首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 138 毫秒
1.
为研究季节变化和降雨量对滇池各种氮磷形态浓度的影响,采用紫外分光光度法测定大气沉降的各种氮磷形态浓度,探讨滇池湖面氮磷对水污染的贡献。结果表明,滇池大气沉降氮浓度普遍符合雨季低,旱季高的特点;大气沉降氮磷负荷与降雨量正相关,季节性变化主要呈雨季高,旱季低。大气沉降氮负荷以DIN为主,占总氮沉降负荷的63.70%;磷负荷以PP为主,占总磷沉降负荷的45.54%,过度施肥和肥料中氮磷的流失是大气湿沉降中主要的氮磷来源。结合入湖河流数据,滇池大气沉降中TN和TP的沉降量分别为河流入湖负荷的6.14%和12.76%,因而滇池主要污染来源仍然是入湖河流带来的负荷。但滇池大气沉降氮磷通量与其他地区相比处于中等偏上地位,所以该贡献仍需重视。  相似文献   

2.
为给进一步实施滇池入湖污染控制及小流域污染治理提供依据,以滇池环湖28条河流入湖水量及水体中不同形态氮的质量浓度逐月调查数据为基础,研究了滇池河流不同形态氮的入湖浓度(ρ)和入湖负荷的时空变化,并探讨了不同形态氮的入湖负荷贡献. 结果表明:①滇池河流入湖ρ(TN)在2.91~94.01 mg/L之间,以ρ(DIN)(DIN为溶解性无机氮)最高,而ρ(DON)(DON为溶解性有机氮)和ρ(PN)(PN为颗粒态氮)均较低. ②滇池河流氮入湖负荷总量为6 908.47 t/a,绝大多数河流以DIN负荷为主,平均贡献为67.15%;DON和PN入湖负荷贡献相近,平均分别为17.86%和14.99%. ③不同形态氮入湖负荷贡献的季节性差异明显,DIN入湖负荷较高值出现在春夏季(3—9月),平均贡献达74.01%;DON入湖负荷较高值则出现在秋冬季(9月—翌年1月),平均贡献达33.42%;PN入湖负荷贡献月份变化差异较小,最高值出现在2月,贡献为40.19%. ④滇池河流氮入湖负荷不仅要考虑DIN的贡献,也应重视DON和PN负荷,控制滇池河流氮入湖负荷需要考虑不同河流不同形态氮负荷组成及其季节性差异,有针对性地采取相应措施.   相似文献   

3.
2010年洱海全湖氮负荷时空分布特征   总被引:6,自引:1,他引:5  
为探讨不同来源的氮负荷对洱海水体富营养化的贡献,对洱海入湖河流、干湿沉降和沉积物内源等来源的氮的负荷、形态及其时空变化特征进行了研究. 结果表明:与2008年相比,2010年洱海入湖TN负荷下降了28%. 入湖河流是TN负荷的主要来源,占总入湖负荷的37%;入湖河流TN负荷与ρ(TN)、ρ(Chla)呈极显著正相关;入湖河流TN负荷以NO3--N为主,占39%. 入湖河流氮负荷季节性变化明显,7月最高;区域性差异较大,北部3条河流是主要来源,其中弥苴河入湖TN负荷占入湖河流TN负荷的57%. 沉积物内源TN负荷占总入湖负荷的29%,NH4+-N负荷占内源TN负荷的98%,并且与水体ρ(Chla)呈显著正相关. 沉积物中TN和NO3--N扩散通量北部湖区最高,NH4+-N扩散通量南部湖区最高;TN扩散通量9月最高、12月最低. 干湿沉降入湖TN负荷以NH4+-N为主,季节性变化明显,6月最高. 控制洱海外源入湖氮负荷,应以雨季之初为关键时期,以弥苴河及其流域为重点区域,兼顾坝区农业种植结构调控,同时应加强湖泊水体生态修复,控制内源释放.   相似文献   

