首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 31 毫秒
1.
北京气象塔夏季大气O3,NOx和CO浓度变化的观测实验   总被引:16,自引:7,他引:9  
以北京325m气象塔为观测平台,于2002年夏季进行了大气污染物臭氧(O3)及其前体物氮氧化物(NOx)和气象要素加强期的同步观测.对观测资料做了详尽的分析,结果表明:边界层内存在明显的臭氧浓度(用体积分数表示)垂直差异;中午120m高度层存在O3浓度最大值;低层O3浓度呈明显的日变化,且昼夜振幅较大;夜间高层(280m)O3的湍流混合和化学消耗较弱,可维持较高的浓度;局地光化学生成是白天边界层O3的主要来源;降水天气过程可造成O3及其前体物浓度的显著变化.  相似文献   

2.
利用北京市区两个典型观测站的大气臭氧(O3)及前体物浓度观测资料和气象要素观测数据,分析了影响大气O3浓度各要素的相关性,并采用主成分分析和逐步回归方法构造大气O3浓度统计预报方程.结果表明,大气O3与前体物一氧化氮(NO)、二氧化氮(NO2)和气象要素呈现较好相关性;发现由于变量间共线性问题,逐步回归方法不能给出可接受的回归方程,而采用主成分分析和逐步回归方法相结合,可避免共线性问题,由前体物浓度和气象要素给出较好的北京大气O3浓度统计预报方程,可决系数R2分别为0.78(IAPs2007)、0.88(IRSAs2007)和0.64(IAPs2005),能够有效地预报O3浓度的变化情况.  相似文献   

3.
北京气象塔夏季大气臭氧观测研究   总被引:26,自引:4,他引:22  
2000年夏季7~8月,以北京325m气象塔为观测平台,分别在8,120,280m高度上进行了大气污染物臭氧(O3)及其前体物氮氧化物(NOx)和气象要素加强期的同步观测.对观测资料的分析表明,边界层内存在明显的臭氧浓度垂直差异;低层臭氧浓度呈明显的日变化,且昼夜振幅较大;对O3浓度与NO2/NO的比值作线性拟合分析发现,白天(10:00~16:00)O3浓度与[NO2/NO]的比值成线性关系,即达到光化学稳定态,但受气象背景场影响较大.  相似文献   

4.
于2013年夏季,对西安城区10个大气监测点进行了地面大气中O3及其前体物(NOx、CO)连续在线观测,观测结果分析表明:夏季O3小时浓度平均值范围为39.03~93.06μg/m3,且其浓度呈现由东北至西南方向逐渐升高的空间分布特征。O3小时浓度分布呈明显的单峰形式,15:00左右达到峰值;NOx、CO浓度呈较明显的双峰分布,CO较NOx的浓度波动较为平缓。O3日均浓度与温度、太阳辐射呈正相关,而与相对湿度呈负相关关系,且受温度、太阳辐射的影响更加显著。  相似文献   

5.
东亚边界层臭氧时空分布的数值模拟研究   总被引:2,自引:0,他引:2       下载免费PDF全文
利用嵌套网格空气质量预报模式系统(NAQPMS)对2010年东亚地区边界层臭氧(O3)的时空分布进行了数值模拟,并评估了东亚边界层光化学反应的活性.结果表明,NAQPMS模式与观测结果较为一致,站点观测与模拟的日均值(月均值)相关系数达到0.56~0.91,模式能合理再现东亚地区地面O3的时空分布特征.东亚地区冬季边界层O3低值区出现在中国东部;春季O3浓度增加,西北太平洋沿岸地区O3浓度达60μL/m3左右;夏季东亚中纬度35°N附近大陆地区O3由于强烈的光化学反应呈现出一浓度高值带,浓度达60μL/m3以上;秋季东亚大部分地区O3浓度维持在40~45μL/m3左右.夏季中国京津冀和长江三角洲部分地区光化学净生成率已超过30×10-9/d.  相似文献   

6.
常州地区近地面O3及其前物体相关性研究   总被引:1,自引:0,他引:1  
根据2013年全年至2014年6月常州市环境监测中心空气自动监测系统监测子站的臭氧(O3)及其前体物(氮氧化物NOx和一氧化碳CO)的数据资料,着重分析了上述监测因子时间变化特征,并研究了三者之间的相关性.结果表明,受局地光化学反应,常州地区在冬夏两季O3污染程度相差较大,夏季为O3的活跃期浓度较高.O3单日浓度呈单峰型变化.NOx和O3浓度基本成正相关.CO的浓度变化与O3的浓度变化呈明显的正相关,且CO污染相对于O3污染有明显的滞后性.  相似文献   

