首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
南京北郊夏季近地层臭氧及其前体物体积分数变化特征   总被引:7,自引:5,他引:2  
邵平  安俊琳  杨辉  林旭  吉东生 《环境科学》2014,35(11):4031-4043
南京北郊,钢铁、石化等重工业集中,大气污染现状不容乐观.为了研究此类重工业地区夏季光化学污染特征,于2013年5月18日~8月31日连续观测了臭氧及其前体物的浓度并同时记录了常规气象要素.结果表明,观测期间臭氧(O3)、氮氧化物(NOx)和挥发性有机物(VOCs)平均体积分数分别为(32.01±15.20)×10-9、(21.50±14.02)×10-9、(33.16±25.20)×10-9,一氧化碳(CO)为(0.66±0.44)×10-6;O3体积分数小时均值最大值达146.42×10-9;O3超过国家环境空气质量二级标准14.1%.对污染物进行浓度频率分布近似得到观测期间O3、NOx和VOCs背景体积分数分别为(5.71±2.51)×10-9、(12.20±0.36)×10-9和(22.44±0.38)×10-9,CO为(0.28±0.01)×10-6.观测点污染物受周边排放源的影响较大.在风速为2~3 m·s-1的西南风作用下,VOCs中的活性物种体积分数较高,O3体积分数容易累积达到高值;偏东风主导下主要来自周边工业源和交通源的NOx、CO和VOCs体积分数易出现高值.南京亚青期间对工业生产和部分机动车采取了调控措施,O3体积分数未明显减少,并有4 d超过国家二级标准.  相似文献   

2.
为了研究南京夏季光化学污染特征,于2013-05-18~2015-08-31连续观测了臭氧及其前体物的浓度及气象要素。结果表明:臭氧(O3)、氮氧化物(NOx)和挥发性有机物(VOCs)平均体积分数分别为(32.01±15.20)×10-9、(21.50±14.02)×10-9、(33.16±25.20)×10-9,一氧化碳(CO)为(0.66±0.44)×10-6;O3体积分数小时均值最大值可达146.42×10-9;O3超过国家环境空气质量标准14.1%;有11 d出现霾现象,占整个观测时段的11.1%。观测点受周边源排放影响较大。在风速为2~3 m/s的西南风作用下,VOCs中的活性物种体积分数较高,O3体积分数易累积出现高值;偏东风主导下主要来自周围工业源和交通源排放的NOx、CO和VOCs等体积浓度易出现高值。臭氧产生效率(OPE)值比较低约为2.17±0.12。  相似文献   

3.
北京奥运时段VOCs浓度变化、臭氧产生潜势及来源分析研究   总被引:31,自引:20,他引:11  
挥发性有机物(VOCs)是大气中光化学污染臭氧(O3)的重要前体物,其在大气中的浓度水平往往直接影响着臭氧的污染水平.以2008年夏季北京大气中VOCs浓度观测资料为基础,分析了VOCs浓度和组分随时间的变化特征,比较了各组分对臭氧产生的影响潜势,并利用主成分分析法研究了VOCs主要来源.结果表明,北京大气总VOCs在上午和下午的浓度分别是34.38×10-9(体积分数)和27.13×10-9(体积分数),组分中以烷烃最高,芳烃次之,烯烃最低,下午大气中VOCs浓度显著低于上午,烯烃、芳烃和烷烃依次下降28%、26%和15%;其中1,2,4-三甲苯等效丙烯浓度最高(8.05×10-9C),其次为间对二甲苯(6.97×10-9C)、甲苯(6.41×10-9C)和1,3,5-三甲苯(5.64×10-9C);芳烃对大气O3生成贡献最大(47%),其次是烯烃(40%),烷烃最低(13%).北京大气中VOCs主要来源于机动车(28%)、溶剂挥发(19%)、液化气泄漏(15%)和工业排放(12%).为遏制近年来夏季O污染加重趋势,北京应大力减少VOCs排放,特别是芳香烃的排放量.  相似文献   

