首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
  国内免费   2篇
综合类   6篇
  2021年   1篇
  2020年   2篇
  2019年   3篇
排序方式: 共有6条查询结果,搜索用时 15 毫秒
1
1.
采用南京工业区2016年5月20日~8月15日这一高臭氧(O3)期的O3、O3前体物和常规气象资料数据,利用支持向量机回归(SVMr)方法分别预报O3的小时值、日最大值和最大8 h滑动平均值.结果表明,O3小时值预报的相关系数(R2)为0.84,平均绝对误差(MAE)和平均绝对百分误差(MAPE)分别为3.44×10-9和24.48,O3前期浓度、紫外B波段辐射(UVB)和NO2浓度是关键因子.O3日最大值预报的主要因子是NOx在07:00的浓度和UVB.预报O3 8 h时UVB和气温起重要作用.加入前体物项能够使O3的预报精度提升10%~28%.与多元线性回归方法相比,SVMr对O3浓度的预报有明显优势.  相似文献   
2.
使用南京工业区2016年6月1日~8月15日的臭氧(O3)、O3前体物及常规气象数据,结合多元线性回归(MLR)方法和小波变换(WT)改进支持向量机回归(SVR)对O3小时浓度的预报精度.结果表明,通过WT方法将一个高变异性的序列转化为多个低变异性的序列后再处理可提高预报精度,M-WT-SVR预报的决定系数(R2)达到0.90,平均绝对误差(MAE)、平均绝对百分误差(MAPE)和均方根误差(RMSE)分别为3.86×10-9、28.26%和5.57×10-9,优于M-SVR和SVR.低层细节序列主要与NO、NO2和芳香烃有关,而更高层的近似序列受到气象条件、前体物和O3前期浓度共同影响.与经典的MLR方法相比,M-WT-SVR对O3小时浓度的预报有明显优势.  相似文献   
3.
利用合肥市2015-2018年冬季PM_(2.5)观测资料和FNL再分析资料,文章综合考虑地面及边界层高度范围内各气象要素作用,针对目前空气质量统计预报方法的不足,根据阈值分析筛选预报因子,同时将风向数据转化为对应的八方位上历史污染物浓度均值输入,最后结合BP神经网络对PM_(2.5)浓度进行逐6 h预报。结果表明,所建模型(TA-BP方案)中对PM_(2.5)预测值与观测值的相关系数(R)高达0.85,平均绝对误差(MAE)为21.31μg/m~3,均方根误差(RMSE)为28.20μg/m~3。阈值分析能够有效筛选与污染物浓度呈非线性关系的气象预报因子和高空预报因子。较BP模型,TA-BP模型的R和一致性指数(IA)分别提升14.12%和8.33%,MAE、平均相对误差(MAPE)和RMSE分别降低22.87%、17.86%和23.78%。同时,与其他不同输入变量模型及线性模型对比结果表明:仅考虑气象因子作用的MTA-BP方案限制了预报模型的准确性,以临近6 h的PM_(2.5)浓度代替各气象因子作用的PTA-BP方案能够实现较好的预报效果,但滞后性严重。另外,综合考虑气象因子与污染因子作用的非线性TA-BP模型要优于线性MSR模型。  相似文献   
4.
为了分析南京北郊水溶性离子污染特征及其消光贡献,于2017年3月15日~4月15日、7月和10月开展了PM2.5观测实验,分析了南京春夏秋3个季节的PM2.5及其组分浓度特征、水溶性离子及其前体物转化特征以及水溶性离子的光学特性.结果表明,采样期间PM2.5的质量浓度为(93.8±40.3)μg/m3,其中54.2%为水溶性离子,其总质量浓度为(50.9±25.6)μg/m3,而二次水溶性离子(SNA)占水溶性离子的76.8%.各水溶性离子组分分布为:NO3- > SO42- > NH4+ > Ca2+ > Cl- > NO2- > K+ > F- > Mg2+ > Na+.在季节变化上,PM2.5和主要水溶性离子均为春季高,夏季低,但夏季NO3-42-.硫转化率(SOR)和氮转化率(NOR)在采样期的均值分别为0.38、0.22,这说明南京有较强的二次转化过程.采样期间,平均[NO3-]/[SO42-]的值为1,这说明水溶性离子主要来源于移动源的排放.通过IMPROVE公式计算的大气消光系数低于实际值,但能够较为准确的反映出南京消光系数的趋势.各组分消光贡献从大到小分别为(NH42SO4(38.9%)、NH4NO3(36.7%)、POM(13.6%)、EC(9.3%)、NO2(1.5%).其中SNA的消光贡献占70%以上,春季的SNA消光贡献最大,而夏季的最小.  相似文献   
5.
采用2018年6月以及2017年10月南京黑碳气溶胶(BC)垂直观测数据和Mie散射理论计算BC光学厚度(AODBC),并将结果输入TUV辐射传输模型,探讨BC对光解系数J[O1D]和J[NO2]日变化及垂直变化的影响.结果表明,在地面,J[O1D]和J[NO2]日变化均呈单峰型分布,峰值在正午12:00,但BC对J[O1D]和J[NO2]的衰减作用正午时最小,在6:00和18:00左右较大,最大分别可达-13.7%和-19.0%.AODBC与光解系数呈非线性负相关,BC对光解系数的衰减能力随着AODBC增大而下降.当天顶角为0°时,光解系数对AODBC的变化最敏感.在边界层0~1km内,光解系数与高度呈线性正相关,这与紫外辐射密切相关,J[O1D]和J[NO2]在垂直高度上与紫外辐射的相关系数R均高达0.99.BC对光解系数的衰减程度随高度下降而增大,但幅度较小,距平的最大值仅0.1%.  相似文献   
6.
基于CAMx-OSAT方法的西宁臭氧来源解析   总被引:1,自引:0,他引:1  
利用青海省西宁市2018—2019年O3浓度高值时期监测数据,结合CAMx-OSAT方法从控制型、分类排放源、区域贡献3个方面定量剖析西宁的O3污染来源.结果表明:西宁O3浓度整体为VOCs控制,主城四区(城东区、城西区、城北区、城中区)尤其突出,且夏季较为显著;2018年和2019年VOCs的贡献占比分别为9.76%和8.91%;而周边区县由NOx和VOCs共同控制.除背景场外,工业源对西宁O3生成的贡献最高,其在2018年和2019年模拟期的贡献占比分别为52.22%和47.24%,其次为交通源.模拟期内,本地源和外地传输的贡献比值约为2:1,西宁的O3以本地生成为主.本地源中,主城四区是O3生成的主要区域来源,占比约为32.26%;外地传输中,海东是主要贡献区.因此,为降低西宁本地O3污染浓度,应在夏季日间时段控制主城区工业源及交通源的VOCs排放,并加强与海东的联防联控.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号