首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
In the ongoing evolutionary arms race between predators and their prey, successful escape from the predator leads to the evolution of improved escape tactics in prey, but also predators become more effective in following and attacking the prey. Antipredatory behavior of prey is considered to be the strongest towards their most dangerous predators. However, prey species can differ both in vulnerability and efficiency of escape to a shared predator. We studied escape reactions of two vole species, the bank vole (Myodes glareolus) and the field vole (Microtus agrestis), under a simulated predation risk of the least weasel (Mustela nivalis nivalis). We conducted a laboratory experiment where a vole was given a possibility to escape from a weasel by fleeing to a horizontal tunnel or climbing the tree. Subsequently to the vole escape decision, we released a weasel to the same tunnel system to test how the weasel succeeded in following the vole. Weasel presence changed the behavior of voles as especially bank voles escaped by climbing. Instead, the majority of field voles fled into the ground-layer tunnel. The different escape tactics of the voles affected the success of the weasel, because climbing voles were less often successfully followed. We suggest that the difference in escape tactics has evolved as an adaptation to different habitats; meadow-exploiting field voles using ground-level escape while bank voles living in three-dimensional forest habitat frequently use arboreal escape tactics. This is likely to lead to different habitat-dependent vulnerabilities to predation in Microtus and Myodes vole species.  相似文献   

2.
Maclean JE  Goheen JR  Doak DF  Palmer TM  Young TP 《Ecology》2011,92(8):1626-1636
Plant populations are regulated by a diverse array of herbivores that impose demographic filters throughout their life cycle. Few studies, however, simultaneously quantify the impacts of multiple herbivore guilds on the lifetime performance or population growth rate of plants. In African savannas, large ungulates (such as elephants) are widely regarded as important drivers of woody plant population dynamics, while the potential impacts of smaller, more cryptic herbivores (such as rodents) have largely been ignored. We combined a large-scale ungulate exclusion experiment with a five-year manipulation of rodent densities to quantify the impacts of three herbivore guilds (wild ungulates, domestic cattle, and rodents) on all life stages of a widespread savanna tree. We utilized demographic modeling to reveal the overall role of each guild in regulating tree population dynamics, and to elucidate the importance of different demographic hurdles in driving population growth under contrasting consumer communities. We found that wild ungulates dramatically reduced population growth, shifting the population trajectory from increase to decline, but that the mechanisms driving these effects were strongly mediated by rodents. The impact of wild ungulates on population growth was predominantly driven by their negative effect on tree reproduction when rodents were excluded, and on adult tree survival when rodents were present. By limiting seedling survival, rodents also reduced population growth; however, this effect was strongly dampened where wild ungulates were present. We suggest that these complex interactions between disparate consumer guilds can have important consequences for the population demography of long-lived species, and that the effects of a single consumer group are often likely to vary dramatically depending on the larger community in which interactions are embedded.  相似文献   

3.
Behaviour and choice of refuge by voles under predation risk   总被引:3,自引:0,他引:3  
Animals often show a strong antipredatory response when they are exposed to their most deadly predator. In northern vole populations, the least weasel, Mustela nivalis nivalis, is probably the most important predator of voles. Because of its small size and slender body shape, the least weasel is capable of hunting voles in their burrows. However, small voles can potentially escape weasel predation by selecting holes smaller than those weasels can enter. We studied the choice of nest holes and refuges by two species of voles under simulated predation risk. In a laboratory experiment, voles were provided with four nest boxes as refuges, with individually adjusted entrance sizes. When exposed to the odour of a weasel, voles did not choose the smallest opening; they rather seemed to trade full protection for easy and immediate access by choosing the nest box with an intermediate entrance size. When outside the nest at the time when a weasel entered the arena, voles avoided the refuges with the smallest holes. In addition to using refuges on ground level, voles climbed on top of the boxes as an escape reaction, as well as exhibiting a variety of behavioural responses, such as fast running, freezing and sneaking.Communicated by P.A. Bednekoff  相似文献   