4.
王红丽 《环境科学学报》2015,35(6):1603-1611
光化学污染导致的高浓度臭氧(O3)是上海面临的重要大气污染问题.本研究分别选取了市区(徐汇)、城郊(青浦)和郊区(南汇)3个典型地区在夏季光化学污染易发季节开展了O3及其前体物挥发性有机物(VOCs)和氮氧化物(NOx)的观测,结合光化学箱模型研究探讨了O3生成的主控污染物.研究表明,不同地区O3污染呈现较强的同步性,日最大浓度也比较接近;但南汇郊区由于受机动车排放影响较小,NOx浓度显著低于其他两个地区,导致该地区O3浓度日变化曲线相对平缓,夜间O3浓度也维持在较高水平.大气VOCs浓度较高时,往往伴随高浓度的O3;3个地区VOCs浓度和组成差异明显,就VOCs浓度而言,徐汇青浦南汇;浓度贡献最主要的物种为甲苯、C2~C3的烷烃和烯烃、丙酮以及辛烷;而C7~C10芳香烃、C3~C4的烯烃、异戊二烯以及乙醛是上海大气臭氧生成潜势贡献最大的VOCs类物质.3个地区O3的生成主要受人为排放的二甲苯类和C3~C4烯烃类物质控制;对于徐汇,只控制NOx会导致O3浓度升高,而南汇郊区O3的生成对NOx排放不敏感.  相似文献   

5.
南京北郊秋季VOCs及其光化学特征观测研究   总被引:27,自引:21,他引:6  
采用GC5000挥发性有机物在线监测系统和EMS系统,于2011年11月在南京北郊开展了为期一个月的连续观测,分别测量了大气中56种VOCs组分和反应性气体(NOx、CO和O3).结果表明,南京北郊的VOCs小时平均体积分数大约在48.17×10-9,日变化呈明显双峰型特征,受机动车影响比较显著,极小值出现在下午16:00,白天与O3浓度曲线呈负相关;VOCs的平均OH消耗速率常数约为3.26×10-12cm3.(molecule.s)-1,最大增量反应活性约为3.26 mol·mol-1;烯烃对OH消耗速率(LOH)和臭氧生成潜势(OFP)贡献率最大,芳香烃次之,而烷烃在大气中含量最为丰富,却并不是LOH和OFP主要贡献者;VOCs关键活性组分是乙烯、丙烯、1-丁烯、间,对-二甲苯及异戊二烯等物质;臭氧生成过程处于VOCs控制区.  相似文献   

6.
上海市大气挥发性有机物化学消耗与臭氧生成的关系   总被引:11,自引:8,他引:3  
王红丽 《环境科学》2015,36(9):3159-3167
本研究基于夏季上海3个不同功能站点臭氧(O3)及其前体物的观测结果,分析了上海不同地区O3及其前体物的污染特征及空间差异;采用参数化的方法估算了VOCs的大气化学消耗水平.结果表明,观测期间上海市区VOCs浓度约为20×10-9,高于西部郊区的17×10-9;两个地区VOCs最大增量反应活性(以O3/VOCs计)的平均值比较接近,约为5.0mol·mol-1.但是,市区VOCs的大气消耗水平(4.0×10-9)不足西部郊区VOCs消耗水平(8.3×10-9)的一半,这是西部郊区O3污染更重的重要原因;东部沿海郊区O3浓度的变化主要是由于区域输送.不同地区VOCs消耗水平与O3生成浓度的比值接近,说明不同地区VOCs消耗生成O3的效率接近;烯烃和芳香烃是最主要的VOCs消耗物种,二者对VOCs消耗量的总贡献高达90%.VOCs的消耗水平在正午达到最大,夜间消耗水平最低,日分布曲线与O3生成的日变化曲线相似,但O3峰值出现时间略晚于VOCs消耗水平峰值出现的时间.  相似文献   

7.
马伟  王章玮  郭佳  张晓山 《环境科学学报》2019,39(11):3593-3599
在威海市两个采样点用苏码罐采集了全空气样品,利用三级冷阱预浓缩-GC/MS方法离线测定了空气样品中109种大气挥发性有机物(VOCs).使用基于观测的MCM机理大气化学模式(OBM-MCM)分析了大气臭氧生成对VOCs组分的敏感性及本地生成过程.结果表明:观测期间两个采样点的总挥发性有机物(TVOCs)平均浓度分别为27.84×10~(-9)和17.85×10~(-9),对TVOCs贡献最大的均是烷烃.模拟分析表明,大气臭氧生成与前体物的控制关系存在空间差异性,在一个观测点受VOCs控制,而在另一个观测点受NO_x和VOCs共同控制;模拟结果还表明,臭氧生成对活性烃类最为敏感,但是,含氧有机物、卤代烃和高碳烷烃对臭氧生成的影响和贡献也不可忽视;此外,计算了日平均臭氧净生成速率P(O_3)_(net),分别为6.41×10~(-9) h~(-1)和3.22×10~(-9) h~(-1),臭氧的本地生成过程扮演重要角色.  相似文献   