7.
上海市大气挥发性有机物化学消耗与臭氧生成的关系   总被引:11,自引:8,他引:3  
王红丽 《环境科学》2015,36(9):3159-3167
本研究基于夏季上海3个不同功能站点臭氧(O3)及其前体物的观测结果,分析了上海不同地区O3及其前体物的污染特征及空间差异;采用参数化的方法估算了VOCs的大气化学消耗水平.结果表明,观测期间上海市区VOCs浓度约为20×10-9,高于西部郊区的17×10-9;两个地区VOCs最大增量反应活性(以O3/VOCs计)的平均值比较接近,约为5.0mol·mol-1.但是,市区VOCs的大气消耗水平(4.0×10-9)不足西部郊区VOCs消耗水平(8.3×10-9)的一半,这是西部郊区O3污染更重的重要原因;东部沿海郊区O3浓度的变化主要是由于区域输送.不同地区VOCs消耗水平与O3生成浓度的比值接近,说明不同地区VOCs消耗生成O3的效率接近;烯烃和芳香烃是最主要的VOCs消耗物种,二者对VOCs消耗量的总贡献高达90%.VOCs的消耗水平在正午达到最大,夜间消耗水平最低,日分布曲线与O3生成的日变化曲线相似,但O3峰值出现时间略晚于VOCs消耗水平峰值出现的时间.  相似文献   

8.
南京夏季市区VOCs特征及O3生成潜势的相关性分析   总被引:18,自引:10,他引:8  
挥发性有机物(volatile organic compounds,VOCs)是大气中光化学污染臭氧(O3)的重要前体物,其在大气中的浓度水平直接影响着臭氧的污染特征.本研究运用大气挥发性有机物快速在线连续自动监测系统,于2013年8月对南京市区大气中98种VOCs进行观测,分析南京夏季VOCs体积分数水平及组成特征,分析臭氧及其前体物的变化,运用VOCs/NOx比值法研究南京臭氧生成敏感性控制因素.结果表明,夏季南京市区大气VOCs最高体积分数达200×10-9,平均体积分数为52.05×10-9,各物种体积分数大小为烷烃含氧有机物烯烃芳香烃;臭氧平均质量浓度76.5μg·m-3,小时质量浓度超标率为5.9%.臭氧质量浓度高值期,其前体物VOCs与NOx变化趋势基本一致,并与O3变化呈明显的反相关;不同臭氧质量浓度阶段,同种类的VOCs体积分数也存在一定的差异;夏季南京市区的臭氧生成对VOCs较敏感,属于VOCs控制区.  相似文献   

9.
2020年6月,在山东省临沂城区开展臭氧(O3)及其前体物观测实验,基于观测数据结合MCM光化学模式模拟,对6月中旬O3污染特例生成机理及控制机制进行了分析.结果 发现,尽管观测期间降水较多,一旦天气转晴,O3迅速积累并超标,1-h和8-h φ(O3)超标天数分别为10d(频率32%)和14 d(45%).O3日变化呈...  相似文献   

10.
安徽省O3浓度时空分异及其驱动因素研究   总被引:1,自引:0,他引:1  
基于2017—2018年安徽省132个空气质量监测站点的O3浓度观测数据及各月份的气象与前体物排放数据, 采用空间自相关分析、地理探测器等方法分析安徽O3浓度的时空分异及其驱动因素. 结果表明:安徽O3浓度的峰值出现在5月和6月, 超标率分别为31.4%和42.8%. O3浓度整体呈空间集聚特征, 高值区主要出现在安徽东北部的蚌埠、宿州、淮南和滁州4市, 低值主要分布在皖南山区. 气象要素是安徽省O3浓度格局形成的主控因素, 其中6月的边界层高度(q=0.644)、近地面太阳辐射(q=0.597)和风速(q=0.571)的影响最大, 且呈正向影响, 风速的增大和边界层高度的增加可能使得输入性污染增加. 降雨量(q=-0.532)和相对湿度(q=-0.559)呈负向影响, 且降雨带的移动是影响安徽夏季O3分布格局的一项关键因素. 本地前体物排放对安徽O3浓度的影响受到气象要素的驱动, 在夏季呈正向, 而冬季呈反向, 其中CO的影响相对较大. 6月气象要素与本地前体物排放的双因子交互驱动对O3浓度的空间分异具有增强作用. 边界层高度和近地面太阳辐射与本地前体物的组合解释力均大于0.7, 在不利的气象条件下, 应进一步加强对本地前体物排放的管控.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号