首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Smog chamber/FTIR techniques were used to study the relative reactivity of OH radicals with methanol, ethanol, phenol, C2H4, C2H2, and p-xylene in 750 Torr of air diluent at 296±2 K. Experiments were performed with, and without, 500–8000 μg m−3 (4000–50 000 μm2 cm−3 surface area per volume) of NaCl, (NH4)2SO4 or NH4NO3 aerosol. In contrast to the recent findings of Oh and Andino (Atmospheric Environment 34 (2000) 2901, 36 (2002) 149; International Journal of Chemical Kinetics 33 (2001) 422) there was no discernable effect of aerosol on the rate of loss of the organic compounds via reaction with OH radicals. Gas kinetic theory arguments cast doubt upon the findings of Oh and Andino. The available data suggest that the answer to the title question is “No”. As part of this work the rate constants for reactions of OH radicals with methanol, ethanol, and phenol in 750 Torr of air at 296 K were determined to be: kOH+CH3OH=(8.12±0.54)×10−13, kOH+C2H5OH=(3.47±0.32)×10−12 and kOH+phenol=(3.27±0.31)×10−11 cm3 molecule−1 s−1.  相似文献   

2.
The atmospheric reaction of the methylthiyl radical (CH3S) with O3 was investigated as a function of temperature (259–381 K), in the pressure range of 25–300 Torr, using the technique of laser photolysis/laser-induced fluorescence. The resulting Arrhenius expression, with an uncertainty of ±2σ, was k1(T=259–381 K)=(1.02±0.30)×10−12 exp[(432±77) K/T] cm3 molecule−1 s−1. The obtained rate constant k1 was independent of pressure over the limited range employed. Our results are compared with the previous studies carried out, at single temperature and as a function of temperature, by different techniques.  相似文献   

3.
The quantum yield of the phototransformation of 4-nitrophenol has been evaluated as 4.5×10−5±0.6×10−5 at pH=2; at 3.0×10−5±0.6×10−5 at pH=5.5; 1.8×10−5±0.5×10−5 at pH=8.3. However the half-life is relatively low and no accumulation of aromatic or quinonic products was observed. Hydroquinone (QH2) is the main organic primary product formed when an air-saturated or degassed solution was irradiated in 365 nm monochromatic light (about 80% of the 4-nitrophenol initially converted at pH=5.5 in the absence of oxygen). In air-saturated neutral or acidic solution, the formation of NO3 ions accounted for about 80% of the 4-nitrophenol converted, but in degassed medium a mixture NO : NO2 : NO3 is formed. An heterolytical mechanism of photohydrolysis with primary formation of QH2 and HNO2 is suggested. Several by-products as benzoquinone, 4-nitrosophenol, 4-nitrocatechol and nitrohydroquinone are formed according to the conditions. Many secondary reactions are involved as the disproportionation or the oxidation of HNO2, the oxidation of QH2 by HNO2 and oxidations induced by excitation of NO2 and NO3.  相似文献   

4.
The emissions of selected flame retardants were measured in 1- and 0.02-m3 emission test chambers and 0.001-m3 emission test cells. Four product groups were of interest: insulating materials, assembly foam, upholstery/mattresses, and electronics equipment. The experiments were performed under constant environmental conditions (23°C, 50% RH) using a fixed sample surface area and controlled air flow rates. Tris (2-chloro-isopropyl)phosphate (TCPP) was observed to be one of the most commonly emitted organophosphate flame retardants in polyurethane foam applications. Depending on the sample type, area-specific emission rates (SERa) of TCPP varied between 20 ng m−2 h−1 and 140 μg m−2 h−1.The emissions from electronic devices were measured at 60°C to simulate operating conditions. Under these conditions, unit specific emission rates (SERu) of organophosphates were determined to be 10–85 ng unit−1 h−1. Increasing the temperature increased the emission of several flame retardants by up to a factor of 500. The results presented in this paper indicate that emissions of several brominated and organophosphate flame retardants are measurable. Polybrominated diphenylethers exhibited an SERa of between 0.2 and 6.6 ng m−2 h−1 and an SERu of between 0.6 and 14.2 ng unit−1 h−1. Because of sink effects, i.e., sorption to chamber components, the emission test chambers and cells used in this study have limited utility for substances low vapour pressures, especially the highly brominated compounds; hexabromocyclododecane had an SERa of between 0.1 and 29 ng m−2 h−1 and decabromodiphenylether was not detectable at all.  相似文献   