4.
The effect of predators on the abundance of prey species is a topic of ongoing debate in ecology; the effect of snake predators on their prey has been less debated, as there exists a general consensus that snakes do not negatively influence the abundance of their prey. However, this viewpoint has not been adequately tested. We quantified the effect of brown treesnake (Boiga irregularis) predation on the abundance and size of lizards on Guam by contrasting lizards in two 1-ha treatment plots of secondary forest from which snakes had been removed and excluded vs. two 1-ha control plots in which snakes were monitored but not removed or excluded. We removed resident snakes from the treatment plots with snake traps and hand capture, and snake immigration into these plots was precluded by electrified snake barriers. Lizards were sampled in all plots quarterly for a year following snake elimination in the treatment plots. Following the completion of this experiment, we used total removal sampling to census lizards on a 100-m2 subsample of each plot. Results of systematic lizard population monitoring before and after snake removal suggest that the abundance of the skink, Carlia ailanpalai, increased substantially and the abundance of two species of gekkonids, Lepidodactylus lugubris and Hemidactylus frenatus, also increased on snake-free plots. No treatment effect was observed for the skink Emoia caeruleocauda. Mean snout-vent length of all lizard species only increased following snake removal in the treatment plots. The general increase in prey density and mean size was unexpected in light of the literature consensus that snakes do not control the abundance of their prey species. Our findings show that, at least where alternate predators are lacking, snakes may indeed affect prey populations.  相似文献   

5.
Byholm P  Burgas D  Virtanen T  Valkama J 《Ecology》2012,93(8):1802-1808
While much effort has been made to quantify how landscape composition influences the distribution of species, the possibility that geographical differences in species interactions might affect species distributions has received less attention. Investigating a predator-prey setting in a boreal forest ecosystem, we empirically show that large-scale differences in the predator community structure and small-scale competitive exclusion among predators affect the local distribution of a threatened forest specialist more than does landscape composition. Consequently, even though the landscape parameters affecting Siberian flying squirrel (Pteromys volans) distribution (prey) did not differ between nest sites of the predators Northern Goshawks (Accipiter gentilis) and Ural Owls (Strix uralensis), flying squirrels were heterospecifically attracted by goshawks in a region where both predator species were present. No such effect was found in another region where Ural Owls were absent. These results provide evidence that differences in species interactions over large spatial scales may be a major force influencing the distribution and abundance patterns of species. On the basis of these findings, we suspect that subtle species interactions might be a central reason why landscape models constructed to predict species distributions often fail when applied to wider geographical scales.  相似文献   

6.
Livestock populations in protected areas are viewed negatively because of their interaction with native ungulates through direct competition for food resources. However, livestock and native prey can also interact indirectly through their shared predator. Indirect interactions between two prey species occur when one prey modifies either the functional or numerical responses of a shared predator. This interaction is often manifested as negative effects (apparent competition) on one or both prey species through increased predation risk. But indirect interactions can also yield positive effects on a focal prey if the shared predator modifies its functional response toward increased consumption of an abundant and higher-quality alternative prey. Such a phenomenon between two prey species is underappreciated and overlooked in nature. Positive indirect effects can be expected to occur in livestock-dominated wildlife reserves containing large carnivores. We searched for such positive effects in Acacia-Zizhypus forests of India's Gir sanctuary where livestock (Bubalus bubalis and Bos indicus) and a coexisting native prey (chital deer, Axis axis) are consumed by Asiatic lions (Panthera leo persica). Chital vigilance was higher in areas with low livestock density than in areas with high livestock density. This positive indirect effect occurred because lion predation rates on livestock were twice as great where livestock were abundant than where livestock density was low. Positive indirect interactions mediated by shared predators may be more common than generally thought with rather major consequences for ecological understanding and conservation. We encourage further studies to understand outcomes of indirect interactions on long-term predator-prey dynamics in livestock-dominated protected areas.  相似文献   

