首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
废物处理   1篇
环保管理   1篇
基础理论   2篇
污染及防治   1篇
评价与监测   1篇
  2023年   1篇
  2022年   1篇
  2018年   1篇
  2017年   1篇
  2008年   2篇
排序方式: 共有6条查询结果,搜索用时 15 毫秒
1
1.
In this study an assessment is made of the negative impacts of wastewater irrigation on soils and crops sampled along the Khoshk River channel in suburban area of Shiraz City, SW Iran. For this purpose, samples of soil profiles (0–60 cm in depth) and crops were collected from two wastewater irrigated sites and a tube well-irrigated (control) site. Total concentrations of the five heavy metals (Ni, Pb, Cd, Zn and Cr) and their phytoavailable contents were determined. The Pollution Load Indexes (PLIs) and Contamination Factors (CFs) for soils and Hazard quotients (ΣHQ) for some vegetables were also calculated. The results showed the use of untreated wastewater has caused the following changes as compared to control site: (1) a 20–30% increase in organic matter content of soil; (2) increase in pH by 2–3 units; (3) significant concentration increase in Ex-Ca especially in top layers of soil resulting in high CEC; (4) build up of heavy metals (notably Pb and Ni) in topsoil above Maximum Permissible Limits (MPLs) indicating a moderate contamination (PLI > 1, CF > 2.5); (5) contamination of some vegetables (spinach and lettuce) with Cd due to its high phytoavailability in topsoil causing a HQ > 1; (6) excessive accumulation of Ni and Pb in wheat due to continual addition of heavy metals through long-term wastewater application. The study concludes that strict protection measures, stringent guidelines and an integrated system for the treatment and recycling of wastewater are needed to minimize the negative impacts of wastewater irrigation in the study area.  相似文献   
2.
Groundwater is a basic source of drinking water supply for urban and rural areas. This is especially the case for communities located in arid and semi-arid regions that rely on groundwater for drinking purposes. The present study set out to assess the potential health impacts of water impurities and to investigate the qualitative status of drinking water in Robat Karim rural areas, located in southwest Tehran, Iran. A total of 66 samples were collected from the water distribution network of 11 villages (33 sampling points, on two occasions) during September 2020 and were tested in terms of the most common quality parameters such as pH, mercury (Hg), lead (Pb), copper (Cu), zinc (Zn), chloride (Cl), chlorate (ClO3), nitrite (NO2), nitrate (NO3), and flouride (F). Multiple methods and indexes including water quality index (WQI), hazard quotient (HQ), and hazard index (HI), were worked out to assess the quality of water and health risk assessment of NO3 Pb2+ and Hg2+. The results revealed that 33% and 90% of sampling sites have significantly high nitrate and total hardness (TH) concentrations, exceeding the maximum permissible limits set by World Health Organization (WHO; 50 and 200 mg/L, respectively). Furthermore, five sampling points exhibited poor WQIs mainly related to NO3 and TH. HQ values higher than 1 for nitrate were noticed in most sampling locations. Except for one sampling point, the HQ obtained for Pb2+ and Hg2+ were below 1 indicating no obvious health hazard. This study represents that children and infants are at higher risk of chronic toxicity by excess NO3 intake. The health hazard that is yet imposed on the community by NO3 necessitates regular monitoring of drinking water, the use of advanced technologies to purify water or otherwise alternative resources should be proposed.  相似文献   
3.
Ammonia-oxidizing bacteria and phenol-degrading yeast were isolated in order to study the synergism effects of phenol-degrading yeast and ammonia-oxidizing bacteria for enhancing the nitrification in coke wastewater from the Isfahan Steel Company. The influent and effluent samples with approximately 600-1200 mg L(-1) ammonium and 550-2350 mg L(-1) phenol were collected aseptically in sterile flasks. The biodegradation of phenol and nitrification were studied with different treatments. The results showed that addition of Na2CO3 and autotrophic bacteria to wastewater increased the ammonium removal by 100%. Furthermore, the synergism effects of phenol-degrader yeast and autotrophic bacteria reduced the time for ammonium removal.  相似文献   
4.