4.
2010年洱海全湖磷负荷时空分布特征   总被引:3,自引:0,他引:3  
为探讨不同来源磷负荷对洱海水体富营养化的贡献,研究了洱海入湖河流、干湿沉降和沉积物内源释放等来源磷负荷的时空变化特征. 结果表明:2010年洱海磷负荷的主要来源是入湖河流,其所带来的磷负荷占总入湖负荷的33%. 入湖河流磷负荷与洱海水体富营养化指数呈显著正相关,并且季节性变化明显,10月是高峰期入湖河流磷负荷区域差异较大,北部3条河流是主要来源,其中以弥苴河入湖磷负荷最大,占入湖河流磷负荷总量的52%. 沉积物磷扩散通量由北向南呈下降趋势,最高值在湖心区,11月最大. 干湿沉降入湖磷负荷季节性变化明显,干沉降占干湿沉降入湖磷负荷总量的47%. 外源入湖磷负荷控制,应以雨季之初为关键时期,以弥苴河及其流域为重点区域,以坝区农业污染控制为重点,同时应加强湖泊水体生态修复控制沉积物内源磷释放.   相似文献   

5.
夏季滇池不同来源溶解性有机磷特征及其生物有效性   总被引:3,自引:0,他引:3  
夏季选取了滇池不同来源(滇池湖体、入湖河流和大气降雨)水样,研究了其溶解性有机磷(DOP)含量及分布特征,并利用酶水解技术表征了其DOP生物有效性.结果表明,滇池湖体、入湖河流和大气降雨DOP浓度分别在0.001~0.117,0.002~1.722,0.006~0.112mg/L(平均0.027,0.197,0.037mg/L),分别占溶解性总磷(DTP)的18.3%~92.5%,4.2%~100%,25.4%~100%(平均55.3%,60%,58.9%),不同来源DTP均以DOP为主,入湖河流DOP浓度明显高于滇池湖体和大气降雨.不同来源DOP酶可水解磷(EHP)浓度分别为n.d.~0.058,n.d.~0.673,n.d.~0.031mg/L(平均0.017,0.064,0.010mg/L),分别占DOP的0%~127.5%,0%~105.6%,0%~55.6%(平均77.9%,38.7%,23.2%).不同来源DOP酶水解率(EHP/DOP)较高,滇池湖体DOP酶水解率明显高于入湖河流和大气降雨.不同来源DOP时空分布特征明显,且其生物有效性存在较大差异.其中,滇池湖体EHP以活性单酯磷和类植酸磷为主,入湖河流和大气降雨EHP以活性单酯磷为主,尤其是大气降雨二酯磷和类植酸磷含量较少,滇池湖体、入湖河流和大气降雨DOP生物有效性依次降低.不同来源DOP是与溶解性反应磷(SRP)同等规模的生物可利用磷源,二者共同维持了滇池富营养化.滇池治理要从全流域出发,考虑不同来源各形态磷对水质的影响.  相似文献   

6.
严春丽  赵明  李泽坤  李金  段云松 《环境工程》2020,38(12):59-63,5
基于2016—2018年罗时江、弥苴河、永安江及洱海北部湖区监测数据分析,探讨洱海北部入湖河流污染变化特征及对北部湖区的影响。结果表明:1)"北三江"监测断面总磷、COD、氨氮浓度整体稳定在GB 3838—2002《地表水环境质量标准》Ⅱ—Ⅲ类标准限值内,年内污染物浓度变化表现出典型的农业面源污染特征,且受流域内产业模式等的综合影响;2)研究期间,河流首要污染物为TN,旱季次要污染物为COD,雨季为TP。雨季入湖负荷高于旱季,弥苴河污染负荷大于罗时江、永安江。"北三江"入湖TN和TP污染负荷分别占洱海允许负荷的50.1%和59.7%;3)入湖河流的磷元素输入是洱海北部湖区磷污染的重要来源。北部湖区污染物浓度对氮、磷入湖污染负荷相关性次月强于当月,响应存在延迟。筛选环境友好型种植模式,控制"北三江"氮磷入湖负荷,有利于保护洱海水环境。  相似文献   