8.
天津武清大气挥发性有机物光化学污染特征及来源   总被引:7,自引:2,他引:5  
大气VOCs(挥发性有机物)是臭氧的重要前体物之一,研究其光化学污染特征和来源对控制近地面臭氧污染具有重要意义. 于2006年8月10日—9月18日在天津郊区武清采用在线监测的方法,同步观测了VOCs、O3和NO2等气态污染物,以及温度和紫外辐射等气象因子. 对9月10—15日臭氧浓度较高时段VOCs的浓度水平、化学反应活性、臭氧生成潜势和来源进行了分析. 结果表明:天津郊区武清环境空气中VOCs体积混合比平均浓度为24.6×10-9;VOCs主要由烷烃和烯烃组成,机动车排放、轻烃工艺、生物排放、沼气和碳氢溶剂是其重要来源. 根据等效丙烯浓度和MIR方法评估,烯烃对臭氧光化学产生的贡献占主导性地位,其中异戊二烯、丙烯、二甲苯和甲苯是臭氧生成潜势较大的物种. 通过与天津城区比较发现,郊区与城区的大气VOCs不仅组成不同,而且化学活性物种也不同.   相似文献   

9.
《环境科学与技术》2021,44(2):57-65
该研究选取深圳市工业区、城区、郊区等不同类型的5个典型地区在2017年8月(夏季)、10-11月(秋季)、12月(冬季)开展了挥发性有机物(VOCs)离线手工采样及监测,获得了113种VOCs物种的体积分数数据并分析了VOCs污染特征及臭氧生成潜势(OFP)。研究表明,观测期间深圳市VOCs平均体积分数为37.3×10~(-9),以含氧挥发性有机物(OVOCs)和烷烃为主要组分,共占总体积分数的57.2%。秋冬季体积分数约为夏季的2倍,日变化上烷烃、烯烃、芳香烃体积分数在中午达到谷值,较早晚平均值偏低46.7%~48.3%,但OVOCs日变化曲线较为平缓。观测期间VOCs的OFP平均为121.2×10~(-9),OVOCs、烯烃和芳香烃是主要贡献来源,分别占42.0%、33.0%和15.3%,1,3-丁二烯、丙醛、乙醛、甲苯是对OFP贡献最大的前4个物种,共占55.8%。工业排放对臭氧生成影响显著,工业区点位OFP较高(182.2×10~(-9)),城区次之(98.6×10~(-9)),郊区最低(68.9×10~(-9)),同时工业区甲苯/苯(T/B)比值较高(10.7),表明受溶剂使用源的影响较大。加强控制溶剂使用源、工业源和机动车的VOCs排放将有利于降低深圳市大气OFP,从而减少臭氧生成。  相似文献   

10.
利用近5a深圳西部城区(大学城)大气臭氧(O3)在线监测数据,结合深圳大学城超级站大气复合污染综合观测,获取了大气O3演变趋势,并探究O3超标日气象条件及其前体物的组成变化以期掌握大气O3超标成因.结果表明,深圳大学城大气O3日最大8h平均体积分数上升速度达1.1×10-9/a,超标率达到6%以上.高温低湿的气象条件更容易促进大气O3生成,高温时光化学反应强烈有利于O3的本地生成,而低湿可能不利于O3的湿去除从而导致污染积累.挥发性有机物(VOCs)不同组分在O3超标日上升幅度(70%~95%)明显高于NOx(28%),且O3高值浓度分布在高VOCs低NOx区域,说明深圳大学城大气O3生成主要受VOCs控制.O3超标日的甲苯与苯比值(T/B)在夜间超过10表明可能存在大量工业排放;而含氧挥发性有机物(OVOCs)在午间(12:00~14:00)的消耗相较于非超标日高出了1倍左右,表明工业活动排放的OVOCs对白天O3生成可能贡献显著.  相似文献   