5.
Diffusion coefficients (T=23±2 °C) and accessible porosities for HTO, 36Cl and 125I were measured on Opalinus Clay (OPA) samples from the Mont Terri Underground Rock Laboratory (URL) using the through-diffusion technique. The direction of transport (diffusion) was perpendicular to bedding. Special cells that allowed the application of confining pressure were designed and constructed. The pressures ranged from 1 to 5 MPa, the latter value simulating the overburden at the Mont Terri URL (about 200 m). The test solution used in the experiments was a synthetic version of the Opalinus Clay pore water, which has Na+ and Cl as the main components (I=0.42 M).The measured values of the effective diffusion coefficients (De) and rock capacity factors (α) are: De=1.2–1.5×10−11 m2 s−1 and α=0.09–0.11 for HTO, De=4.0–5.5×10−12 m2 s−1 and α=0.05 for 36Cl and De=3.2–4.6×10−12 m2 s−1 and α=0.07–0.10 for 125I. For non-sorbing tracers (HTO, 36Cl) the rock capacity factor α is equal to the diffusion-accessible porosity . The experimental results showed that pressure only had a small effect on the value of the diffusion coefficients. Increasing the pressure from 1 to 5 MPa resulted in a decrease of the diffusion coefficient of 17% for HTO, 28% for 36Cl and 30% for 125I. Moreover, the diffusion coefficients for 36Cl and 125I are smaller than for HTO, which is consistent with an effect arising from anion exclusion.The diffusion coefficients of HTO and 125I measured in this study are in good agreement with recent measurements at three other laboratories performed within the framework of a laboratory comparison exercise. The values of the diffusion-accessible porosities show a larger degree of scatter.  相似文献   

6.
Total OH reactivity was observed by use of the laser-induced pump and probe technique, and the urban air quality in Tokyo was diagnosed comprehensively. The concentrations of NOx, CO, O3, non-methane hydrocarbons (NMHCs) and oxygenated volatile organic compounds (OVOCs) were observed simultaneously. The observations were conducted in July and August 2003, and in January, February, May, and November 2004. Generally, the observed OH reactivity was higher than the calculated values derived using the observed concentrations of the trace species. The differences between the observed and calculated values in summer, spring, and autumn were approximately 30%. However, the difference in winter was smaller than those in the other seasons. In addition, while the differences observed in summer, spring, and autumn correlated with the total reactivity of the OVOCs (Σi kOVOCi[OVOCi](s−1), ki is rate constant of its compounds with OH), the correlations were not confirmed in the case of winter because atmospheric oxidation was less active and OVOCs levels were low in winter. These results suggest that the secondary products of the photochemical reactions in the atmosphere would be a missing sink for the OH loss process in the urban area.  相似文献   

7.
Vehicle emissions can constitute a major share of ambient concentrations of many volatile organic compounds (VOCs) and other air pollutants in urban areas. Especially high concentrations may occur at curbsides, vehicle cabins, and other microenvironments. Such levels are not reflected by monitoring at fixed sites. This study reports on measurements of VOCs made from buses and cars in Detroit, MI. A total of 74 adsorbent tube samples were collected on 40 trips and analyzed by GC-MS for 77 target compounds. Three bus routes, selected to include residential, commercial and heavily industrialized areas, were sampled simultaneously on four sequential weeks during morning and afternoon rush hour periods. Nineteen compounds were regularly detected and quantified, the most prevalent of which included hexane/2-methyl pentane (15.6±5.8 μg m−3), toluene (10.2±7.9 μg m−3), m,p-xylene (6.8±4.7 μg m−3), benzene (4.5±3.0 μg m−3), 1,2,4-trimethylbenzene (4.0±2.6 μg m−3), o-xylene (2.2±1.6 μg m−3), and ethylbenzene (2.1±1.5 μg m−3). VOC levels in bus interiors and outdoor levels along the roadway were similar. Despite the presence of large industrial sources, route-to-route variation was small, but temporal variation was large and statistically significant. VOC compositions and trends indicate the dominance of vehicle sources over the many industrial sources in Detroit with the possible exceptions of styrene and several chlorinated VOCs. In-bus levels exceeded concentrations at fixed site monitors by a factor of 2–4. VOC concentrations in Detroit traffic are generally comparable to levels measured elsewhere in the US and Canada, but considerably lower than measured in Asia and Europe.  相似文献   

