首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   1篇
基础理论   5篇
污染及防治   1篇
  2022年   1篇
  2019年   1篇
  2016年   1篇
  2012年   1篇
  2010年   1篇
  2006年   1篇
排序方式: 共有6条查询结果,搜索用时 31 毫秒
1
1.
The effect of predators on the abundance of prey species is a topic of ongoing debate in ecology; the effect of snake predators on their prey has been less debated, as there exists a general consensus that snakes do not negatively influence the abundance of their prey. However, this viewpoint has not been adequately tested. We quantified the effect of brown treesnake (Boiga irregularis) predation on the abundance and size of lizards on Guam by contrasting lizards in two 1-ha treatment plots of secondary forest from which snakes had been removed and excluded vs. two 1-ha control plots in which snakes were monitored but not removed or excluded. We removed resident snakes from the treatment plots with snake traps and hand capture, and snake immigration into these plots was precluded by electrified snake barriers. Lizards were sampled in all plots quarterly for a year following snake elimination in the treatment plots. Following the completion of this experiment, we used total removal sampling to census lizards on a 100-m2 subsample of each plot. Results of systematic lizard population monitoring before and after snake removal suggest that the abundance of the skink, Carlia ailanpalai, increased substantially and the abundance of two species of gekkonids, Lepidodactylus lugubris and Hemidactylus frenatus, also increased on snake-free plots. No treatment effect was observed for the skink Emoia caeruleocauda. Mean snout-vent length of all lizard species only increased following snake removal in the treatment plots. The general increase in prey density and mean size was unexpected in light of the literature consensus that snakes do not control the abundance of their prey species. Our findings show that, at least where alternate predators are lacking, snakes may indeed affect prey populations.  相似文献   
2.
Ex situ conservation strategies for threatened species often require long‐term commitment and financial investment to achieve management objectives. We present a framework that considers the decision to adopt ex situ management for a target species as the end point of several linked decisions. We used a decision tree to intuitively represent the logical sequence of decision making. The first decision is to identify the specific management actions most likely to achieve the fundamental objectives of the recovery plan, with or without the use of ex‐situ populations. Once this decision has been made, one decides whether to establish an ex situ population, accounting for the probability of success in the initial phase of the recovery plan, for example, the probability of successful breeding in captivity. Approaching these decisions in the reverse order (attempting to establish an ex situ population before its purpose is clearly defined) can lead to a poor allocation of resources, because it may restrict the range of available decisions in the second stage. We applied our decision framework to the recovery program for the threatened spotted tree frog (Litoria spenceri) of southeastern Australia. Across a range of possible management actions, only those including ex situ management were expected to provide >50% probability of the species’ persistence, but these actions cost more than use of in situ alternatives only. The expected benefits of ex situ actions were predicted to be offset by additional uncertainty and stochasticity associated with establishing and maintaining ex situ populations. Naïvely implementing ex situ conservation strategies can lead to inefficient management. Our framework may help managers explicitly evaluate objectives, management options, and the probability of success prior to establishing a captive colony of any given species.  相似文献   
3.
Forest fuel reduction treatments are increasingly used by managers to reduce the risk of high-severity wildfire and to manage changes in the ecological function of forests. However, comparative ecological effects of the various types of treatments are poorly understood. We examined short-term patterns in small-mammal responses to mechanical thinning, prescribed-fire, and mechanical thinning/prescribed-fire combination treatments at eight different study areas across the United States as a part of the National Fire and Fire Surrogate (FFS) Project. Research questions included: (1) do treatments differ in their effect on small mammal densities and biomass? and (2) are effects of treatments consistent across study areas? We modeled taxa-specific densities and total small-mammal biomass as functions of treatment types and study area effects and ranked models based on an information-theoretic model selection criterion. Small-mammal taxa examined, including deer mice (Peromyscus maniculatus), yellow-pine chipmunks (Tamias amoenus), and golden-mantled ground squirrels (Spermophilus lateralis), as well as all Peromyscus and Tamias species, had top-ranked models with responses varying both by treatment type and study area. In each of these cases, the top-ranked model carried between 69% and 99% of the total weight in the model set, indicating strong support for the top-ranked models. However, the top-ranked model of total small-mammal biomass was a model with biomass varying only with treatment (i.e., treated vs. untreated), not by treatment type or study area; again, this model had strong support, with 75% of the total model weight. Individual species and taxa appear to have variable responses to fuel reduction treatment types in different areas; however, total small-mammal biomass appears generally to increase after any type of fuel reduction. These results suggest that there is substantial variability in taxa-specific responses to treatments and indicate that adaptive management policies may be necessary when applying fuel reduction treatments in areas where management of small-mammal populations is of interest. Adaptive management can be used by managers who are conducting fuel reduction treatments to reduce uncertainty as to which treatments are locally optimal for meeting objectives for the management of small-mammal populations.  相似文献   
4.