7.
密云水库周边小流域大气氮磷沉降特征研究   总被引:1,自引:0,他引:1       下载免费PDF全文
大气沉降是氮磷元素进入水体的重要途径之一,为了解密云水库水源地周边大气氮磷沉降特征,选取土门西沟小流域为研究区域,设置降水、降尘自动采样器进行为期一年(2019年9月—2020年8月)的大气沉降收集,分析大气干、湿沉降中不同形态氮磷通量逐月和季节变化及其影响因素,估算大气氮磷沉降对小流域及密云库区氮磷输入的贡献. 结果表明:①土门西沟小流域大气氮、磷年沉降通量分别为38.393和1.952 kg/(hm2·a),氮磷干湿沉降通量季节性变化显著. ②湿沉降受气象(降雨量、温度、降雨时间间隔)等因素影响,氮磷沉降通量表现为夏季>春季>秋季>冬季,温度升高、降雨时间间隔变长均会使氮磷湿沉降浓度增大,而降雨量大小与大气湿沉降通量直接相关. ③干沉降受物质来源及气象等因素影响,氮磷沉降通量呈夏冬季高、春秋季低的特点,其中风向、风速是影响大气氮磷干沉降的重要因子. ④经计算,土门西沟小流域大气氮、磷沉降贡献分别为1 339.90和1.50 kg/a,分别占其氮、磷输出贡献的28.57%和0.39%,若不考虑空间差异性,预计大气沉降直接落入密云水库总氮(TN)和总磷(TP)的沉降量分别为551.18和28.02 t. 研究显示,大气沉降是密云库区周边面源污染综合管理的重要一环,未来应引起足够关注.   相似文献   

8.
通过对2020年位于洱海湖区周边4个站点大气降水的实地监测,定量揭示了大气湿沉降不同形态氮素(TN、DTN、AN、NN、NIT、PN)的浓度和时空分布规律,探讨了氮素沉降通量的变化特征及其主要影响因子,进而明确了大气氮湿沉降对湖区外源性氮素输入的贡献程度,评估了氮素湿沉降入湖负荷对湖区水环境的影响。结果表明:各监测点降水中氮素浓度年内总体呈先升后降再升的趋势,总氮浓度为0.18~8.73 mg/L,平均浓度为1.34±0.686 mg/L,氮素浓度呈现干季高湿季低的变化规律;氮素湿沉降通量月际变化大致呈M双峰型,沉降通量峰值出现在浓度最低但降雨量最大的8月,最小值出现在12月,沉降通量与降雨量呈极显著正相关,沉降通量AN/NN为1.97,农业生产活动的氮素排放是湿沉降的主要来源;2020年洱海湖面湿沉降总氮直接输入负荷量约为170.11 t,其中铵态氮86.86 t,硝态氮51.58 t,总氮直接入湖负荷约占流域农业面源排放量的6.18%。  相似文献   

9.
九龙江流域大气氮湿沉降研究   总被引:30,自引:5,他引:25  
通过2004~2005年对位于我国东南沿海的九龙江流域及周边共17个站点的实地观测,运用GIS技术定量揭示了大气氮湿沉降强度和时空分布特征,并利用氮稳定同位素分析雨水硝态氮的主要来源.结果表明,①17个站点雨水总氮平均浓度为(2.20±1.69)~(3.26±1.37) mg·L-1(以N计,下同),铵态氮、硝态氮和有机氮分别占39%、25%和36%;②雨水氮浓度随降雨强度的增大呈降低趋势,旱季浓度明显大于雨季,降水对大气具有清洗作用;③低δ15N值表明雨水硝态氮主要来源于汽车尾气排放、化石燃料燃烧和化肥施用;④九龙江流域大气氮湿沉降量平均9.9 kg·hm-2,春夏2季约占全年的91%,大气氮湿沉降占沉降总量的66%,揭示了该地区1∶2的大气氮干湿沉降结构.大气氮湿沉降时空差异与降雨量和氮的排放直接相关.  相似文献   

10.
汉江上游金水河流域氮湿沉降   总被引:10,自引:4,他引:6  
汉江上游金水河流域是南水北调工程的重要水源涵养区,但是氮污染已成为该流域水质的主要威胁因素.该研究对汉江的金水河流域开展了为期1 a(2012-02~2013-02)的氮湿沉降观测,并利用氮输出模型估算了氮湿沉降对河流氮负荷的贡献量.结果表明雨水中总氮(DTN)的浓度在0.24~2.89 mg·L-1之间,铵态氮(NH+4-N)、硝态氮(NO-3N)及有机氮(DON)分别占42.8%、13.3%和43.9%;雨水氮浓度随降雨量增大而变小,明显受到降雨的稀释作用.流域内氮湿沉降主要来自人类活动,沉降负荷在4.97~7.00 kg·(hm2·a)-1之间,受降雨量的主要影响,上游地区的氮湿沉降负荷>下游地区>中游地区,春夏两季约占全年氮湿沉降的81%.流域氮湿沉降对河流氮负荷贡献量约为34 000~46 000 kg,只占流域氮肥贡献量的5.05%~6.78%,远小于流域内农业活动化肥氮的贡献量,不是河流氮的主要来源.  相似文献   