8.
An increasing percentage of agricultural land in Germany is used for oil seed plants. Hence, rape has become an important agricultural plant (in Saxony 1998: 12% of the farmland) in the recent years. During flowering of rape along with intensive radiation and high temperatures, a higher production and emission of biogenic VOC was observed. The emissions of terpenes were determined and more importantly, high concentrations of organic carbonyl compounds were observed during this field experiment. All measurements of interest have been carried out during two selected days with optimal weather conditions. It is found that the origin or the mechanism of formation of different group of compounds had strong influence on the day to day variation of their concentrations. The emission flux of terpenes from flowering rape plants was determined to be 16–32 μg h−1 m−2 (30–60 ng h−1 per g dry plant––540–1080 ng h−1 per plant), in total. Limonene, α-thujene and sabinene were the most important compounds (about 60% of total terpenes). For limonene and sabinene reference emission rates (MS) and temperature coefficients were determined: βlimonene=0.108 K−1 and MS=14.57 μg h−1 m−2; βsabinene=0.095 K−1 and MS=5.39 μg h−1 m−2.The detected carbonyl compound concentrations were unexpectedly high (maximum formaldehyde concentration was 18.1 ppbv and 3.4 ppbv for butyraldehyde) for an open field. Possible reasons for these concentrations are the combination of primary emission from the plants induced by high temperature and high ozone stress, the secondary formation from biogenically and advected anthropogenically emitted VOC at high radiation intensities and furthered by the low wind speeds at this time.  相似文献   

9.
On the basis of the recently estimated emission inventory for East Asia with a resolution of 1×1°, the transport and chemical transformation of sulfur compounds over East Asia during the period of 22 February through 4 May 2001 was investigated by using the Models-3 Community Multi-scale Air Quality (CMAQ) modeling system with meteorological fields calculated by the regional atmospheric modeling system (RAMS). For evaluating the model performance simulated concentrations of sulfur dioxide (SO2) and aerosol sulfate (SO42−) were compared with the observations on the ground level at four remote sites in Japan and on board aircraft and vessel during the transport and chemical evolution over the Pacific and Asian Pacific regional aerosol characterization experiment field campaigns, and it was found that the model reproduces many of the important features in the observations, including horizontal and vertical gradients. The SO2 and SO42− concentrations show pronounced variations in time and space, with SO2 and SO42− behaving differently due to the interplay of chemical conversion, removal and transport processes. Analysis of model results shows that emission was the dominant term in regulating the SO2 spatial distribution, while conversion of SO2 to SO42− in the gas phase and the aqueous phase and wet removal were the primary factors that controlled SO42− amounts. The gas phase and the aqueous phase have the same importance in oxidizing SO2, and about 42% sulfur compounds (25% in SO2) emitted in the model domain was transported out, while about 57% (35% by wet removal processes) was deposited in the domain during the study period.  相似文献   

10.
The effective diffusivity of uranium(VI) in Inada granite has been determined by through-diffusion. Experiments were performed at room temperature (20–25°C) in a 0.1 mol 1−1 KCl solution where uranium is present predominantly as the poorly sorbing UO22+. An effective diffusivity (De) of (3.6 ± 1.6) × 10−14 m2 s−1 was obtained, close to that for uranine (nonsorbing organic tracer), but one order of magnitude lower than those obtained for Sr2+ and NpO2+, and two orders of magnitude lower than that obtained for I. According to well established theory, a proportional relationship exists between De and the diffusivity in the bulk of the solution (Dv). The effective diffusivity obtained in granite was not proportional to Dv. This agrees with results obtained for effective diffusivity in a Swedish granite. The ratio De/Dv was found to be not constant but increased with De or Dv. This result suggests a limit to the application of the theory.  相似文献   