Seasonal patterns of atmospheric mercury (Hg) fluxes measured over vegetated terrestrial systems can provide insight into the underlying process controlling emission and deposition of Hg to vegetated surfaces. Gaseous elemental Hg fluxes were measured for week-long periods in each season (spring, summer, fall, and winter) over an uncontaminated high-elevation wetland meadow in Shenandoah National Park, Virginia using micrometeorological methods. Mean net deposition was observed in the spring (?4.8 ng m?2 h?1), emission in the summer (2.5 ng m?2 h?1), near zero flux in the fall (0.3 ng m?2 h?1), and emission in the winter (4.1 ng m?2 h?1). Nighttime deposition (when stomata are closed) and the poor correlation between Hg fluxes and canopy conductance during periods of active vegetation growth suggest that stomatal processes are not the dominant mechanism for ecosystem-level GEM exchange at this site. The strong springtime deposition relative to summer implies that young vegetation is better at scavenging Hg, with the highest deposition occurring at night possibly via a cuticular pathway. These results suggest that spring is a period of GEM deposition while other seasons exhibit net emission, emphasizing the importance of capturing GEM flux seasonality when determining total Hg budgets.  相似文献   
5.
In the conservation of endangered species, suppression of a population of one native species to benefit another poses challenges. Examples include predator control and nest parasite reduction. Less obvious is the control of blood-feeding arthropods. We conducted a case study of the effect of native black flies (Simulium spp.) on reintroduced Whooping Cranes (Grus americana). Our intent was to provide a science-driven approach for determining the effects of blood-feeding arthropods on endangered vertebrates and identifying optimal management actions for managers faced with competing objectives. A multiyear experiment demonstrated that black flies reduce nest success in cranes by driving incubating birds off their nests. We used a decision-analytic approach to develop creative management alternatives and evaluate trade-offs among competing objectives. We identified 4 management objectives: establish a self-sustaining crane population, improve crane well-being, maintain native black flies as functional components of the ecosystem, and minimize costs. We next identified potential management alternatives: do nothing, suppress black flies, force crane renesting to occur after the activity period of black flies, relocate releases of cranes, suppress black flies and relocate releases, or force crane renesting and relocate releases. We then developed predictions on constructed scales of 0 (worst-performing alternative) to 1 (best-performing alternative) to indicate how alternative actions performed in terms of management objectives. The optimal action depended on the relative importance of each objective to a decision maker. Only relocating releases was a dominated alternative, indicating that it was not optimal regardless of the relative importance of objectives. A rational decision maker could choose any other management alternative we considered. Recognizing that decisions involve trade-offs that must be weighed by decision makers is crucial to identifying alternatives that best balance multiple management objectives. Given uncertainty about the population dynamics of blood-feeding arthropods, an adaptive management approach could offer substantial benefits.  相似文献   
6.
Biodiversity conservation decisions are difficult, especially when they involve differing values, complex multidimensional objectives, scarce resources, urgency, and considerable uncertainty. Decision science embodies a theory about how to make difficult decisions and an extensive array of frameworks and tools that make that theory practical. We sought to improve conceptual clarity and practical application of decision science to help decision makers apply decision science to conservation problems. We addressed barriers to the uptake of decision science, including a lack of training and awareness of decision science; confusion over common terminology and which tools and frameworks to apply; and the mistaken impression that applying decision science must be time consuming, expensive, and complex. To aid in navigating the extensive and disparate decision science literature, we clarify meaning of common terms: decision science, decision theory, decision analysis, structured decision-making, and decision-support tools. Applying decision science does not have to be complex or time consuming; rather, it begins with knowing how to think through the components of a decision utilizing decision analysis (i.e., define the problem, elicit objectives, develop alternatives, estimate consequences, and perform trade-offs). This is best achieved by applying a rapid-prototyping approach. At each step, decision-support tools can provide additional insight and clarity, whereas decision-support frameworks (e.g., priority threat management and systematic conservation planning) can aid navigation of multiple steps of a decision analysis for particular contexts. We summarize key decision-support frameworks and tools and describe to which step of a decision analysis, and to which contexts, each is most useful to apply. Our introduction to decision science will aid in contextualizing current approaches and new developments, and help decision makers begin to apply decision science to conservation problems.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号