11.
文章采用WPI水污染指数法评价滇池北岸各片区河道的水质,并分析其变化趋势,同时采用pearson相关分析方法研究旱季和雨季各片区河道WPI指数变化趋势的相关度。结果表明:1988-2001年滇池北岸河道水质污染主要为减轻的趋势;2001-2007年随着昆明市的大规模扩张,其加重趋势非常明显;2007-2009年,随着河道水环境综合整治工程的大规模开展,又主要表现为减轻趋势,且旱季水质污染减轻的趋势比雨季明显,在纳入统计的5个片区河道中,旱季有4个片区河道水质好转,雨季有3个片区河道水质好转。这是由于2007-2009年间开展的河道水环境综合整治工程主要针对点源污染控制。此外,由于面源污染特征在5个片区中的4个片区都非常相似,雨季各片区河道WPI指数变化趋势的相关度比旱季高。  相似文献   

12.
太湖氮磷营养盐大气湿沉降特征及入湖贡献率   总被引:13,自引:2,他引:11       下载免费PDF全文
2009年8月—2010年7月在太湖流域不同区域10个采样点收集降水样品230多个,测定其中不同形态N,P营养盐的质量浓度,分析太湖大气湿沉降中N,P营养盐沉降特征,计算N,P营养盐湿沉降率及其占太湖河流入湖负荷的贡献率. 结果表明:湿沉降中ρ(TN)年均值为3.16 mg/L,DTN(溶解性总氮)占TN的70%以上,其中以NH4+-N为主;湿沉降中ρ(TN)年均值最高值出现在南部湖区,最低值出现在北部湖区. 湿沉降中ρ(TP)年均值为0.08 mg/L,相对较低. 5个区域湿沉降中不同形态N的质量浓度均表现为冬季高、夏季低,而不同形态N,P的湿沉降量均为夏季最大. 南部、东部湖区TN的湿沉降率相对较大. 各采样点湿沉降中NH4+-N沉降率约占DTN沉降率的30.4%~52.0%,NO3--N沉降率约占DTN的31.6%;各区域间湿沉降中DTP(溶解性总磷)占TP的比例差异较大. 大气湿沉降中TN和TP的年沉降总量分别为10 868 和247 t,为同期河流入湖负荷的18.6%和11.9%,湿沉降对太湖富营养化的贡献及可能带来的水生态系统的影响不容忽视.   相似文献   

13.
滇池沉积物内源氮释放风险及控制分区   总被引:2,自引:0,他引:2  
采用淹水培养法测定了滇池20cm沉积物可释放态氮(EN)、潜在可释放态氮(MN)及稳定态氮(FN)含量,并分析了其空间分布特征,结合沉积物定年数据计算了不同形态氮蓄积量.依据沉积物-水界面氮释放通量、EN蓄积量及MN蓄积量对滇池沉积物内源氮污染状况进行分区,评估了不同区域滇池沉积物内源氮释放风险,并对不同分区提出了污染控制措施.结果表明,滇池沉积物内源氮释放风险:外海南部 >外海北部 >外海中部 >草海,潜在释放风险:外海南部 >外海中部 >草海 >外海北部;滇池沉积物氮污染有由北向南转移趋势;滇池全湖20cm沉积物蓄积TN5757.90t,EN637.72t,MN1320.76t,FN3799.42t.根据沉积物氮污染滇池可划分为高污染区、中度污染区、低污染区及安全区,分别占全湖面积的13.51%、15.02%、46.06%、25.42%,其中高污染区主要分布在草海、外海北部盘龙江附近;中度污染区主要分布在高污染区以下从宝象河到观音山区域及滇池出水口海口等区域;低污染区主要分布在中度污染区以下从广谱大沟到整个外海南部区域.高污染区可采取底泥环保疏浚技术,中度污染区可采取安全生态性高的原位控制技术,低污染区可采取覆盖技术,配合水生植被修复技术.  相似文献   