7.
Summary The responses of individually marked pikas (Ochotona princeps) to terrestrial predators were investigated in 1980 and 1981 in the Rocky Mountains of Colorado. Pikas uttered short call vocalizations in a variety of contexts: preceding or following an individual's movement, and in response to conspecifics, other nonpredaceous mammals and predators. Adult pikas apparently discriminated contexts in which predators were present by short calling more frequently and for longer duration compared with calling in nonpredator contexts. Short calls uttered by juveniles were similar in all contexts.Adults responded differently to two types of terrestrial predators: weasels and pine martens. Pikas called less frequently in response to weasels than to martens and avoided weasels more often than martens. They delayed the initiation of calling following the first sighting of a weasel more often than to martens. Weasels were determined to be more effective predators of pikas than martens, and these asymmetries in behavior and alarm vocalizations may indicate that responses reduce an individual's risk of predaton by weasels.Both male and female pikas called in response to predators, and residents called more often than nonresidents. The possible function of predator-related vocalization in pikas is discussed. It is suggested that calls to predators may function to warn local residents, which in pikas are usually closely related.  相似文献   

8.
Influence of predation on infaunal abundance in Upper Chesapeake Bay,USA   总被引:5,自引:0,他引:5  
The importance of predators in controlling the densities of infaunal (>0.5 mm) organisms was investigated in the mesohaline region of the Upper Chesapeake Bay (USA) using field experiments. The role of predators in controlling infaunal density and community characteristics varied with habitat type, season (i.e., predator abundance) and developmental or successional stage of the community. Few infaunal species were adversely affected by predator exclusion. Species that increased greatly in abundance in the absence of predators (e.g. Eteone heteropoda, Streblospio benedicti, Nereis succinea, and juvenile Macoma balthica and Mya arenaria) lived near the sediment-water interface and had major population pulses from fall through spring. Species whose abundances increased moderately or were not affected by predator exclusion were deeper burrowing organisms (e.g. Heteromastus filiformis and adult Mya arenaria), or were relatively small organisms (e.g. Paraprionospio pinnata, Scolecolepides viridis and Peloscolex gabriellae) whose principal predators could be other members of the infauna. Competition did not appear to be an important factor controlling infaunal density in these experiments.This work is Contribution No. 973 of the Center for Environmental and Estuarine Studies of the University of Maryland  相似文献   

9.
McCauley DJ  Keesing F  Young TP  Allan BF  Pringle RM 《Ecology》2006,87(10):2657-2663
Many large mammal species are declining in African savannas, yet we understand relatively little about how these declines influence other species. Previous studies have shown that the removal of large herbivorous mammals from large-scale, replicated experimental plots results in a dramatic increase in the density of small mammals, an increase that has been attributed to the relaxation of competition between rodents and large herbivores for food resources. To assess whether the removal of large herbivores also influenced a predator of small mammals, we measured the abundance of the locally common olive hissing snake, Psammophis mossambicus, over a 19-mo period in plots with and without large herbivores. Psammophis mossambicus was significantly more abundant in plots where large herbivores were removed and rodent numbers were high. Based on results from raptor surveys and measurements of vegetative cover, differences in snake density do not appear to be driven by differences in rates of predation on snakes. Instead, snakes appear to be responding numerically to greater abundances of small-mammal prey in areas from which large herbivores have been excluded. This is the first empirical demonstration of the indirect effects of large herbivores on snake abundance and presents an interesting example of how the influence of dominant and keystone species can move through a food web.  相似文献   

10.
In coastal marine ecosystems, predation might affect spatial distribution and population dynamics of benthic assemblages. Here, by means of experimental exclusion of potential predators, we compared the effects of epibenthic predation on metazoan meiofaunal assemblages on soft and rocky substrates. Different patterns of abundance were observed in uncaged versus caged plots, across habitats. In caged soft substrates, the abundance of Nematodes, Copepods and Polychaetes increased by 56, 45, 57%, respectively, in the first 3 months. An increase in the number of meiofaunal taxa was also observed. The exclusion of predators from rocky substrates showed less clear patterns. It did not affect the number of taxa while a decrease in meiofaunal abundance was observed. Our results suggest that the exclusion of epibenthic predators had clear effect on total metazoan meiofaunal abundance and on the number of taxa, only in soft bottoms. The different impact of predation across habitats can be potentially explained by differences in terms of spatial variability and substrate complexity. We estimated that, coarsely, more than 75% of total metazoan meiofaunal production can be channeled to higher trophic levels through predation on soft-bottoms. Among meiofaunal taxa, Polychaetes and Nematodes provided the major contribution to benthic energy transfers. These results suggest the trophic relevance of metazoan meiofauna in coastal food webs and claim for the refinement of further experiments for the quantification of its role in different ecological systems.  相似文献   

