and carbon monoxide were analyzed for a total number of 135 air quality samples throughout the study area and period. Pollutants were found positively correlated with each other and with the floor heights. According to the air quality indexing, all the places were found affected from moderate to severe air pollution irrespective of the vertical floor heights, seasons and places. Although, no such seasonal trend has been emerged from the study but the number of samples beyond standard is found highest during the winter season followed by pre-monsoon.  相似文献   

14.
Fine particulate matter (PM2.5) levels, carbon dioxide (CO2) levels and particle-number concentrations (PNC) were monitored in train carriages on seven routes of the mass transit railway in Hong Kong between March and May 2014, using real-time monitoring instruments. The 8-h average PM2.5 levels in carriages on the seven routes ranged from 24.1 to 49.8 µg/m3, higher than levels in Finland and similar to those in New York, and in most cases exceeding the standard set by the World Health Organisation (25 µg/m3). The CO2 concentration ranged from 714 to 1801 ppm on four of the routes, generally exceeding indoor air quality guidelines (1000 ppm over 8 h) and reaching levels as high as those in Beijing. PNC ranged from 1506 to 11,570 particles/cm3, lower than readings in Sydney and higher than readings in Taipei. Correlation analysis indicated that the number of passengers in a given carriage did not affect the PM2.5 concentration or PNC in the carriage. However, a significant positive correlation (p < 0.001, R 2 = 0.834) was observed between passenger numbers and CO2 levels, with each passenger contributing approximately 7.7–9.8 ppm of CO2. The real-time measurements of PM2.5 and PNC varied considerably, rising when carriage doors opened on arrival at a station and when passengers inside the carriage were more active. This suggests that air pollutants outside the train and passenger movements may contribute to PM2.5 levels and PNC. Assessment of the risk associated with PM2.5 exposure revealed that children are most severely affected by PM2.5 pollution, followed in order by juveniles, adults and the elderly. In addition, females were found to be more vulnerable to PM2.5 pollution than males (p < 0.001), and different subway lines were associated with different levels of risk.  相似文献   

15.
Factors impacting indoor-outdoor relations are introduced. Sulfate seems a fine tracer for other non-volatile species. Particulate nitrate and ammonium desorb during outdoor-to-indoor transport. OC load increases during the transport due to sorption of indoor SVOCs. Outdoor PM2.5 influences both the concentration and composition of indoor PM2.5. People spend over 80% of their time indoors. Therefore, to assess possible health effects of PM2.5 it is important to accurately characterize indoor PM2.5 concentrations and composition. Controlling indoor PM2.5 concentration is presently more feasible and economic than decreasing outdoor PM2.5 concentration. This study reviews modeling and measurements that address relationships between indoor and outdoor PM2.5 and the corresponding constituent concentrations. The key factors in the models are indoor-outdoor air exchange rate, particle penetration, and deposition. We compiled studies that report I/O ratios of PM2.5 and typical constituents (sulfate (SO42-), nitrate (NO3-), ammonium (NH4+), elemental carbon (EC), and organic carbon (OC), iron (Fe), copper (Cu), and manganese (Mn)). From these studies we conclude that: 1) sulfate might be a reasonable tracer of non-volatile species (EC, Fe, Cu, and Mn) and PM2.5 itself; 2) particulate nitrate and ammonium generally desorb to gaseous HNO3 and NH3 when they enter indoors, unless, as seldom happens, they have strong indoor sources; 3) indoor-originating semi-volatile organic compounds sorb on indoor PM2.5, thereby increasing the PM2.5 OC load. We suggest further studies on indoor-outdoor relationships of PM2.5 and constituents so as to help develop standards for healthy buildings.  相似文献   

16.
Because detrimental effects of exposure to lead (Pb) on human health have been observed, we previously investigated concentrations of Pb in water supplies and blood of adult residents of Riyadh, Saudi Arabia. The objectives of the present study were to: (1) examine seasonal rates of deposition of Pb in dust in several areas of Riyadh city, (2) measure concentrations of Pb in both outdoor and indoor dust, (3) compare concentrations of Pb in dust in Riyadh with those reported for other cities, and (4) quantify Pb in blood of children living in Riyadh. Mean, monthly deposition of PB in outdoor dust was 4.7 × 101 ± 3.6 tons km?2, with a mean Pb concentration of 2.4 × 102 ± 4.4 × 101 μg/g. Mean, monthly deposition of Pb in indoor dust was 2.7 ± 0.70 tons km?2, with a mean concentration of 2.9 × 101 ± 1.5 × 101 μg Pb/g. There was a significant (P < 0.01) correlation between concentrations of Pb in outdoor and indoor dust. There was no correlation between concentrations of Pb in indoor dust and that in blood of children of Riyadh, whereas there was a weakly significant (P < 0.05) correlation between concentrations of Pb in outdoor dust and that in blood of children. The mean (±SD) concentration of Pb in blood of children in Riyadh was 5.2 ± 1.7, with a range of 1.7–1.6 × 101 μg/dl. Concentrations of Pb in blood of 17.8 % of children in Riyadh were greater than 10 μg/dl, which is the CDC’s level of concern.  相似文献   

