首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 171 毫秒
1.
朱媛媛  刘冰  桂海林  李健军  汪巍 《环境科学》2022,43(8):3966-3976
基于生态环境监测和气象观测数据,分析了2016~2020年京津冀13个城市臭氧(O3)浓度特征,讨论了O3污染高发月份日最高温度(Tmax)、日均地面气压(p)、日均地面相对湿度(RH)和日均地面风速(v)等气象要素对O3-8h浓度和O3-8h超标情况的影响规律,并采用AQI级别预报准确率、O3浓度范围预报准确率和O3级别预报准确率等方法,评估了基于神经网络的O3统计预报效果.结果表明,2016~2020年期间京津冀13城市ρ(O3-8h-90per)分别为157.4、177.2、177.3、190.6和175.6μg·m-3,区域臭氧浓度5a上升了11.6%,2016~2019年期间总体呈波动上升趋势,2020年环比下降;2020年与2016年相比,除北京、张家口和承德略有下降外,其他10个城市ρ(O3-8h-90per)上升了6~45.5μg·m-3.O3-8h月均值呈现"两头低,中间高"现象,ρ(O3-8h)在4~9月的月均值超过了100 μg·m-3,在6月最高,为158.10 μg·m-3.城市O3-8h超标率范围为8.6%~19.2%,97.8%的O3-8h超标情况发生在4~9月.区域尺度上O3-8h浓度与日最高温度相关性最强,当Tmax在25~28℃区间时,所有城市开始出现O3-8h超标.O3-8h浓度与日均地面气压呈负相关关系;当RH在60%以下时,大部分城市O3-8h浓度随相对湿度上升缓慢增长;当RH在61%~70%以上时,大部分城市O3-8h浓度随日均相对湿度上升而下降.O3-8h超标时的地面主导风向主要为偏南风,大部城市O3-8h浓度高值易集中出现在2~3m·s-1及以下低风速区间.OPAQ统计模式提前1~9 d预报相关系数范围为0.72~0.86,AQI级别预报平均准确率为67%~86%,O3-8h浓度范围预报平均准确率为63%~84%.在O3-8h超标情况多发的4~9月,模式对O3轻度污染和O3-8h超标情况提前3 d预报准确率分别为69%和66%,可为O3-8h超标管控提供参考依据.  相似文献   

2.
臭氧(O3)污染已经成为我国主要城市区域大气环境的首要污染物,由于其生成与前体物之间呈现高度非线性的关系,O3生成机制的识别对前体物的减排具有基础性的重要作用.针对常规方法难以较好对机制的长期演化特征进行识别问题,基于常规观测数据(O3、NO2)和温度(T)与挥发性有机物活性(VOCR)之间的关系,从NO2T两个维度对珠三角区域O3的生成机制进行了识别并做校验,分析了2006~2020年期间O3的趋势变化规律和原因,研究了机制的长期演化特征.结果表明,O3浓度随NO2T水平的升高呈现升高、稳定、下降和再次升高的趋势变化规律,当ρ(NO2)处于0~35、35~45、>45 μg·m-3T处于>30、25~30、<25℃时,机制分别处于NOx控制区、过渡区和VOCR控制区.不同时间段,随着T升高VOCR随之升高,推动了O3浓度上升.由于前体物排放趋势变化和O3生成机制状况不同,O3浓度在不同时间段和T条件下的趋势变化规律不同.整体上,珠三角区域西部偏VOCR控制区,东部偏过渡区,两个维度机制的识别结果具有较高一致性.随时间变化,西部区域的过渡区向VOCR控制区转变,东部区域的VOCR控制区向NOx控制区转变.在不同时间段,随着T升高O3生成对NOx的敏感性增强,随时间变化,高温和低温条件下O3生成分别对NOx和VOCR的敏感性增强.  相似文献   