14.
城市湖泊氮磷沉降输入量及影响因子——以武汉东湖为例   总被引:1,自引:0,他引:1  
城市湖泊是受人类影响最严重生态系统之一,正面临着水体污染和生态系统退化的双重压力.研究氮、磷沉降输入量及影响因素对城市湖泊管理具有重要的实践意义.本文通过对中国最大的城市湖泊之一——武汉东湖进行为期1年的氮、磷沉降连续监测,研究了大气混合沉降对武汉东湖的氮、磷输入动态,并探讨了氮、磷沉降的影响因素.结果表明:武汉东湖大气氮、磷年沉降通量分别为22.80、1.37 kg·hm~(-2)·a~(-1);总氮年沉降负荷为76.94 t·a~(-1),氨氮年沉降负荷为31.83 t·a~(-1),总磷年沉降负荷为4.61 t·a~(-1),分别占其东湖年入湖污染物的7.28%、7.61%和4.41%.从时间格局看,总氮沉降通量的季节性差异较为明显,表现为:春季(9.03 kg·hm~(-2))夏季(6.01 kg·hm~(-2))秋季(3.90 kg·hm~(-2))冬季(3.86 kg·hm~(-2));而总磷沉降通量呈现出仅春季较高(0.52 kg·hm~(-2)),占全年的38%,其他三季总磷沉降通量变化较小的特征.相关性分析显示,氮、磷沉降负荷量与降雨量、降雨时间间隔及空气颗粒物浓度(PM_(10)、PM_(2.5))等因素呈显著正相关,与相对湿度呈显著负相关.分析表明,随着控源、截污等措施对城市湖泊氮、磷输入的控制,氮、磷沉降对城市湖泊的生态影响应引起足够的重视.  相似文献   

15.
通过对旱季、旱雨季过渡期和雨季3个不同时期滇池浮游植物δ13C、δ15N的研究发现,滇池浮游植物δ13C、δ15N存在显著的时空分布特征.从旱季、过渡期到雨季,浮游植物δ13C值分别为-20.44‰±0.72‰、-17.32‰±1.09‰和-15.92‰±1.74‰,呈逐渐升高趋势;而浮游植物δ15N值的季节变化模式则相反,雨季(13.55‰±0.85‰)显著低于旱季(15.33‰±0.31‰)和过渡期(15.02‰±1.12‰).空间分布上,浮游植物δ13C值呈现南高北低的变化特征,极差为13.17‰,δ15N值则中部湖区高,南北部湖区低,极差为11.37‰.统计分析表明,浮游植物δ13C值与水温、降水量、电导率和pH值等多因素相关,反映了生物生长速率和无机碳源的影响显著;浮游植物δ15N值季节变化受降水量、总氮(TN)、总磷(TP)的影响,其空间变化与滇池流域内土地利用的空间分布格局一致.上述结果显示,城市生活污水仍然是滇池重要的污染来源,而农业化肥等面源污染对δ15N值的时空变化起到显著的调控作用.因此,滇池流域土地利用与营养盐来源的空间差异以及西南季风区降水的季节变化是影响湖泊生态系统碳氮循环与同位素生物示踪信号的重要因子.  相似文献   

16.
洞庭湖水环境污染状况与来源分析   总被引:5,自引:0,他引:5  
在对洞庭湖水环境污染状况评价与时空变化规律分析的基础上,探讨了洞庭湖的特征污染物及主要来源。结果表明:2008年洞庭湖Ⅴ类及劣V类水质达78.6%,东洞庭湖和洞庭湖出口的营养级别达轻度富营养,总体水质呈现由入湖口水域到湖体水域到出湖口水域,水质逐渐改善的特点;洞庭湖的特征污染物为总磷和总氮;磷污染物主要来源于洞庭湖区、沅江和湘江;氮污染物主要来源于湘江,洞庭湖区氮磷污染主要来源于农业面源和城镇生活污染。  相似文献   

17.
高伟  陈岩  严长安  刘永 《环境工程》2022,40(6):55-62
针对高强度复杂人类干扰河流磷来源难以定量解析的问题,构建基于流量与污染物浓度关系模式的污染源解析模型,定量分析多干扰类型河流磷的点源和非点源负荷与时间贡献。以滇池流域的源头河流、水库干扰河流、水库-调水复合干扰河流等为例,采用LAM源解析模型建立了河流磷浓度与流量的响应关系,分析了主要河流磷的源贡献结构与时空分布特征。结果表明:2018年非点源是滇池主要入湖河流磷的主要贡献源,非点源负荷占比为53%~100%,汛期与全年差异较小;从污染源主导时间看,点源是宝象河和盘龙江大花桥-德胜桥段时间占比最高的污染源,表明低流量期间点源控制对改善水质仍然具有十分重要的意义。研究结果可为我国多种人为干扰类型河流的磷污染源解析提供方法借鉴与指导。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号