首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
近年来,长湖水质恶化,特别是以农业、水产养殖为主的非点源污染,加速了湖泊富营养化进程。为改善长湖的水质现状,文章建立了基于最大日负荷量(TMDL)计划的长湖水环境管理模式,估算了长湖COD、TP、TN的水环境容量和现状点源、非点源入湖污染负荷,明确了污染物削减百分比,提出了基于TMDL值的污染控制措施。结果表明,长湖COD、TP、TN的水环境容量分别为26 438.43、90.78、1 815.56 t/a,现状污染入湖量分别为14 137.74、271.23、2 485.24 t/a。长湖流域COD的现状负荷不需要进行削减,而富营养化因子TP、TN已经大大超过了其水环境容量,削减百分率分别高达68.20%、30.60%,而以农业、水产养殖为主的非点源负荷对TP、TN具有较大影响,亟需采取针对性的控污措施。  相似文献   

2.
2010年洱海全湖氮负荷时空分布特征   总被引:6,自引:1,他引:5  
为探讨不同来源的氮负荷对洱海水体富营养化的贡献,对洱海入湖河流、干湿沉降和沉积物内源等来源的氮的负荷、形态及其时空变化特征进行了研究. 结果表明:与2008年相比,2010年洱海入湖TN负荷下降了28%. 入湖河流是TN负荷的主要来源,占总入湖负荷的37%;入湖河流TN负荷与ρ(TN)、ρ(Chla)呈极显著正相关;入湖河流TN负荷以NO3--N为主,占39%. 入湖河流氮负荷季节性变化明显,7月最高;区域性差异较大,北部3条河流是主要来源,其中弥苴河入湖TN负荷占入湖河流TN负荷的57%. 沉积物内源TN负荷占总入湖负荷的29%,NH4+-N负荷占内源TN负荷的98%,并且与水体ρ(Chla)呈显著正相关. 沉积物中TN和NO3--N扩散通量北部湖区最高,NH4+-N扩散通量南部湖区最高;TN扩散通量9月最高、12月最低. 干湿沉降入湖TN负荷以NH4+-N为主,季节性变化明显,6月最高. 控制洱海外源入湖氮负荷,应以雨季之初为关键时期,以弥苴河及其流域为重点区域,兼顾坝区农业种植结构调控,同时应加强湖泊水体生态修复,控制内源释放.   相似文献   

3.
2010年洱海全湖磷负荷时空分布特征   总被引:3,自引:0,他引:3  
为探讨不同来源磷负荷对洱海水体富营养化的贡献,研究了洱海入湖河流、干湿沉降和沉积物内源释放等来源磷负荷的时空变化特征. 结果表明:2010年洱海磷负荷的主要来源是入湖河流,其所带来的磷负荷占总入湖负荷的33%. 入湖河流磷负荷与洱海水体富营养化指数呈显著正相关,并且季节性变化明显,10月是高峰期入湖河流磷负荷区域差异较大,北部3条河流是主要来源,其中以弥苴河入湖磷负荷最大,占入湖河流磷负荷总量的52%. 沉积物磷扩散通量由北向南呈下降趋势,最高值在湖心区,11月最大. 干湿沉降入湖磷负荷季节性变化明显,干沉降占干湿沉降入湖磷负荷总量的47%. 外源入湖磷负荷控制,应以雨季之初为关键时期,以弥苴河及其流域为重点区域,以坝区农业污染控制为重点,同时应加强湖泊水体生态修复控制沉积物内源磷释放.   相似文献   

4.
研究了中国北方某流域不同污染源的污染贡献,结果表明:COD贡献量点源为719.21 t,农业面源污染为7 488.02 t,农业面源污染是该流域水环境污染的主要来源.农业面源污染物等标污染负荷总量为8 359.44×106 m3/a.不同污染源污染贡献比例:农田化肥占49.24%、畜禽养殖占35.10%、农村生活占14.69%、农作物秸秆仅占0.97%.污染物贡献量比例.TN占56.46%、TP占39.06%、COD仅占4.48%.  相似文献   