11.
Predator–prey interaction in aquatic ecosystem is one of the simplest drivers affecting the species population dynamics. Predation controls are recognized as important aspects of ecosystem husbandry and management. In this paper we investigated how predation control cause an increase in host growth in the abundance of hard clam (Meretrix lusoria) populations subject to mercury (Hg)-stressed birnavirus. Here we linked predator–prey relationships with a bioenergetic matrix population model (MPM) associated with a susceptible–infectious–mortality (SIM) model based on a host–pathogen–predator framework to quantify the predator effects on population dynamics of disease in hard clam populations. Our results indicated that relative high predation rates could promote the hard clam abundances in relation to predators that selectively captured the infected hard clam, by which the disease transmission was suppressed. The results also demonstrated that predator-induced modifications in host behavior could have potential negative or positive effects on host growth depending on relative species density and resource dynamics. The most immediate implication of this study for the management of aquatic ecosystem is that, beyond the potential for causing a growth in abundance, predation might provoke greater predictability in aquatic ecosystem species populations and thereby increase the safety of ecosystem production from stochastic environmental events.  相似文献   

12.
Summary The influence of vole cycles on the demography, spatial organization, and abundance of potential rodent competitors was studied in three California rodents in the laboratory and in the field. Population densities ofMicrotus californicus were inversely correlated with reproductive success in two potential competitors (Reithrodontomys megalotis andMus musculus). Additionally, high-density vole populations forced these species into suboptimal habitats. During low-density vole populations,Reithrodontomys andMus left their refugia, expanded their usage of habitat, were more active, and their reproductive success was greater. Thus, this work suggests that during vole population peaks, competition with sympatric species of mice is severe. Conversely, when vole populations decline, competition is relaxed. The temporal and spatial organization of the three-species complex supports models of nonequilibrium and fugitive species coexistence.  相似文献   

13.
This study examined the influence of habitat structural complexity on the collective effects of top-down and bottom-up forces on herbivore abundance in urban landscapes. The persistence and varying complexity of urban landscapes set them apart from ephemeral agroecosystems and natural habitats where the majority of studies have been conducted. Using surveys and manipulative experiments. We explicitly tested the effect of natural enemies (enemies hypothesis), host plant quality, and herbivore movement on the abundance of the specialist insect herbivore, Stephanitis pyrioides, in landscapes of varying structural complexity. This herbivore was extremely abundant in simple landscapes and rare in complex ones. Natural enemies were the major force influencing abundance of S. pyrioides across habitat types. Generalist predators, particularly the spider Anyphaena celer, were more abundant in complex landscapes. Predator abundance was related to greater abundance of alternative prey in those landscapes. Stephanitis pyrioides survival was lower in complex habitats when exposed to endemic natural enemy populations. Laboratory feeding trials confirmed the more abundant predators consumed S. pyrioides. Host plant quality was not a strong force influencing patterns of S. pyrioides abundance. When predators were excluded, adult S. pyrioides survival was greater on azaleas grown in complex habitats, in opposition to the observed pattern of abundance. Similarly, complexity did not affect S. pyrioides immigration and emigration rates. The complexity of urban landscapes affects the strength of top-down forces on herbivorous insect populations by influencing alternative prey and generalist predator abundance. It is possible that habitats can be manipulated to promote the suppressive effects of generalist predators.  相似文献   

14.
The Effectiveness of Removing Predators to Protect Bird Populations   总被引:7,自引:0,他引:7  
The control of predators for nature conservation purposes is becoming an increasingly important issue. The growing populations of predator species in some areas and the introduction of predators in other areas have led to concerns about their impact on vulnerable bird species and to the implementation of predator control in some cases. This is set against a background of increasingly fragmented semi-natural habitats and declining populations for many species. To assess the efficiency of predator removal as a conservation measure, the results of 20 published studies of predator removal programs were meta-analyzed. Removing predators had a large, positive effect on hatching success of the target bird species, with removal areas showing higher hatching success, on average, than 75% of the control areas. Similarly, predator removal increased significantly post-breeding population sizes (i.e. autumn densities) of the target bird species. The effect of predator removal on breeding population sizes was not significant, however, with studies differing widely in their reported effects. We conclude that predator removal often fulfills the goal of game management, which is to enhance harvestable post-breeding populations, but that it is much less consistent in achieving the usual aim of conservation managers, which is to maintain and, where appropriate, increase bird breeding population sizes. This may be due to inherent characteristics of avian population regulation, but also to ineffective predator removal and inadequate subsequent monitoring of the prey populations.  相似文献   