11.
The Main Geophysical Observatory 2D channel photochemical model is used to study the behavior of tropospheric OH within the 30–60°N zonal belt in relation to changing NOX and CO emissions. The changes of tropospheric OH as a function of the contributions by NOX and CO emissions during the period 1850–2050 are calculated. Our estimations show that the largest annual increment of total tropospheric OH within the belt considered occurs in the 1985–1995 period, about 0.27% yr−1. Based on scenarios of tropospheric pollution emissions in the first half of 21st century, the total tropospheric OH content will increase more slowly, by 0.12–0.15% yr−1. The maximum growth of OH concentration occurs close to air pollution locations—in the lower troposphere during 1850–1995 but in the upper troposphere in the 21st century when the NOX source from subsonic aircraft increases faster than the surface source.  相似文献   

12.
Carbonyl products of the gas-phase reaction of ozone with 1-alkenes   总被引:1,自引:0,他引:1  
Carbonyl products have been identified and their formation yields measured in experiments involving the gas-phase reaction of ozone with the 1-alkenes (RCH = CH 2) 3-methyl-l-butene (R = i-propyl), 4-methyl-l-pentene (R = i-butyl), 3-methyl-l-pentene (R= s-butyl), 3,3-dimethyl-l-butene (R = t-butyl) and styrene (R = C6H5) at ambient T and p = 1 atm of air. Sufficient cyclohexane was added to scavenge OH in order to minimize reactions of OH with the alkenes and with their carbonyl products. Formation yields (carbonyl formed/ozone reacted) of primary carbonyls were close to the value of 1.0 that is consistent with the mechanism: O3 + RCH = CH2 → α(HCHO + RCHOO) + (1 - α) (H2COO + RCHO), where formaldehyde and RCHO are the primary carbonyls and H2COO and RCHOO are the biradicals. Measured sums of the primary carbonyl formation yields were 1.006 ± 0.053 (1 S.D.) for formaldehyde + methylpropanal from3-methyl-l-butene(α = 0.494 ± 0.049), 1.025 ± 0.017 for formaldehyde + 2-methylbutanal from 3-methyl-l-pentene (α = 0.384 ± 0.013),1.147 ± 0.050 for formaldehyde + 3-methylbutanal from 4-methyl-l-pentene (α = 0.384 ± 0.020), 0.986 ± 0.014 for formaldehyde + 2,2-dimethylpropanal from 3,3-dimethyl-l-butene (α = 0.320 ± 0.012) and 0.980 ± 0.086 for formaldehyde + benzaldehyde from styrene (α = 0.347 ± 0.059). Carbonyls other than the primary carbonyls were identified; formation pathways are proposed that involve subsequent reactions of the monosubstituted biradicals RCHOO. Similarities and differences between branched-chain 1-alkenes and n-alkyl-substituted 1-alkenes are discussed.  相似文献   