5.
SWAT模型在洱海流域面源污染评价中的应用   总被引:5,自引:1,他引:4  
重点污染区域和污染因子的识别是面源污染控制的基础. 通过将物理过程模拟及排污系数法计算进行整合,建立了SWAT模型,以描述农业生产活动与污染入湖量之间的关联关系,并以云南洱海流域总氮污染为例,使用验证后的SWAT模型模拟计算不同空间单元和不同农业生产活动对入湖TN的污染贡献系数,定量分析流域内各区域的农业面源污染源结构,识别洱海流域重点农业污染源和农业污染村镇. 结果表明,奶牛养殖、生猪养殖和大蒜种植是目前洱海流域内入湖TN污染的最重要农业污染源,占流域总污染负荷的66.12%. 对入湖TN污染贡献最大的6个村镇为江尾、右所、三营、玉湖、凤仪和喜洲,占流域总污染负荷的63.41%.   相似文献   

6.
阳宗海水体特征分析及控制对策初探   总被引:3,自引:0,他引:3  
李振宇  孙冶 《云南环境科学》2005,24(Z1):108-111
以近年来阳宗海水体TP、TN、高锰酸盐指数、透明度、水体中N、P比和水生生物特性等湖泊富营养化要素综合评价了阳宗海水体水质变化特征.在总结阳宗海污染控制取得阶段性成果的基础上,针对目前仍然存在的富营养化威胁,建议将恢复湖泊生态系统、控制内外污染源以及强化流域环境管理作为新的控制对策.  相似文献   

7.
为探究中国北方季冻区湖泊富营养化及驱动因素,以吉林省西部查干湖为研究对象,利用监测数据,应用BP神经网络模型,开展湖泊富营养化现状评价,识别超限营养指标,并分析其动态特征;采用EQC多介质模型,评估灌区排水中残余农药化肥等对水环境的影响,探讨湖泊富营养化状态的驱动因素.结果表明:2016-2019年,湖泊水质总体为轻度富营养化,主要超限营养指标为CODMn、CODCr、TP和TN等.超限指标CODMn、CODCr和TP受低温驱动,在冰封期浓度呈上升趋势,其中,湖泊TP浓度上升约10%.受灌排驱动,在灌区退水期TP和TN呈现上涨趋势.通过EQC模拟,获得灌区排水进入湖泊的TN和TP浓度贡献值,分别为2.717、0.080mg/L,灌区退水中残留的农药化肥组分入湖,是驱动退水期湖泊TN含量上升的主要因素,最大上升比例约27%.低温是冰封期湖泊总磷浓度上升(最大上升约10%)的主要驱动因素.加之春季农药化肥施用对湖泊夏季富营养化程度的影响,导致季冻区湖泊在冬夏两季呈现富营养化加剧趋势.研究区湖泊富营养化治...  相似文献   

8.
程海流域非点源污染负荷估算及其控制对策   总被引:8,自引:5,他引:3  
计算流域非点源氮磷污染负荷并以此开展源解析对于寻求水体污染控制最佳管理措施具有重要意义.通过对经典的Johnes输出系数模型进行改进,考虑了降水、坡度以及污染源与水体之间距离等因素,建立了一套在资料缺乏情况下,适用于受地形、降水影响较大的高原湖泊地区的非点源污染负荷评估方法.选取云南省九大高原湖泊之一的程海作为研究对象,验证了改进输出系数模型的合理性,并对流域溶解态氮磷入湖污染负荷进行了全面的分析.结果表明:(1)2014年,程海流域溶解态氮磷入湖负荷分别是158.48 t·a~(-1)和24.70 t·a~(-1),且二者空间分布相似;(2)在土地利用方面,农业用地对溶解态氮磷入湖污染负荷贡献最大,分别是46.19%和48.16%;(3)畜禽养殖和农村生活是溶解态氮磷入湖污染负荷治理的优先控制污染源,南岸是溶解态氮磷入湖污染负荷重点治理区域;(4)若实行农村生活和畜禽养殖、化肥流失及土地利用治理,可使溶解态氮磷入湖污染负荷分别减少38.47%和40.76%.研究成果可为缺乏资料的高原湖泊地区非点源污染治理提供科学的理论依据.  相似文献   