The Angouran Mine, located in northwest Iran, is the largest Zn–Pb producer in the Middle East. This study was designed to investigate the distribution, geochemistry, and mineralogy of the aerosols in the mining area and to assess their likely health impacts on the local residents. For this purpose, 36 aerosol samples were collected from 2014 to 2015 at nine sites located in mine district and upwind and downwind directions. The concentration of potentially toxic elements in the aerosols was determined using AAS instrument. Size, morphology, and mineralogy of the particles were studied using SEM and EDX spectra. The results indicate that the amount of total suspended particles in upwind, mine district, and downwind sites is 95.5, 463.4 and 287.5 µg/m3, respectively. The concentrations of PM2.5 in the three locations are 8.9, 134.7, and 51.8 µg/m3, whereas the PM10 contents are 2.9, 74.4, and 15.5 µg/m3, respectively. These observations point to the impact of mining activities on the concentration of aerosols in the local atmosphere. The values of air quality index also show the probable effects of the mining activities on the health of the local populations, especially for allergic peoples. The average concentration of Zn in the samples collected from the mining district (290 µg/kg) is much higher than its value in the upwind sites (27 µg/kg). The highest concentration of As (70 µg/kg), Cd (10 µg/kg), and Pb (3 µg/kg) is in downwind sites, which shows the negative impact of mining activities on the local air quality. Temporally, the highest concentration of the studied elements is recorded in spring season, especially for PM2.5 collected in downwind stations. Based on the results of SEM and EDX spectra, three groups of minerals, i.e., carbonates, silicates, and sulfides, are present in the aerosol particles, confirming the local source for the aerosols. SEM analyses showed that the aerosol particles with dissimilar chemical composition have different morphologies such as irregular, rounded, elongated, and angular. On the basis of the results, the mining activities in the Angouran Zn–Pb Mine may have various short- and long-term consequences on the public health, especially due to high amount of the finer particles (PM2.5) and the higher concentration of the potentially toxic elements in PM2.5 which can penetrate into the lungs.

  相似文献   
5.

Cigarette butts are hazardous wastes that are not properly discarded by most smokers. They are one of the most abundant litters in the environment and a threat to various organisms because they leak numerous pollutants. This study aimed to assess the distribution of cigarette butts in a coastal city south of the Caspian Sea in Mazandaran Province, Iran. Observations were performed using the visual survey technique based on standardized protocol. The results showed 11,261 littered cigarette butts in 15 studied urban areas ( an average of 0.306 units per square meter). Also, the average density of littered cigarette butts on the studied beaches was 0.106 per square meter. The littered cigarette butts had significant spatial variation, and the number of counts was 135 to 2090. The land-use has a significant effect on the density of littered cigarette butts due to its population density. The inquiry’s index demonstrated that 33.3% of the studied urban areas are high pollution and severe pollution, while all beaches are high and severe. Therefore, a significant focus must be considered to reduce cigarette butts littering due to the collection problems and challenges of cigarette butt management. Because the pollution on the beaches is higher than in urban areas, improving waste management services and establishing a regular cleaning program are essential.

  相似文献   
6.
Discharge of refinery effluents containing phenanthrene (Phe) may exert carcinogenic effects on aquatic organisms. The aim of the current investigation was to investigate electrochemical removal of Phe from urban drinking water using a batch reactor. Phe removal efficiency was examined under different operating conditions including current density (1–8 mA/cm2), electrode composition materials such as aluminum (Al), copper (Cu), iron (Fe), steel (AS), or zinc (Zn), pH (4–10), and duration (20–60 min). Phe concentration was determined utilizing standard techniques. Steel–Steel (AS–AS) as anode–cathode electrodes resulted in the least Phe removal (not detected), while Zn–Cu anode–cathode electrodes produced the highest Phe removal (100%) under similar experimental conditions. The increase in current density from 1 to 8 mA/cm2 at optimum electrode and pH enhanced Phe removal from 56% to 100%. The rise in duration from 20 to 60 min at optimum electrode and pH increased Phe removal from 32% to 100%. These findings indicated that Phe removal efficiency was elevated with increasing current density, electrolysis time, and pH. Batch experiments indicated that the electrochemical reactor might be effective in removing Phe from drinking water.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号