13.
Long-term study of air pollution plays a decisive role in formulating and refining pollution control strategies. In this study, two 12-month measurements of PM2.5 mass and speciation were conducted in 00/01 and 04/05 to determine long-term trend and spatial variations of PM2.5 mass and chemical composition in Hong Kong. This study covered three sites with different land-use characteristics, namely roadside, urban, and rural environments. The highest annual average PM2.5 concentration was observed at the roadside site (58.0±2.0 μg m−3 (average±2σ) in 00/01 and 53.0±2.7 μg m−3 in 04/05), followed by the urban site (33.9±2.5 μg m−3 in 00/01 and 39.0±2.0 μg m−3 in 04/05), and the rural site (23.7±1.9 μg m−3 in 00/01 and 28.4±2.4 μg m−3 in 04/05). The lowest PM2.5 level measured at the rural site was still higher than the United States’ annual average National Ambient Air Quality Standard of 15 μg m−3. As expected, seasonal variations of PM2.5 mass concentration at the three sites were similar: higher in autumn/winter and lower in summer. Comparing PM2.5 data in 04/05 with those collected in 00/01, a reduction in PM2.5 mass concentration at the roadside (8.7%) but an increase at the urban (15%) and rural (20%) sites were observed. The reduction of PM2.5 at the roadside was attributed to the decrease of carbonaceous aerosols (organic carbon and elemental carbon) (>30%), indicating the effective control of motor vehicle emissions over the period. On the other hand, the sulfate concentration at the three sites was consistent regardless of different land-use characteristics in both studies. The lack of spatial variation of sulfate concentrations in PM2.5 implied its origin of regional contribution. Moreover, over 36% growth in sulfate concentration was found from 00/01 to 04/05, suggesting a significant increase in regional sulfate pollution over the years. More quantitative techniques such as receptor models and chemical transport models are required to assess the temporal variations of source contributions to ambient PM2.5 mass and chemical speciation in Hong Kong.  相似文献   

14.
The aim of this study is to present the organic and inorganic spectral aerosol module-radiative (ORISAM-RAD) module, allowing the 3D distribution of aerosol radiative properties (aerosol optical depth, single scattering albedo and asymmetry parameter) from the ORISAM module. In this work, we test ORISAM-RAD for one selected day (24th June) during the ESCOMPTE (expérience sur site pour contraindre les modèles de pollution atmosphérique et de transport d’emissions) experiment for an urban/industrial aerosol type. The particle radiative properties obtained from in situ and AERONET observations are used to validate our simulations. In a first time, simulations obtained from ORISAM-RAD indicate high aerosol optical depth (AOD)0.50–0.70±0.02 (at 440 nm) in the aerosol pollution plume, slightly lower (10–20%) than AERONET retrievals. In a second time, simulations of the single scattering albedo (ωo) have been found to well reproduce the high spatial heterogeneities observed over this domain. Concerning the asymmetry parameter (g), ORISAM-RAD simulations reveal quite uniform values over the whole ESCOMPTE domain, comprised between 0.61±0.01 and 0.65±0.01 (at 440 nm), in excellent agreement with ground based in situ measurements and AERONET retrievals. Finally, the outputs of ORISAM-RAD have been used in a radiative transfer model in order to simulate the diurnal direct radiative forcing at different locations (urban, industrial and rural). We show that anthropogenic aerosols strongly decrease surface solar radiation, with diurnal mean surface forcings comprised between −29.0±2.9 and −38.6±3.9 W m−2, depending on the sites. This decrease is due to the reflection of solar radiations back to space (−7.3±0.8<ΔFTOA<−12.3±1.2 W m−2) and to its absorption into the aerosol layer (21.1±2.1<ΔFATM<26.3±2.6 W m−2). These values are found to be consistent with those measured at local scale.  相似文献   

15.
Permeable reactive barriers (PRBs) are an alternative technology to treat mine drainage containing sulfate and heavy metals. Two column experiments were conducted to assess the suitability of an organic carbon (OC) based reactive mixture and an Fe0-bearing organic carbon (FeOC) based reactive mixture, under controlled groundwater flow conditions. The organic carbon mixture contains about 30% (volume) organic carbon (composted leaf mulch) and 70% (volume) sand and gravel. The Fe0-bearing organic carbon mixture contains 10% (volume) zero-valent iron, 20% (volume) organic carbon, 10% (volume) limestone, and 60% (volume) sand and gravel. Simulated groundwater containing 380 ppm sulfate, 5 ppm As, and 0.5 ppm Sb was passed through the columns at flow rates of 64 (the OC column) and 62 (the FeOC column) ml d− 1, which are equivalent to 0.79 (the OC column) and 0.78 (the FeOC column) pore volumes (PVs) per week or 0.046 m d− 1 for both columns. The OC column showed an initial sulfate reduction rate of 0.4 µmol g (OC)− 1 d− 1 and exhausted its capacity to promote sulfate reduction after 30 PVs, or 9 months of flow. The FeOC column sustained a relatively constant sulfate reduction rate of 0.9 µmol g (OC)− 1 d− 1 for at least 65 PVs (17 months). In the FeOC column, the δ34S values increase with the decreasing sulfate concentration. The δ34S fractionation follows a Rayleigh fractionation model with an enrichment factor of 21.6‰. The performance decline of the OC column was caused by the depletion of substrate or electron donor. The cathodic production of H2 by anaerobic corrosion of Fe probably sustained a higher level of SRB activity in the FeOC column. These results suggest that zero-valent iron can be used to provide an electron donor in sulfate reducing PRBs. A sharp increase in the δ13C value of the dissolved inorganic carbon and a decrease in the concentration of HCO3 indicate that hydrogenotrophic methanogenesis is occurring in the first 15 cm of the FeOC column.  相似文献   