9.
大气氮磷干沉降是湖泊外源营养盐输入的重要途径之一,对湖泊水体富营养化及生态系统演化具有重大影响。文章为了深入揭示洱海湖区大气氮磷干沉降(颗粒物)对水体的贡献,于2021年全年对洱海周边布设的6个站点进行了为期1 a的大气干沉降连续监测,使用自动降尘采样器湿法收集大气干沉降。分析了洱海湖区氮磷干沉降通量的时空分布特征,估算了氮磷干沉降直接入湖负荷量。结果表明:洱海湖区干沉降(颗粒物)TN、TP沉降通量年内总体呈先降后升再降的趋势。TN沉降通量范围为8.78~84.93 kg/km2,均值为(33.44±15.94) kg/km2;TP沉降通量范围为0.38~11.91 kg/km2,均值为(4.04±2.69) kg/km2;2021年洱海湖区干沉降TN、TP直接入湖负荷量分别为107.69 t和13.28 t,TN、TP干沉降直接入湖负荷量约占流域农业面源排放量的3.91%和5.12%;影响洱海湖区TN、TP干沉降的主要因素包括湖区上空低层风场环流、湖区降雨分布、气溶胶粒径以及小流域下垫面土地利用现状。  相似文献   

10.
严春丽  赵明  李泽坤  李金  段云松 《环境工程》2020,38(12):59-63,5
基于2016—2018年罗时江、弥苴河、永安江及洱海北部湖区监测数据分析,探讨洱海北部入湖河流污染变化特征及对北部湖区的影响。结果表明:1)"北三江"监测断面总磷、COD、氨氮浓度整体稳定在GB 3838—2002《地表水环境质量标准》Ⅱ—Ⅲ类标准限值内,年内污染物浓度变化表现出典型的农业面源污染特征,且受流域内产业模式等的综合影响;2)研究期间,河流首要污染物为TN,旱季次要污染物为COD,雨季为TP。雨季入湖负荷高于旱季,弥苴河污染负荷大于罗时江、永安江。"北三江"入湖TN和TP污染负荷分别占洱海允许负荷的50.1%和59.7%;3)入湖河流的磷元素输入是洱海北部湖区磷污染的重要来源。北部湖区污染物浓度对氮、磷入湖污染负荷相关性次月强于当月,响应存在延迟。筛选环境友好型种植模式,控制"北三江"氮磷入湖负荷,有利于保护洱海水环境。  相似文献   

11.
为探究高原型水库上游流域的污染负荷来源及其贡献率,并计算水库的水环境容量,以云南高原柴石滩水库为研究对象,应用排污系数法估算了水库上游流域污染来源,运用水文和水质同步监测资料计算入库污染负荷,采用富营养化模型核算了不同水质目标情景下水库TN和TP的最大容量.结果表明:(1)柴石滩水库及其以上流域主要特征污染物为TN和TP;(2)水库上游流域的COD和TP主要来源于农村面源污染,贡献率分别为49.40%和50.11%; NH+4-N和TN主要来源于城镇生活污染,贡献率分别为45.76%和33.77%;农村面源污染贡献中,陆良县COD和TP贡献率最大,分别为34.82%和36.82%;城镇生活污染贡献中,麒麟区COD、 NH+4-N、 TN和TP贡献率最大,均高达65%.(3)COD、 NH+4-N、 TN和TP污染负荷入河量分别为28 050.90、2 465.16、4 680.54和870.93 t·a-1,TN和TP污染负荷入库量分...  相似文献   

12.
白洋淀流域府河干流村落非点源负荷研究   总被引:4,自引:1,他引:3  
村落非点源污染是白洋淀流域农业非点源污染的重要组成部分.现场调查府河干流临河村落生活污水、生活垃圾的排放情况及相应污染物含量,研究了其非点源污染特征.结果表明:临河村落生活污水与生活垃圾的人均排放量分别为26.3 L/d和0.41 kg/d;临河村落非点源氮、磷污染中,生活垃圾贡献极大,在TN、TP年潜在入河负荷和年入河负荷中所占比例均接近70%;生活污水中的氮、磷以可溶态为主;生活污水与人粪尿的CODCr年入河负荷分别为10.9和2.30 t,生活垃圾的TOC年入河负荷为26.9 t.   相似文献   

13.
为研究季节变化和降雨量对滇池各种氮磷形态浓度的影响,采用紫外分光光度法测定大气沉降的各种氮磷形态浓度,探讨滇池湖面氮磷对水污染的贡献。结果表明,滇池大气沉降氮浓度普遍符合雨季低,旱季高的特点;大气沉降氮磷负荷与降雨量正相关,季节性变化主要呈雨季高,旱季低。大气沉降氮负荷以DIN为主,占总氮沉降负荷的63.70%;磷负荷以PP为主,占总磷沉降负荷的45.54%,过度施肥和肥料中氮磷的流失是大气湿沉降中主要的氮磷来源。结合入湖河流数据,滇池大气沉降中TN和TP的沉降量分别为河流入湖负荷的6.14%和12.76%,因而滇池主要污染来源仍然是入湖河流带来的负荷。但滇池大气沉降氮磷通量与其他地区相比处于中等偏上地位,所以该贡献仍需重视。  相似文献   