15.
Apex predators are declining at alarming rates due to exploitation by humans, but we have yet to fully discern the impacts of apex predator loss on ecosystem function. In a management context, it is critically important to clarify the role apex predators play in structuring populations of lower trophic levels. Thus, we examined the top‐down influence of reef sharks (an apex predator on coral reefs) and mesopredators on large‐bodied herbivores. We measured the abundance, size structure, and biomass of apex predators, mesopredators, and herbivores across fished, no‐take, and no‐entry management zones in the Great Barrier Reef Marine Park, Australia. Shark abundance and mesopredator size and biomass were higher in no‐entry zones than in fished and no‐take zones, which indicates the viability of strictly enforced human exclusion areas as tools for the conservation of predator communities. Changes in predator populations due to protection in no‐entry zones did not have a discernible influence on the density, size, or biomass of different functional groups of herbivorous fishes. The lack of a relationship between predators and herbivores suggests that top‐down forces may not play a strong role in regulating large‐bodied herbivorous coral reef fish populations. Given this inconsistency with traditional ecological theories of trophic cascades, trophic structures on coral reefs may need to be reassessed to enable the establishment of appropriate and effective management regimes. El Impacto de las Áreas de Conservación sobre las Interacciones Tróficas entre los Depredadores Dominantes y los Herbívoros en los Arrecifes de Coral  相似文献   

16.
Predation risk has been shown to alter various behaviours in prey. Risk alters activity, habitat use and foraging, and weight decrease might be a consequence of that. In mammals, studies on physiological measures affected by risk of predation, other than weight, are rare. We studied in two separate laboratory experiments foraging, hoarding behaviour and expression of stress measured non-invasively from the faeces in the bank vole (Clethrionomys glareolus), a common boreal rodent. Voles were exposed to predation risk using odours of the least weasels (Mustela nivalis nivalis). Distilled water served as control. In the first experiment, we found that foraging effort, measured as sunflower seeds taken from seed trays filled with sand, was significantly lower in trays scented with weasel odour. Both immediate consumption of seeds and hoarding were affected negatively by the weasel odour. Females hoarded significantly more than males in autumn. In the second experiment, the negative effect of weasel odour on foraging was consistent over a 3-day experiment, but the strongest effect was observed in the first night. Foraging increased over the time of the experiment, which might reflect either energetic compensation during a longer period of risk, predicted in the predation risk allocation hypothesis, or habituation to the odour-simulated risk. Despite decreased foraging under predation risk, stress measured as corticosteroid metabolite concentration in vole faeces was not affected by the weasel odour treatment. In conclusion, we were able to verify predation-risk-mediated changes in the foraging effort of bank voles but no physiological stress response was measured non-invasively, probably due to great individual variation in secretion of stress hormones.  相似文献   

17.
Fenton A  Rands SA 《Ecology》2006,87(11):2832-2841
Parasites are known to directly affect their hosts at both the individual and population level. However, little is known about their more subtle, indirect effects and how these may affect population and community dynamics. In particular, trophically transmitted parasites may manipulate the behavior of intermediate hosts, fundamentally altering the pattern of contact between these individuals and their predators. Here, we develop a suite of population dynamic models to explore the impact of such behavioral modifications on the dynamics and structure of the predator-prey community. We show that, although such manipulations do not directly affect the persistence of the predator and prey populations, they can greatly alter the quantitative dynamics of the community, potentially resulting in high amplitude oscillations in abundance. We show that the precise impact of host manipulation depends greatly on the predator's functional response, which describes the predator's foraging efficiency under changing prey availabilities. Even if the parasite is rarely observed within the prey population, such manipulations extend beyond the direct impact on the intermediate host to affect the foraging success of the predator, with profound implications for the structure and stability of the predator-prey community.  相似文献   