11.
符传博  丹利  佟金鹤  徐文帅 《环境科学》2023,44(9):4799-4808
基于环境空气质量数据、气象观测数据和卫星遥感资料,研究了2015~2020年海南岛臭氧(O3)污染的时空分布、变化趋势、O3生成敏感性及其与气象因子的关系.结果表明,海南岛O3-8h (日最大8 h滑动平均值)表现为西部和北部偏高,中部、东部和南部偏低的分布特征,2015年O3-8h浓度最高,2019年O3-8h浓度超标占比最大.O3-8h浓度与平均气温(P<0.1)、日照时数(P<0.01)、太阳总辐射(P<0.01)、大气压和平均风速呈正相关关系,与降雨量(P<0.05)和相对湿度呈负相关关系.卫星遥感数据显示,2015~2020年海南岛对流层NO2柱浓度(NO2-OMI)和HCHO柱浓度(HCHO-OMI)呈相反的变化趋势,2020年NO2-OMI较2015年上升了7.74%,HCHO-OMI下降了10.2%.海南岛属于NOx控制区,近6年FNR值(O3生成敏感性)呈波动式地下降趋势,其趋势系数和气候倾向率分别为-0.514和-0.123 a-1.气象因子与海南岛FNR值有较好的相关关系.  相似文献   

12.
孟祥来  孙扬  廖婷婷  张琛  张成影 《环境科学》2022,43(9):4484-4496
精细化的挥发性有机物(VOCs)组分特征和来源分析,可以为科学有效地进行臭氧(O3)污染防控提供支持.利用2020年夏季7~8月北京城区点位监测的小时分辨率VOCs在线数据,分析高O3浓度时段和低O3浓度时段环境受体中VOCs化学特征和臭氧生成潜势(OFP),并利用正定矩阵因子分解(PMF)模型进行精细化源解析.结果表明,观测期间监测点φ[总大气挥发性有机物(TVOCs)]平均值为12.65×10-9,高O3时段和低O3时段φ(TVOCs)平均值分别为13.44×10-9和12.33×10-9,OFP分别为107.6μg·m-3和99.2μg·m-3.观测期间O3生成受VOCs控制,芳香烃的反应活性最高,对OFP贡献排名前三的组分均为异戊二烯、甲苯和间/对-二甲苯.低O3时段环境受体中VOCs的主要来源包括汽车排放(26.4%)、背景排放(15.7%)、溶剂使用(13.0%)、汽修(12.8%)、二次生成源(9.7%)、生物质燃烧(6.1%)、印刷行业(5.7%)、液化天然气(LNG)燃料车(5.5%)和植被排放(5.0%),其中背景排放、二次生成和印刷行业源在近年来北京VOCs源解析研究中少有讨论.高O3时段汽修源和二次生成源贡献分别较低O3时段上升了3.4%和2.6%,汽车排放仍是北京城区最主要的VOCs贡献源.植被排放源从07:00开始上升,在午后达到最高;背景排放源的贡献变化较小;汽车排放和LNG燃料车排放源呈现早晚高峰特征,下午时贡献相对较低.  相似文献   

13.
张蕊  孙雪松  王裕  王飞  罗志云 《环境科学》2023,44(4):1954-1961
为深入了解臭氧(O3)污染高发季节大气挥发性有机物(VOCs)对O3生成的影响,基于北京市2019年夏季VOCs和O3高时间分辨率在线监测数据,开展VOCs变化规律、组成特征和臭氧生成潜势(OFP)研究.结果表明,大气φ(VOCs)平均值为(25.12±10.11)×10-9,其中,烷烃是体积分数最大的组分,占总VOCs的40.41%,其次是含氧有机物(OVOCs)和烯/炔烃,分别占总VOCs的25.28%和12.90%. VOCs体积分数日变化呈双峰型,早高峰出现在06:00~08:00,烯/炔烃占比明显增加,表明机动车排放对VOCs贡献显著,而午后VOCs体积分数降低,期间OVOCs占比呈现上升趋势,下午的光化学反应和气象要素对VOCs体积分数和组成影响较大.北京市城区夏季OFP为154.64μg·m-3,贡献率较高的组分是芳香烃、 OVOCs和烯/炔烃,正己醛、乙烯和间/对-二甲苯等是关键活性物种,削减机动车、溶剂使用和餐饮源排放是北京市城区夏季控制O3  相似文献   