14.
玉溪市星云湖入湖污染物分布研究初步研究   总被引:2,自引:0,他引:2  
王建云 《重庆环境科学》2001,23(2):56-58,61
污染物进和湖泊的方式,无论是来自点源或是来自面源的污染物,最终都将通过入湖河流、地表散流及湖面的降水、降尘载入湖泊,因此,通过对这几种方式进入的湖泊污染物的量进行监测,就基本可以掌握住进入湖泊污染物的总量。1999年,玉溪市环境监测站对星云湖的十二条主要主湖河流、地表散流、降尘、降水进行了为期一年的实际监测。得出通过入湖河流、地表散流、降尘、降水实际进入星云湖的主要污染物总是为:CODCr:1893.8t、BOD5:360.27t、SS:26460.5t、NH3-N:165.18t、TN:228.23t、TP:184.226t。污染物入湖一般以河流方式为主要方式,但磷主要通过降尘方式入湖,占入湖总量的54.1%,这与湖区磷工业发达有直接的关系:降水载入的氮量也不容忽视,占总量的11%。  相似文献   

15.
鄱阳湖流域面源污染负荷模拟与氮和磷时空分布特征   总被引:7,自引:1,他引:6  
基于气象、土壤、土地利用、数字高程模型和农业管理等数据基础上,对输入鄱阳湖赣江、抚河、信江、饶河、修水等"五河"上的7个水文站的径流、泥沙和面源氮(N)和磷(P)污染负荷进行参数的敏感性分析,利用实测数据对参数校准和验证,通过SWAT模型对2003—2012年十年间入湖的径流、泥沙和面源N、P污染负荷进行了模拟.2003—2012年面源总氮(TN)、总磷(TP)、硝氮(NO-3-N)、有机氮(ON)和有机磷(OP)面源污染负荷入湖特征呈现出:时间变化上,年际间变化大、年内集中在4—7月入湖,鄱阳湖N、P污染负荷主要来自于面源污染,入湖面源TN组份中NO-3-N所占比重较高,TP组份中OP所占比重较高的特征;空间分布上,"五河"中赣江流量和流域面积最大,流域各项面源N、P污染物入湖量最大;修水流量和流域面积最小,流域各项面源N、P污染物入湖量最小的特征.  相似文献   

16.
该文选取鄱阳湖典型入湖河流乐安河为研究对象,构建SWAT模型模拟了流域1990-2020年入湖营养盐通量。基于子流域营养损失状况对入湖TN和TP通量进行溯源分析,确定主要贡献区域和排放源。结果表明,入湖营养盐通量存在明显年际变化,分别在1995年和2011年达到峰值(TN:31.22 Gg;TP:7.75 Gg)和谷值(TN:5.90 Gg;TP:1.62 Gg)。下游区域TN和TP损失强度明显高于中上游区域,其中子流域15、22和23为高损失强度区域。溯源分析发现,流域下游为入湖营养盐主要贡献区域且越靠近流域出口贡献权重越高。河口断面TN和TP主要来源区域均为子流域13、22和27,且耕地和森林为非点源营养损失的主要排放源。  相似文献   

17.
滇池大气沉降氮磷形态特征及其入湖负荷贡献   总被引:4,自引:2,他引:2  
为研究季节变化和降雨量对滇池各种氮磷形态浓度的影响,采用紫外分光光度法测定大气沉降的各种氮磷形态浓度,探讨滇池湖面氮磷对水污染的贡献.结果表明,滇池大气沉降氮浓度普遍符合雨季低,旱季高的特点;大气沉降氮磷负荷与降雨量正相关,季节性变化主要呈雨季高,旱季低.大气沉降氮负荷以DIN为主,占总氮沉降负荷的63. 70%;磷负荷以PP为主,占总磷沉降负荷的45. 54%,过度施肥和肥料中氮磷的流失是大气湿沉降中主要的氮磷来源.结合入湖河流数据,滇池大气沉降中TN和TP的沉降量分别为河流入湖负荷的6. 14%和12. 76%,因而滇池主要污染来源仍然是入湖河流带来的负荷.但滇池大气沉降氮磷通量与其他地区相比处于中等偏上地位,所以该贡献仍需重视.  相似文献   