3.
刘静达  何超  赵舒曼  朱俊  汪巍  王莉莉  王跃思 《环境科学》2023,44(10):5392-5399
近年来,我国臭氧(O3)污染形势日趋严峻,在多地已超越PM2.5成为大气环境的首要污染物.气象条件,尤其是温度和湿度对O3生成的影响极大.因此,厘清并量化不同区域温度和湿度变化对O3浓度的影响可为政府防治臭氧污染提供理论依据.通过分析2015年1月1日至2022年7月31日实测日最大温度(Tmax)和相对湿度(RH)与臭氧日最大8 h滑动平均值(O3-8h)的关系,发现臭氧污染严重的七大区域的O3-8h与Tmax呈线性正相关关系,温度惩罚因子范围为2.1~6.0 μg ·(m3 ·℃)-1;O3-8h与RH呈非线性关系,RH为55%时O3-8h最高;不同区域对Tmax和RH的敏感度稍有不同,总体上最适合O3生成的气象条件为29℃≤Tmax<38℃且40%≤RH<70%.长三角、苏皖鲁豫和长江中游地区在Tmax≥35℃的极端高温条件下,O3-8h停止随温度的上升而增长,反而出现下降现象,且往往伴随颗粒物浓度的小幅上升.这可能与部分前体物在水汽含量变高的情况下发生非均相反应及臭氧的非均相汇增加有关.  相似文献   

4.
采用南京工业区2016年5月20日~8月15日这一高臭氧(O3)期的O3、O3前体物和常规气象资料数据,利用支持向量机回归(SVMr)方法分别预报O3的小时值、日最大值和最大8 h滑动平均值.结果表明,O3小时值预报的相关系数(R2)为0.84,平均绝对误差(MAE)和平均绝对百分误差(MAPE)分别为3.44×10-9和24.48,O3前期浓度、紫外B波段辐射(UVB)和NO2浓度是关键因子.O3日最大值预报的主要因子是NOx在07:00的浓度和UVB.预报O3 8 h时UVB和气温起重要作用.加入前体物项能够使O3的预报精度提升10%~28%.与多元线性回归方法相比,SVMr对O3浓度的预报有明显优势.  相似文献   

5.
赵伟  王硕  庞晓蝶  高博  卢清  刘明  陈来国  范绍佳 《环境科学》2022,43(12):5399-5406
基于2015~2021年环境监测数据和气象再分析资料,利用Mann-Kendall检验法和Sen斜率法等统计手段揭示了陕西关中城市群臭氧(O3)浓度时空变化特征和年际变化趋势,并从气象、排放源和区域传输等方面分析了趋势形成的原因.结果表明:①2015~2021年,关中城市群O3浓度评价值(MDA8第90百分位数)最高的城市是咸阳市,浓度评价值多年平均值为162 μg·m-3,O3浓度平均值(MDA8年均值)和O3浓度背景值(MDA8第5百分位数)最高的城市是铜川市.②关中城市群O3浓度表现为单峰型日变化特征,并呈现夏季>春季>秋季>冬季的年变化特征.夏季咸阳O3浓度平均值最高,其他季节铜川O3浓度平均值最高.③2015~2021年,陕西关中城市群O3浓度背景值呈现出上升趋势,区域浓度背景值平均上升速率为2.20 μg·(m3·a)-1,但是O3浓度评价值并未表现出有统计显著性的变化趋势.此外,关中城市群O3浓度变化趋势与季节密切相关,其中冬季O3浓度上升趋势显著,其他季节大部分城市O3浓度无明显变化趋势.④关中城市群及周边地区挥发性有机物(VOCs)减排幅度普遍小于氮氧化物(NOx)的不合理减排结构、滴定效应减弱以及区域传输等因素共同作用,导致关中城市群冬季O3浓度升高.  相似文献   

6.
基于粤港澳珠江三角洲区域空气监测网络12个监测子站的大气污染物数据,梳理2013~2017年大气光化学氧化剂Ox(NO2+O3)与PM2.5质量浓度的变化趋势.Ox+PM2.5复合超标污染定义为NO2和PM2.5质量浓度日平均值以及O3浓度日最大8 h平均值(O3 MDA8)同时超过二级浓度限值,分析了不同类型站点复合超标污染的时空分布特征以及气象因素影响.结果表明,2013~2017年珠三角PM2.5年均质量浓度由(44±7)μg·m-3下降至(32±4)μg·m-3,实现PM2.5连续3 a达标.Ox年均质量浓度由2013年(127±14)μg·m-3下降至2016年(114±12)μg·m-3,2017年反弹至(129±13)μg·m-3,O3浓度上升明显(10 μg·m-3).以O3为首要污染物的污染过程占比由2013年33%增多至2017年78%,多个城市同时发生污染的区域特征明显.研究时段内Ox+PM2.5复合超标污染事件共发生60次,主要在城区站点(78%)和郊区站点(22%).秋季发生复合超标污染天数最多(52%),是因为强太阳辐射有利于臭氧生成,大气氧化性增加,进而促进了PM2.5二次生成.造成珠三角复合超标污染的天气形势主要为高压出海型(43%)、高压控制型(30%)和热带低压型(27%).就具体气象因素而言,气温在20~25℃且相对湿度在60%~75%的范围内时,复合超标污染事件发生占比最高(22%).在O3重污染过程中,夜间高湿和低风速使得NO2和PM2.5浓度显著上升,日间高温加剧了复合超标污染.  相似文献   