14.
VOCs是O3和SOA形成的重要前体物,可增强大气氧化性,促进二次污染物形成,影响区域空气质量和人体健康.为研究铜川市秋冬季VOCs特征及其对O3和SOA生成的潜力,利用TH-300B在线监测系统监测了铜川市区102种VOCs的体积分数,并结合最大增量反应活性系数法和气溶胶生成系数法分别计算VOCs的O3及SOA生成潜力.结果表明,铜川市秋季和冬季φ(TVOC)分别为(50.52±16.81)×10-9和(63.21±35.24)×10-9,O3生成潜势分别为138.43×10-9和137.123×10-9, SOA生成潜势分别为3.098μg·m-3和0.612μg·m-3.秋季VOCs中含量最多的2种组分为烷烃(26.19%)和芳香烃(26.04%),冬季VOCs中含量最多的组分为烷烃(48.88%).反-2-戊烯、甲苯和间/对-二甲苯是秋季OFPs最大的3个成分,...  相似文献   

15.
晏洋洋  尹沙沙  何秦  秦凯  张瑞芹 《环境科学》2022,43(6):2947-2956
基于环境空气质量站点数据及卫星遥感数据,研究了河南省近地面臭氧(O3)2015~2020年变化特征、趋势和生成敏感性.结果表明,2015~2020年,河南省近地面O3浓度先上升后下降,2018年浓度最高,O3日最大8 h滑动平均值(MDA8)年均值为110.70μg·m-3,各站点间的MDA8值差异逐渐缩小;河南省月均MDA8时间序列表现为上升趋势,增长速率为2.46μg·(m3·a)-1,经Mann-Kendall趋势检验,除漯河、南阳和平顶山市外其它地市上升趋势均具有显著性意义(P<0.05);6 a间四季MDA8浓度也呈增长趋势,增长大小为:秋季(19.31%)>冬季(17.09%)>春季(16.82%)>夏季(7.24%); 2015~2019年河南省对流层NO2高值集中在西北部,浓度呈下降趋势,下降速率为0.34×1015 molecules·(cm2·a)...  相似文献   

16.
臭氧(O3)污染已经成为我国主要城市区域大气环境的首要污染物,由于其生成与前体物之间呈现高度非线性的关系,O3生成机制的识别对前体物的减排具有基础性的重要作用.针对常规方法难以较好对机制的长期演化特征进行识别问题,基于常规观测数据(O3、NO2)和温度(T)与挥发性有机物活性(VOCR)之间的关系,从NO2T两个维度对珠三角区域O3的生成机制进行了识别并做校验,分析了2006~2020年期间O3的趋势变化规律和原因,研究了机制的长期演化特征.结果表明,O3浓度随NO2T水平的升高呈现升高、稳定、下降和再次升高的趋势变化规律,当ρ(NO2)处于0~35、35~45、>45 μg·m-3T处于>30、25~30、<25℃时,机制分别处于NOx控制区、过渡区和VOCR控制区.不同时间段,随着T升高VOCR随之升高,推动了O3浓度上升.由于前体物排放趋势变化和O3生成机制状况不同,O3浓度在不同时间段和T条件下的趋势变化规律不同.整体上,珠三角区域西部偏VOCR控制区,东部偏过渡区,两个维度机制的识别结果具有较高一致性.随时间变化,西部区域的过渡区向VOCR控制区转变,东部区域的VOCR控制区向NOx控制区转变.在不同时间段,随着T升高O3生成对NOx的敏感性增强,随时间变化,高温和低温条件下O3生成分别对NOx和VOCR的敏感性增强.  相似文献   