16.
Estimating Taiwan biogenic VOC emission: Leaf energy balance consideration   总被引:1,自引:0,他引:1  
The goal of the present study is to provide a comprehensive model to estimate biogenic volatile organic compounds (BVOCs) in Taiwan. In addition to metrological data, the model consists of (1) 83 land-use patterns, (2) emission factors for various vegetations, (3) energy balance equation to account for leaf temperature, and (4) correction terms for photosynthetically active radiation. The model output includes 4 categories of 33 BVOCs [isoprene, methylbutenol (MBO), 14 species of monoterpenes and 17 other BVOCs]. The results of model verification based on several approaches include: (1) predicted isoprene emission flux correlates relatively good with the observed isoprene concentration (R2 = 0.66); (2) correlation between leaf temperature and observed isoprene levels is better than that between ambient temperature and isoprene concentrations (R2 = 0.63 vs. 0.58); (3) model-predicted isoprene fluxes match well with observed 3-day diurnal isoprene concentration variations; and (4) subsequent model-predicted O3 concentrations with the BVOC input obtained in the present study match well than that with previous estimated BVOC data with the observed 6-day diurnal O3 levels in 8 air quality monitoring stations.Based on the meteorological data in 2000, the total emission of BVOCs in Taiwan was simulated to be about 433,000 ton (33% of total VOCs) of which both isoprene and 14 species of monoterpenes account for about 34%, with 17 species of other BVOCs being 31% and <2% contribution from MBO. Total emissions of BVOCs are higher in lower and medium altitude (300–1000 m) mountain areas with an average of around 15–30 ton km−2 y−1. The implication of the other results is also discussed.  相似文献   

17.
Isosaccharinic (ISA) and gluconic acids (GLU) are polyhydroxy carboxylic compounds showing a high affinity to metal complexation. Both organic ligands are expected in the cementitious environments usually considered for the disposal of low- and intermediate-level radioactive wastes. The hyperalkaline conditions imposed by cementitious materials contribute to the formation of ISA through cellulose degradation, whereas GLU is commonly used as a concrete additive. Despite the high stability attributed to ISA/GLU complexes of tetravalent actinides, the number and reliability of available experimental studies is still limited. This work aims at providing a general and comprehensive overview of the state of the art regarding Th, U(IV), Np(IV), and Pu(IV) complexes with ISA and GLU.In the presence of ISA/GLU concentrations in the range 10− 5–10− 2 M and absence of calcium, An(IV)(OH)x(L)y complexes (An(IV) = Th, U(IV), Np(IV), Pu(IV); L = ISA, GLU) are expected to dominate the aqueous speciation of tetravalent actinides in the alkaline pH range. There is a moderate agreement among their stability, although the stoichiometry of certain An(IV)-GLU complexes is still ill-defined. Under hyperalkaline conditions and presence of calcium, the species CaTh(OH)4(L)2(aq) has been described for both ISA and GLU, and similar complexes may be expected to form with other tetravalent actinides.In the present work, the available thermodynamic data for An(IV)–ISA/GLU complexes have been reviewed and re-calculated to ensure the internal consistency of the stability constants assessed. Further modelling exercises, estimations based on Linear Free-Energy Relationships (LFER) among tetravalent actinides, as well as direct analogies between ISA and GLU complexes have also been performed. This approach has led to the definition of a speciation scheme for the complexes of Th, U(IV), Np(IV) and Pu(IV) with ISA and GLU forming in alkaline to hyperalkaline pH conditions, both in the absence and presence of calcium.  相似文献   