7.
王晓雯  刘旻霞  王扬  宋宜凯 《环境科学》2023,44(9):4809-4818
通过OMI遥感卫星数据分析华东地区2005~2021年大气对流层臭氧(O3)、二氧化氮(NO2)和甲醛(HCHO)柱浓度的时空特征,利用后向轨迹模型(HYSPLIT)探究其来源.结果表明:① 17年间,对流层O3柱浓度平稳增加,2010年上升到最大值,之后呈现一种波动起伏的状态;NO2在2005~2012年呈增加趋势,2012~2021年缓慢下降;HCHO柱浓度由2005年的1.15×1016 molec ·cm-2呈现增长趋势,上升到2021年的1.8×1016 molec ·cm-2.②在空间上,3种污染物柱浓度总体上呈现北高南低的空间格局,北部为高高聚集区域,中部为无特征区域,南部为低低聚集区域.③ O3的敏感性呈现为:春季η<2.3,属于VOCs控制区;夏季η<4.2,表现为大部分地区是NOx-VOCs协同控制区,少部分地区是VOCs控制区;秋季η<4.2,主要为VOCs控制,极少部分为NOx-VOCs协同控制区;冬季η<2.3,为VOCs控制区,山东省以VOCs控制为主.④因2005~2021年O3在山东省呈现为高高聚集,所以选取2021年山东省的省会城市济南市进行O3来源解析,2021年济南市的O3浓度增加有两个方面,一是通过远距离的气团输送主要来自于江苏省的连云港市和河北省的沧州市;二是近距离的气团输送来自于济南市附近城市的污染和黄海、渤海经济区,且聚集性分析与潜在源贡献因子算法(PSCF)和权重轨迹分析法(CWT)有相同的结果.  相似文献   

8.
符传博  陈红  丹利  徐文帅 《环境科学》2022,43(11):5000-5008
基于2019年秋季海南省空气质量和气象监测数据,结合相关分析、HYSPLIT后向轨迹模型、PSCF (潜在源贡献因子)和CWT (浓度权重轨迹)等分析方法对海南省4次O3污染过程特征及潜在源区进行深入分析.结果表明:①过程1和过程3分别发生在9月21~30日和11月3~11日,持续时间达到了10 d和9 d,ρ(O3-8h)(最大8 h平均)分别为145.52 μg ·m-3和143.55 μg ·m-3.过程2和过程4出现在10月18~21日和11月20~25日,持续时间为4 d和6 d,ρ(O3-8h)分别为130.79 μg ·m-3和115.46 μg ·m-3.②气压偏高,降水偏少,相对湿度偏低,日照时数偏长和太阳辐射偏强,是造成海南省出现O3污染天气的有利气象条件.偏北风风场控制下有利于O3-8h浓度上升,不同风速大小会影响海南省O3-8h浓度高值区分布.③ O3污染较为严重的过程1和过程3的影响气流发散度较大,有来自内陆地区和东南沿海地区两支气流,而O3污染较轻的过程2和过程4的影响气流较为集中,多为东南沿海气流.④潜在贡献源区分析表明,浙江省、江西省、福建省和广东省等地是2019年秋季海南省O3污染外源输送的主要源区,其中珠三角地区和广东省西部WPSCF值和WCWT值分别为大于0.36和大于90 μg ·m-3.  相似文献   