18.
Apparent competition is an indirect interaction between 2 or more prey species through a shared predator, and it is increasingly recognized as a mechanism of the decline and extinction of many species. Through case studies, we evaluated the effectiveness of 4 management strategies for species affected by apparent competition: predator control, reduction in the abundances of alternate prey, simultaneous control of predators and alternate prey, and no active management of predators or alternate prey. Solely reducing predator abundances rapidly increased abundances of alternate and rare prey, but observed increases are likely short‐lived due to fast increases in predator abundance following the cessation of control efforts. Substantial reductions of an abundant alternate prey resulted in increased predation on endangered huemul (Hippocamelus bisulcus) deer in Chilean Patagonia, which highlights potential risks associated with solely reducing alternate prey species. Simultaneous removal of predators and alternate prey increased survival of island foxes (Urocyon littoralis) in California (U.S.A.) above a threshold required for population recovery. In the absence of active management, populations of rare woodland caribou (Rangifer tarandus caribou) continued to decline in British Columbia, Canada. On the basis of the cases we examined, we suggest the simultaneous control of predators and alternate prey is the management strategy most likely to increase abundances and probabilities of persistence of rare prey over the long term. Knowing the mechanisms driving changes in species’ abundances before implementing any management intervention is critical. We suggest scientists can best contribute to the conservation of species affected by apparent competition by clearly communicating the biological and demographic forces at play to policy makers responsible for the implementation of proposed management actions. Estrategias de Conservación para Especies Afectadas por Competencia Aparente  相似文献   

19.
Top-down regulation of herbivores in terrestrial ecosystems is pervasive and can lead to trophic cascades that release plants from herbivory. Due to their relatively simplified food webs, agroecosystems may be particularly prone to trophic cascades, a rationale that underlies biological control. However, theoretical and empirical studies show that, within multiple enemy assemblages, intraguild predation (IGP) may lead to a disruption of top-down control by predators. We conducted a factorial field study to test the separate and combined effects of predators and parasitoids in a system with asymmetric IGP. Specifically we combined ambient levels of generalist predators (mainly Coccinellidae) of the soybean aphid, Aphis glycines Matsumura, with controlled releases of the native parasitoid Lysiphlebus testaceipes (Cresson) and measured their impact on aphid population growth and soybean biomass and yield. We found that generalist predators provided strong, season-long aphid suppression, which resulted in a trophic cascade that doubled soybean biomass and yield. However, contrary to our expectations, L. testaceipes provided minor aphid suppression and only when predators were excluded, which resulted in nonadditive effects when both groups were combined. We found direct and indirect evidence of IGP, but because percentage parasitism did not differ between predator exclusion and ambient predator treatments, we concluded that IGP did not disrupt parasitism during this study. Our results support theoretical predictions that intraguild predators which also provide strong herbivore suppression do not disrupt top-down control of herbivores.  相似文献   

20.
Abstract: Wildlife‐exclusion fencing and wildlife‐crossing structures (e.g., underpasses and overpasses) are becoming increasingly common features of highway projects around the world. The prey‐trap hypothesis posits that predators exploit crossing structures to detect and capture prey. The hypothesis predicts that predation events occur closer to a highway after the construction of fences and crossing structures and that prey species’ use of crossings increases the probability that predators will attack prey. We examined interactions between ungulates and large carnivores at 28 wildlife crossing structures along 45 km of the Trans‐Canada Highway in Banff National Park, Alberta. We obtained long‐term records of locations where ungulates were killed (kill sites) before and after crossing structures were built. We also placed remote, motion‐triggered cameras at two crossing structures to monitor predator behavior following ungulate passage through the structure. The proximity of ungulate kill sites to the highway was similar before and after construction of fencing and crossing structures. We found only five kill sites near crossing structures after more than 32,000 visits over 13 years. We found no evidence that predator behavior at crossing structures is affected by prey movement. Our results suggest that interactions between large mammals and their prey at wildlife‐crossing structures in Banff National Park are not explained by the prey‐trap hypothesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号