18.
基于源汇过程模拟的鄱阳湖流域总磷污染源解析   总被引:1,自引:0,他引:1       下载免费PDF全文
近年来鄱阳湖磷污染问题突出,总磷超标且浓度逐年增加,成为制约鄱阳湖流域(江西)经济社会可持续发展的重要因素.为科学解析鄱阳湖总磷污染来源,耦合多污染源污染负荷估算方法和SPARROW模型,建立基于源汇过程模拟的流域污染源解析技术方法,针对鄱阳湖流域13种总磷污染源开展负荷估算、模拟校核和入湖时空贡献定量解析.结果表明:①鄱阳湖总磷负荷以陆域输入为主(占90.8%),主要污染来源为农业和城镇生活源,贡献率分别为56.4%和30.6%;污染来源按贡献率的大小排序依次为种植业(29.3%)>城镇生活(24.6%)>畜禽养殖(17.2%)>水产养殖(9.9%)>内源释放(6.9%)>城市径流(6.0%)>农村生活(2.2%)>工业企业(1.6%)>其他源(0.46%).②在空间贡献方面,总磷入湖负荷主要来自于滨湖区和赣江集水区,贡献率分别为33.5%和31.8%,其他集水区总磷贡献率较小(合计为25.5%),湖体贡献率为9.2%;同时,不同子流域污染源贡献结构也存在空间差异性.③在时间贡献方面,总磷入湖负荷量呈季节性波动特征,贡献峰值多出现在6月,雨季(3—8月)陆源输入负荷占全年的70%.④所构建的基于源汇过程模拟的污染源解析模型可用于流域水污染来源成因精细化解析.研究显示,鄱阳湖总磷污染来源具有明显时空差异性,建议围绕滨湖区和赣江集水区等高贡献区域设立优先管控区,重点针对种植业、城镇生活、畜禽养殖和水产养殖源,制定磷污染源汇过程减排政策措施,以改善鄱阳湖水环境质量.   相似文献   

19.
长江中下游湖泊水体氮磷比时空变化特征及其影响因素   总被引:4,自引:4,他引:0  
为弄清长江中下游浅水湖泊水体氮磷比(TN/TP)对湖泊富营养化状况及水系连通性的指示意义,对该区域26个湖泊开展了春、夏两季的水质调查,比较了不同水文、水质状况湖泊之间TN/TP差异,探讨了影响湖泊TN/TP的主要因素.结果发现,长江中下游湖泊TN/TP存在较大的时空差异性,春季TN/TP平均值为21.52±14.28,过水性湖泊、深水湖泊以及富营养化湖泊3种类型水体中,富营养化湖泊的TN/TP较低,为14.38±7.40,深水湖泊的TN/TP最高,为40.97±33.37;夏季调查湖库的TN/TP平均值为21.73±23.78,其中深水湖泊的TN/TP仍为最高,达96.38±45.91,富营养化湖泊的TN/TP仍为最低,达10.91±4.44.春、夏相比,过水性湖泊和深水湖泊夏季的TN/TP显著上升,而富营养化湖泊却明显下降,且降幅随富营养化程度升高而加大.相关性分析发现,无论是春季还是夏季,湖泊TN/TP都与水体深度显著正相关.此外,湖泊富营养化程度越高,TN/TP与浮游植物生物量的关系就越弱,富营养化程度越低,TN/TP越高,磷对浮游植物生长的限制越明显.研究表明,长江中下游湖泊富营养化治理营养盐策略上,多数湖泊控磷更为重要,在一些富营养化较为严重的湖泊,局部疏浚、合理挖深、外源控制和调整渔业生产方式等是值得探索的修复途径.  相似文献   

20.
针对滇池草海水质现状与改善需求,通过构建城市排水系统模型和湖体箱式水质模型估算入湖污染负荷并预测湖体水质。结果表明入湖COD、TP负荷主要由城市面源贡献,TN负荷则以城市点源贡献为主。2020年草海达到Ⅴ类水标准的限制因素是TN;实现达标需要进一步降低污水厂尾水TN浓度、提高再生水回用比例、加强LID设施与湖滨湿地建设、增加牛栏江引水量等综合措施。如果2030年要求草海水质提高到Ⅳ类标准,甚至将TP浓度降至0.04 mg/L以下来控制藻华爆发,仅靠外源污染减排和外来清水补充难以实现,还应考虑内源污染控制措施乃至对流域社会经济发展模式加以调整。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号