9.
符传博  林建兴  唐家翔  丹利 《环境科学》2024,45(5):2516-2524
主要利用2015~2020年海口市臭氧(O3)浓度资料和ERA5再分析资料,基于污染物浓度控制方程挑选出海口市O3-8h浓度(日最大8 h滑动平均)的15个关键预报因子,构建了多元线性回归模型(MLR)、支持向量机模型(SVM)和BP神经网络模型(BPNN),并对2021年海口市O3-8h浓度进行预测和效果检验.结果表明,O3-8h浓度与关键预报因子的相关系数绝对值主要分布在0.2~0.507之间,其中1 000 hPa的相对湿度(RH1000)和风向(WD1000),875 hPa的经向风(v875)的相关系数绝对值超过了0.4,具有较好的指示作用.3个预报模型基本能预报出海口市O3-8h浓度冬半年偏高,夏半年偏低的变化趋势,其中BPNN模型的标准误差(RMSE)数值最小(22.29 μg·m-3).实测值与3个统计模型预报值的相关系数从大到小排列为:0.733(BPNN)>0.724(SVM)>0.591(MLR),均通过了99.9%的信度检验.O3-8h浓度等级预报的结果检验表明,3个预报模型的TS评分均随着O3-8h浓度等级的上升而下降,而漏报率(PO)和空报率(NH)随着O3-8h浓度等级的上升而上升.SVM和BPNN模型在3个等级预报中TS评分均略高于MLR模型,特别是在轻度污染等级,TS评分还维持在70%以上,具有较好的预报性能.  相似文献   

10.
对流层臭氧(O3)主要由氮氧化物(NOx)和挥发性有机物(VOCs)经过一系列光化学反应生成,反应过程呈现复杂的非线性关系.为深入了解O3的光化学特征及生成机制,利用2018年夏季大气O3与VOCs的观测数据,结合大气零维框架模拟模型F0AM-MCM,研究O3超标日和非O3超标日的O3光化学特征之间的差异性.观测结果表明,O3超标日期间φ(O3)和φ(TVOCs)的平均值分别为47.8×10-9和49.0×10-9,为非O3超标日期间O3(26×10-9)和TVOCs(30×10-9)体积分数的1.8倍和1.6倍.使用F0AM模型,借助EKMA曲线和RIR分析等识别O3敏感性,发现南京市O3超标日和非O3超标日O3的形成均主要受VOCs和NOx的协同控制.F0AM-MCM模拟结果表明,在O3超标日,·OH和HO2的日平均混合比分别是非O3超标日的1.3倍和1.8倍,表明O3超标日期间具有更强的大气氧化能力,且·OH和HO2的形成和损失速率也有明显的增加,表明自由基循环的增强.此外,O3超标日的O3生成速率明显高于非O3超标日,从而导致了O3超标日的O3净生成速率明显高于非O3超标日.以上发现提高了对南京夏季O3超标日大气O3光化学特征的认识.  相似文献   

11.
针对湖南省臭氧(O3)污染加剧但是相关的研究较为缺乏的现状,以长沙市为研究区域,基于观测数据,结合气象校正、基于经验的模型(EOF)和绝对得分受体模型(APCs),识别量化了2018~2020年气象、本地光化学生成和外围传输对O3污染相对贡献的影响,分析了2018~2019年和2019~2020年O3趋势变化的主控因素.结果表明,短期范围内,气象条件是O3污染事件发生的重要诱发因素.对长沙市整体来说,在时间上,2018~2019年期间,气象和本地前体物排放影响作用的增强是O3浓度升高的关键驱动因子.2019~2020年期间,气象、本地前体物排放和外围传输影响均呈现下降的趋势,是导致O3浓度降低的重要影响因素.空间上,2018~2020年时间段,气象、本地前体物排放和外围传输主要影响区域分别为长沙市偏东、偏北和偏南部区域.其中,外围传输的作用持续减弱,2018~2019年期间,长沙市北部天然源排放水平的升高使得O3浓度上升,南部区域NO...  相似文献   