17.
王帅  王秀艳  杨文  王雨燕  白瑾丰  程颖 《环境科学》2022,43(3):1277-1285
近年来,我国城市的臭氧(O3)污染问题日益突出.挥发性有机物(VOCs)是O3生成的重要前体物,因此,了解VOCs主要特征以及来源对控制O3污染具有重要意义.于2019年5~9月在淄博市开展了在线VOCs观测,共计监测56个物种.观测期间,O3超标率为67.8%,ρ(VOCs)平均值为140.71μg·m-3,O3超标日的VOCs浓度为非超标日的1.04倍.从VOCs组分结构上看,浓度从高到低依次为:芳香烃>烷烃>烯烃>炔烃.其中1,3,5-三甲苯、邻-乙基甲苯、 1-丁烯和正己烷为超标日和非超标日排放较高的物种.臭氧生成潜势(OFP)中芳香烃和烯烃贡献较大.由PMF源解析结果得出,该城区VOCs来源主要包括机动车源、固定燃烧源、溶剂使用源、工艺过程源和天然植物源,其中机动车源为该城区最主要的VOCs来源.此外,O3超标日的机动车源占比为32.3%,固定燃烧源占比为24.2%,相比于非超标日分别升高了3.3%和6.9...  相似文献   

18.
基于2021年6~8月新乡市市委党校站点观测的挥发性有机物(VOCs)、常规空气污染物和气象参数,采用基于观测的模型(OBM)对臭氧(O3)超标日的O3敏感性和前体物的管控策略进行了研究.结果发现,O3超标日呈现高温、低湿和低压的气象特征.在臭氧超标日,O3及其前体物的浓度均有上升.臭氧超标日的VOCs最高浓度组分为含氧挥发性有机物(OVOCs)和烷烃,臭氧生成潜势(OFP)和·OH反应性最大的VOCs组分为OVOCs.通过相对增量反应性(RIR)分析,新乡6月O3超标日臭氧生成处于VOCs控制区,7月和8月处于VOCs和氮氧化物(NOx)协同控制区,臭氧生成对烯烃和OVOCs最为敏感.6月各前体物的RIR值在一天中会发生变化,但始终保持为VOCs控制区;7月和8月在上午为VOCs控制区,中午为协同控制区,下午分别为协同控制区和NOx控制区.通过模拟不同前体物削减情景,结果表明削减VOCs始终有利于管控臭氧,而削减NOx  相似文献   

19.
金丹 《环境科学》2022,43(1):132-139
为研究上海市夏季臭氧高发季节大气VOCs在臭氧生成中作用,选取2018年5~8月大气臭氧较高的时段,在淀山湖科学观测研究站对103种挥发性有机物、臭氧和氮氧化物等环境污染物进行观测.结果表明,上海臭氧高发季节大气平均φ(VOCs)为32.7×10-9,羰基化合物是VOCs的主要组分,所占质量分数达35.0%.羰基化合物中甲醛体积分数最高,其次是丙酮,占12种测量羰基化合物总量的82.8%. 5月环境空气的化学反应活性最强,总的臭氧生成潜势(OFP)为337.2μg·m-3,甲醛贡献率最大.烷烃、烯烃和芳香烃的日变化呈现夜高昼低规律,在早晨出现小峰值,与交通排放影响有关;而醛酮类日变化呈现昼高夜低规律,与光化学反应的二次生成过程有关.OBM模拟结果显示,5~6月属于臭氧生成的VOCs控制区,7~8月属于过渡区.  相似文献   

20.
对流层臭氧(O3)主要由氮氧化物(NOx)和挥发性有机物(VOCs)经过一系列光化学反应生成,反应过程呈现复杂的非线性关系.为深入了解O3的光化学特征及生成机制,利用2018年夏季大气O3与VOCs的观测数据,结合大气零维框架模拟模型F0AM-MCM,研究O3超标日和非O3超标日的O3光化学特征之间的差异性.观测结果表明,O3超标日期间φ(O3)和φ(TVOCs)的平均值分别为47.8×10-9和49.0×10-9,为非O3超标日期间O3(26×10-9)和TVOCs(30×10-9)体积分数的1.8倍和1.6倍.使用F0AM模型,借助EKMA曲线和RIR分析等识别O3敏感性,发现南京市O3超标日和非O3超标日O3的形成均主要受VOCs和NOx的协同控制.F0AM-MCM模拟结果表明,在O3超标日,·OH和HO2的日平均混合比分别是非O3超标日的1.3倍和1.8倍,表明O3超标日期间具有更强的大气氧化能力,且·OH和HO2的形成和损失速率也有明显的增加,表明自由基循环的增强.此外,O3超标日的O3生成速率明显高于非O3超标日,从而导致了O3超标日的O3净生成速率明显高于非O3超标日.以上发现提高了对南京夏季O3超标日大气O3光化学特征的认识.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号