18.
Background, aim, and scope  The adverse environmental impacts of chlorinated hydrocarbons on the Earth’s ozone layer have focused attention on the effort to replace these compounds by nonchlorinated substitutes with environmental acceptability. Hydrofluoroethers (HFEs) and fluorinated alcohols are currently being introduced in many applications for this purpose. Nevertheless, the presence of a great number of C–F bonds drives to atmospheric long-lived compounds with infrared absorption features. Thus, it is necessary to improve our knowledge about lifetimes and global warming potentials (GWP) for these compounds in order to get a complete evaluation of their environmental impact. Tropospheric degradation is expected to be initiated mainly by OH reactions in the gas phase. Nevertheless, Cl atoms reaction may also be important since rate constants are generally larger than those of OH. In the present work, we report the results obtained in the study of the reactions of Cl radicals with HFE-7000 (CF3CF2CF2OCH3) (1) and its isomer CF3CF2CF2CH2OH (2). Materials and methods  Kinetic rate coefficients with Cl atoms have been measured using the discharge flow tube–mass spectrometric technique at 1 Torr of total pressure. The reactions of these chlorofluorocarbons (CFCs) substitutes have been studied under pseudo-first-order kinetic conditions in excess of the fluorinated compounds over Cl atoms. The temperature ranges were 266–333 and 298–353 K for reactions of HFE-7000 and CF3CF2CF2CH2OH, respectively. Results  The measured room temperature rate constants were k(Cl+CF3CF2CF2OCH3) = (1.24 ± 0.28) × 10−13 cm3 molecule−1 s−1and k(Cl+CF3CF2CF2CH2OH) = (8.35 ± 1.63) × 10−13 cm3 molecule−1 s−1 (errors are 2σ + 10% to cover systematic errors). The Arrhenius expression for reaction 1 was k 1(266–333 K) = (6.1 ± 3.8) × 10−13exp[−(445 ± 186)/T] cm3 molecule−1 s−1 and k 2(298–353 K) = (1.9 ± 0.7) × 10−12exp[−(244 ± 125)/T] cm3 molecule−1 s−1 (errors are 2σ). The reactions are reported to proceed through the abstraction of an H atom to form HCl and the corresponding halo-alkyl radical. At 298 K and 1 Torr, yields on HCl of 0.95 ± 0.38 and 0.97 ± 0.16 (errors are 2σ) were obtained for CF3CF2CF2OCH3 and CF3CF2CF2CH2OH, respectively. Discussion  The obtained kinetic rate constants are related to the previous data in the literature, showing a good agreement taking into account the error limits. Comparing the obtained results at room temperature, k 1 and k 2, HFE-7000 is significantly less reactive than its isomer C3F7CH2OH. A similar behavior has been reported for the reactions of other fluorinated alcohols and their isomeric fluorinated ethers with Cl atoms. Literature data, together with the results reported in this work, show that, for both fluorinated ethers and alcohols, the kinetic rate constant may be considered as not dependent on the number of –CF2– in the perfluorinated chain. This result may be useful since it is possible to obtain the required physicochemical properties for a given application by changing the number of –CF2– without changes in the atmospheric reactivity. Furthermore, lifetimes estimations for these CFCs substitutes are calculated and discussed. The average estimated Cl lifetimes are 256 and 38 years for HFE-7000 and C3H7CH2OH, respectively. Conclusions  The studied CFCs’ substitutes are relatively short-lived and OH reaction constitutes their main reactive sink. The average contribution of Cl reactions to global lifetime is about 2% in both cases. Nevertheless, under local conditions as in the marine boundary layer, τ Cl values as low as 2.5 and 0.4 years for HFE-7000 and C3H7CH2OH, respectively, are expected, showing that the contribution of Cl to the atmospheric degradation of these CFCs substitutes under such conditions may constitute a relevant sink. In the case of CF3CF2CF2OCH3, significant activation energy has been measured, thus the use of kinetic rate coefficient only at room temperature would result in underestimations of lifetimes and GWPs. Recommendations and perspectives  The results obtained in this work may be helpful within the database used in the modeling studies of coastal areas. The knowledge of the atmospheric behavior and the structure–reactivity relationship discussed in this work may also contribute to the development of new environmentally acceptable chemicals. New volatile materials susceptible of emission to the troposphere should be subject to the study of their reactions with OH and Cl in the range of temperature of the troposphere. The knowledge of the temperature dependence of the kinetic rate constants, as it is now reported for the case of reactions 1 and 2, will allow more accurate lifetimes and related magnitudes like GWPs. Nevertheless, a better knowledge of the vertical Cl tropospheric distribution is still required.  相似文献   