12.
2019年7月石家庄市O3生成敏感性及控制策略解析   总被引:1,自引:1,他引:0  
基于石家庄市2019年7月近地面污染物和气象观测数据,分析夏季O3污染状况及其影响因素;结合WRF-CMAQ模式和O3浓度等值线(EKMA曲线),探究不同区域O3-VOCs-NOx的非线性响应关系,旨在探究最佳的前体物减排方案.结果表明,观测期间,石家庄市市区MDA8 O3超标率高达70.9%.污染天期间,伴随着高温、低湿、小风,且以南风和东南风为主.石家庄市市区属于VOCs控制区,郊县为NOx和VOCs协同控制区.在臭氧污染时段,市区在仅削减NOx排放,且削减比例超过50%时,持续减排NOx使得O3浓度呈逐渐下降趋势.在非臭氧日时段,市区在VOCs和NOx的削减比例大于1倍时,O3浓度才不会出现反弹.对于市区应考虑以仅削减VOCs为先;对于郊县区域而言,不同的NOx和VOCs削减比例下,O3浓度均会下降...  相似文献   

13.
本文基于淄博市2019年18个自动监测站连续1 a的O3与前体物(NOx、 VOCs和CO),及常规气象监测数据(气温、相对湿度、风速和能见度),选取城区和郊区代表性站点,研究了O3与前体物的污染特征以及O3生成的影响因素.结果表明,淄博市2019年O3-8h浓度超标率为25.8%,超标天多出现在5~9月;城区NOx浓度高于郊区,而O3和VOCs浓度较低;各污染物的小时变化率具有明显的季节特征,秋冬季节O3上升和前体物下降时间均较春夏季节晚1 h左右,且O3生成累积的高峰时段缩短,城区O3浓度的整体上升速率高于郊区;对O3及各影响因素的相关性分析、偏相关分析及线性回归分析得到,O3与前体物和相对湿度呈负相关,与能见度、气温和风速呈正相关,各因素间存在相互影响;城区站点O3生成的主控因子有相对湿度、 NO<...  相似文献   

14.
邹宇  邓雪娇  李菲  殷长秦 《环境科学》2019,40(4):1634-1644
通过对广州番禺大气成分站(GPACS)的光化学相关污染物(O3、PAN、VOCs、NO2、NO)以及气象要素进行观测,分析2010~2016年期间发生在广州地区一次典型光化学污染过程.结果表明,该光化学污染过程期间,O3和PAN总体体积分数比较高,最大O3小时体积分数为140.6×10-9,而最大PAN小时体积分数为4.7×10-9.NO整体体积分数较低,对O3的化学滴定和PAN的去除影响较小.NO2整体体积分数较高、辐射较强和风速较低则有利于O3和PAN的形成和积累.PAN和O3具有一定的线性关系(R2=0.55),而形成PAN和O3前体物VOCs物种不完全相同影响着它们的线性关系,在生成PAN的VOCs物种中,乙烯、丙烷、异戊二烯和甲苯所占的比例较大,而对臭氧生成潜势较大的物种有异戊二烯、1,3,5-三甲苯、丙烯、间,对-二甲苯以及甲苯.对PA自由基体积分数进行估算,发现它的日均值体积分数在0.11×10-12~0.16×10-12范围变化,远高于其它地区,表明此次发生的光化学反应较为强烈.  相似文献   

15.
基于2021年6~8月新乡市市委党校站点观测的挥发性有机物(VOCs)、常规空气污染物和气象参数,采用基于观测的模型(OBM)对臭氧(O3)超标日的O3敏感性和前体物的管控策略进行了研究.结果发现,O3超标日呈现高温、低湿和低压的气象特征.在臭氧超标日,O3及其前体物的浓度均有上升.臭氧超标日的VOCs最高浓度组分为含氧挥发性有机物(OVOCs)和烷烃,臭氧生成潜势(OFP)和·OH反应性最大的VOCs组分为OVOCs.通过相对增量反应性(RIR)分析,新乡6月O3超标日臭氧生成处于VOCs控制区,7月和8月处于VOCs和氮氧化物(NOx)协同控制区,臭氧生成对烯烃和OVOCs最为敏感.6月各前体物的RIR值在一天中会发生变化,但始终保持为VOCs控制区;7月和8月在上午为VOCs控制区,中午为协同控制区,下午分别为协同控制区和NOx控制区.通过模拟不同前体物削减情景,结果表明削减VOCs始终有利于管控臭氧,而削减NOx  相似文献   