17.
Water samples from Xikuangshan (China), the world largest antimony (Sb) mine with a Sb mining and smelting history of more than 200 years, were analyzed. These water samples ranged from stream water in the vicinity of the mining and smelting area that received seepage from ore residues to the underground mine-pit drainage. The concentrations of total Sb, Sb (III) and Sb (V) of the samples were determined by HPLC-ICP-MS. In addition, water pH and concentrations of major cations and anions were analyzed. All 18 samples demonstrated total Sb concentrations with ppm levels from 0.33 ppm to 11.4 ppm, which is two to three orders of magnitude higher compared to the typical concentration of dissolved Sb in unpolluted rivers (less than 1 ppb). This is probably the first time that such high Sb contents have been documented with complete environmental information. Distribution of total Sb and Sb species was investigated, taking into account the respective local environment (in the mining area or close to the smelter, etc.). Sb (V) was the predominant valence in all 18 samples. Only trace levels of Sb (III) were detected in 4 of the 18 samples. Geochemical speciation modeling showed the dominant species was Sb(OH)6. It is also probably the first time that such high Sb contents have been documented in the natural environment with Sb speciation distribution information. Several potential oxidation pathways are also discussed that might have facilitated the oxidation of Sb (III) in the natural environment. Signs of intoxication were observed among local mine workers with extensive exposure to different forms of Sb for a long period of time.  相似文献   

18.
In this work, phthalic acid esters (PAEs): dimethyl phthalate (DMP), diethyl phthalate (DEP), di-n-butyl phthalate, benzyl butyl phthalate, bis(2-ethylhexyl) phthalate, and di-n-octyl phthalate in indoor dust (used as passive sampler) were investigated. The settled dust samples were collected from thirteen indoor environments from Palermo city. A fast and simple method using Soxhlet and GC–MS analysis has been optimized to identify and quantify the phthalates. Total phthalates concentrations in indoor dusts ranged from 269 to 4,831 mg/kg d.w. (d.w. = dry weight). The data show a linear correlation between total PAEs concentration and a single compound content, with the exclusion of the two most volatile components (DMP and DEP) that are present in appreciable amounts only in two samples. These results suggest that most of the PAEs identified in the samples of settled dust originate from the same type of material. This evidence indicates that, in a specific indoor environment, generally is not present only one compound but a mixture having over time comparable percentages of PAEs. Consequently, for routine analyses of a specific indoor environment, only a smaller number of compounds could be determined to value the contamination of that environment. We also note differences in phthalate concentrations between buildings from different construction periods; the total concentration of PAEs was higher in ancient homes compared to those constructed later. This is due to a trend to reduce or remove certain hazardous compounds from building materials and consumer goods. A linear correlation between total PAEs concentration and age of the building was observed (R = 0.71).  相似文献   

19.
城市室内环境多环芳烃污染与源的相关性   总被引:5,自引:0,他引:5  
本实验选择了天津市4类典型室内环境和2处室外对照点,共19个采样点。现场采样测定了10种PAHs组成含量。结果显示,室内燃煤和室内吸烟是室内环境中多环芳烃排放的主要污染源。同作为对照的室外大气中多环芳烃组成和含量进行了对比,研究了室内环境不同污染源排放多环芳烃组成和含量的特征性。提出了室内燃煤污染同燃煤型室外大气源排放多环芳烃具有相似组成含量特征,而室内烟草烟雾污染源的多环芳烃组成含量特征则与室外  相似文献   

20.
The aim of this study was to evaluate the public and occupational exposure to radon and metal-bearing particles in museums and public buildings located in the city of Rio de Janeiro, Brazil. For this study, four buildings were selected: two historic buildings, which currently house an art gallery and an art museum; and two modern buildings, a chapel and a club. Integrated radon concentration measurements were performed using passive radon detectors with solid state nuclear track detector-type Lexan used as nuclear track detector. Air samplers with a cyclone were used to collect the airborne particle samples that were analyzed by the particle-induced X-ray emission technique. The average unattached-radon concentrations in indoor air in the buildings were above 40 Bq/m3, with the exception of Building D as measured in 2009. The average radon concentrations in indoor air in the four buildings in 2009 were below the recommended reference level by World Health Organization (100 Bq/m3); however, in 2011, the average concentrations of radon in Buildings A and C were above this level, though lower than 300 Bq/m3. The average concentrations of unattached radon were lower than 148 Bq/m3 (4pCi/L), the USEPA level recommended to take action to reduce the concentrations of radon in indoor air. The unattached-radon average concentrations were also lower than the value recommended by the European Union for new houses. As the unattached-radon concentrations were below the international level recommended to take action to reduce the radon concentration in air, it was concluded that during the period of sampling, there was low risk to human health due to the inhalation of unattached radon in these four buildings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号