19.
Electron microscopy-energy dispersive spectroscopy (EM/EDS) can be used to determine the elemental composition of individual particles. However, the accuracy with which atmospheric particle compositions can be quantitatively determined is not well understood. In this work we explore sources of sampling and analytical bias and methods of reducing bias. Sulfuric acid [H2SO4] and ammonium sulfate [(NH4)2SO4] particles were collected on beryllium, silicon, and carbon substrates with similar deposition densities. While [(NH4)2SO4] particles were observed on all substrates, [H2SO4] and ammonia-treated [H2SO4] particles could not be found on beryllium substrates. Interactions between the substrate and sulfuric acid particles are implicated. When measured with EM/EDS, [H2SO4] particles exposed to ammonia overnight were found having lower beam damage rates (0.000 ± 0.002 fraction s−1) than those without any treatment (0.023 ± 0.006 fraction s−1) For laboratory-generated [C10H6(SO3Na)2] particles, the composition determined using the experimental k-factors evaluated from independent particle standards of similar composition and size shows an error less than 20% for all constituents, while greater than 78% errors were found when k-factors were calculated from the theory. This study suggests (1) that sulfate beam damage can be reduced by exposure of atmospheric particle samples to ammonia before analysis, (2) that beryllium is not a suitable substrate for atmospheric particle analysis, and (3) calibration (k-factor determination) using particle standards of similar size and composition to particles present in the atmosphere shows promise as a way of improving the accuracy of quantitative EM analysis.  相似文献   

20.
At a former wood preservation plant severely contaminated with coal tar oil, in situ bulk attenuation and biodegradation rate constants for several monoaromatic (BTEX) and polyaromatic hydrocarbons (PAH) were determined using (1) classical first order decay models, (2) Michaelis–Menten degradation kinetics (MM), and (3) stable carbon isotopes, for o-xylene and naphthalene. The first order bulk attenuation rate constant for o-xylene was calculated to be 0.0025 d− 1 and a novel stable isotope-based first order model, which also accounted for the respective redox conditions, resulted in a slightly smaller biodegradation rate constant of 0.0019 d− 1. Based on MM-kinetics, the o-xylene concentration decreased with a maximum rate of kmax = 0.1 µg/L/d. The bulk attenuation rate constant of naphthalene retrieved from the classical first order decay model was 0.0038 d− 1. The stable isotope-based biodegradation rate constant of 0.0027 d− 1 was smaller in the reduced zone, while residual naphthalene in the oxic part of the plume further downgradient was degraded at a higher rate of 0.0038 d− 1. With MM-kinetics a maximum degradation rate of kmax = 12 µg/L/d was determined. Although best fits were obtained by MM-kinetics, we consider the carbon stable isotope-based approach more appropriate as it is specific for biodegradation (not overall attenuation) and at the same time accounts for the dominant electron-accepting process. For o-xylene a field based isotope enrichment factor εfield of − 1.4 could be determined using the Rayleigh model, which closely matched values from laboratory studies of o-xylene degradation under sulfate-reducing conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号