16.
泰安市大气臭氧污染特征及敏感性分析   总被引:1,自引:0,他引:1  
李凯  刘敏  梅如波 《环境科学》2020,41(8):3539-3546
2018年5~7月对泰安市城区站点的臭氧及前体物进行在线监测,并基于特征比值法和光化学模型分析了臭氧及前体物的污染特征及臭氧生成对前体物的敏感性.结果表明,观测期间泰安市正遭受较为严重的臭氧(O_3)污染,臭氧浓度的日变化呈典型的单峰型变化,15:00左右出现最高值,氮氧化物(NO_x)和VOCs的日变化趋势整体呈现夜间高白天低的变化特征.由O_3生成效率(OPE)、VOCs/NO_x和H_2O_2/NO_z特征比值法及基于EKMA曲线的方法均得出观测期间泰安市大气O_3光化学生成偏向于NO_x敏感区及过渡区,削减NO_x和VOCs均对O_3生成具有控制作用.同时基于EKMA曲线的方法还得出在O_3前体物浓度减排时按照丙烯等效浓度(PE)与NO_x浓度比值为8∶3进行VOCs(PE)和NO_x削减可以达到O_3浓度控制的最佳效果.  相似文献   

17.
王峰  汪健伟  杨宁  翟菁  侯灿 《环境科学》2021,42(12):5713-5722
本文基于三维区域空气质量模式WRF-Chem,通过修改模式化学模块,量化输出过程量和诊断量,提供了一种定量分析挥发性有机化合物(VOCs)源强不确定性对O3生成影响的方法.为无法定量计算VOCs源强导致的臭氧生成率[P(O3)]偏差,以及由此对O3体积分数分布和污染控制相关联的VOCs敏感区和NOx 敏感区分布的误判提供了方法参考.采用标准统计参数对WRF-Chem模式的气象场与污染场模拟性能进行了评估,相关指标均优于前人结果.以INTEX-B(intercontinental chemical transport experiment-phase B)人为源、FINNv1(fire inventory from NCAR version 1)生物质燃烧源和 MEGAN(model of emissions of gases and aerosols from nature)生物源作为基准源,并以卫星观测数据作为约束,对排放源进行改进,评估了源改进前后臭氧生成率[P(O3)]、O3体积分数和O3控制敏感区指标(Ln/Q)的变化情况.仅人为VOCs(AVOCs)源增加68%后,P(O3)模拟峰值增升比例达13%~82%,以北京观测站点为例,P(O3)模拟月均峰值增加42%(22.5×10-9 h-1).对P(03)形成贡献比例最大的主要化学反应是HO2+NO(占比约68%),AVOCs源增加68%后,该反应贡献比例下降至65%.在改进源下,P(O3)普遍增加达到2×10-9~4×10-9h-O3各季节增幅较大的区域均主要集中在京津冀、长三角和珠三角中心城市及周边区域,与我国大型城市区基本都是VOCs敏感区的结论一致.整体而言,VOCs源强改进后,Nox敏感区O3体积分数增加幅度不大,不超过4×10-9,而部分VOCs敏感区增幅超过20 x10-9.VOCs源强的不确定性会影响O3形成过程中Nox和VOCs敏感区的判断,特别是VOCs源强明显低估会夸大VOCs敏感区的范围,从而降低O3调控对策的有效性.  相似文献   

18.
高度城市化的珠三角地区臭氧污染频发,臭氧污染的非线性、区域性以及气象过程影响使臭氧精确防控面临巨大挑战.本研究利用臭氧源解析技术OSAT,分析不同传输通道下珠三角臭氧敏感区分布差异,量化城市间的臭氧传输贡献,并通过敏感性试验,探讨珠三角及典型城市的臭氧污染控制策略.结果表明,静风条件下,VOCs敏感区集中在珠三角中部城市群区域,NOx敏感区分布在外围郊区地带;东北风盛行时,珠三角下风向转变为VOCs敏感区,上风向为NOx敏感区;东南风盛行时,VOCs敏感区沿东南至西北方向呈带状分布,两边呈NOx敏感.城际传输方面,在东南和东北方向的传输通道影响下,下风向城市臭氧污染受上风向传输贡献明显(41%~87%),静风时各城市以本地贡献为主(60%~87%).敏感性试验结果表明,当对应臭氧敏感区分别削减30%的VOCs和NOx时能使珠三角臭氧下降面积最大(20%~36%),而单独削减30%VOCs时能使臭氧浓度降幅最大(9%~18%),但下降范围局限于VOCs敏感区.对典型城市江门而言,静风和东南风条件下对应...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号