首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
ABSTRACT: The Central Nebraska Basins is one of 60 study units in the National Water-Quality Assessment Program of the U.S. Geological Survey. The study unit includes the Platte River and two major tributaries, the Loup and Elkhorn Rivers. Agriculture is the predominant land use in the study unit, with only eight urbanized communities exceeding a population of 10,000. Water samples were collected from selected streams in the study unit during 1993–1995. The data were used to assess the distribution of nitrogen compounds and phosphorus in the streams and to relate the concentrations of these constituents to environmental settings. This article focuses on dissolved nitrate and orthophosphate. Dissolved nitrate concentrations were highest (90th percentiles were less than 7.0 milligrams per liter as nitrogen) in areas with extensive cropland and pasture, where chemical fertilizers are intensively applied. Synoptic measurements conducted in March and August 1994 indicate that relatively little residual fertilizer, as nitrate, applied during a single crop-growing season enters streams. Dissolved nitrate concentrations showed a seasonal pattern, being highest during winter months and lowest during the late spring and summer. Dissolved orthophosphate concentrations tended to be low across the study unit, 90 percent of all analyses did not exceed 1.7 milligrams per liter as phosphorus.  相似文献   

2.
Headwater Influences on Downstream Water Quality   总被引:2,自引:0,他引:2  
We investigated the influence of riparian and whole watershed land use as a function of stream size on surface water chemistry and assessed regional variation in these relationships. Sixty-eight watersheds in four level III U.S. EPA ecoregions in eastern Kansas were selected as study sites. Riparian land cover and watershed land use were quantified for the entire watershed, and by Strahler order. Multiple regression analyses using riparian land cover classifications as independent variables explained among-site variation in water chemistry parameters, particularly total nitrogen (41%), nitrate (61%), and total phosphorus (63%) concentrations. Whole watershed land use explained slightly less variance, but riparian and whole watershed land use were so tightly correlated that it was difficult to separate their effects. Water chemistry parameters sampled in downstream reaches were most closely correlated with riparian land cover adjacent to the smallest (first-order) streams of watersheds or land use in the entire watershed, with riparian zones immediately upstream of sampling sites offering less explanatory power as stream size increased. Interestingly, headwater effects were evident even at times when these small streams were unlikely to be flowing. Relationships were similar among ecoregions, indicating that land use characteristics were most responsible for water quality variation among watersheds. These findings suggest that nonpoint pollution control strategies should consider the influence of small upland streams and protection of downstream riparian zones alone is not sufficient to protect water quality.  相似文献   

3.
The variability in surface water chemistry within and between aquatic ecosystems is regulated by many factors operating at several spatial and temporal scales. The importance of geographic, regional-, and local-scale factors as drivers of the natural variability of three water chemistry variables representing buffering capacity and the importance of weathering (acid neutralizing capacity, ANC), nutrient concentration (total phosphorus, TP), and importance of allochthonous inputs (total organic carbon, TOC) were studied in boreal streams and lakes using a method of variance decomposition. Partial redundancy analysis (pRDA) of ANC, TP, and TOC and 38 environmental variables in 361 lakes and 390 streams showed the importance of the interaction between geographic position and regional-scale variables. Geographic position and regional-scale factors combined explained 15.3% (streams) and 10.6% (lakes) of the variation in ANC, TP, and TOC. The unique variance explained by geographic, regional, and local-scale variables alone was <10%. The largest amount of variance was explained by the pure effect of regional-scale variables (9.9% for streams and 7.8% for lakes), followed by local-scale variables (2.9% and 5.8%) and geographic position (1.8% and 3.7%). The combined effect of geographic position, regional-, and local-scale variables accounted for between 30.3% (lakes) and 39.9% (streams) of the variance in surface water chemistry. These findings lend support to the conjecture that lakes and streams are intimately linked to their catchments and have important implications regarding conservation and restoration (management) endeavors.  相似文献   

4.
Abstract: The effect of stream restoration on hyporheic functions has been neglected, although channel rehabilitation projects have a potential to alter stream‐ground‐water interactions. The present study examined the effect of an artificially constructed gravel bar and re‐meandered stream channel on lateral hyporheic exchange flow and chemistry in two lowland N‐rich streams in southern Ontario, Canada. Nitrate concentrations were relatively high, ranging from 0.5 to 1.3 mg N/l in both streams during spring through fall months. However, nitrate concentrations showed a steep decline as stream water entered the gravel bar and the meander bends. Differences between observed and predicted nitrate concentrations based on conservative ion concentration patterns indicated that 40‐100 and 68‐98% of the nitrate entering the hyporheic zone was removed in the gravel bar and meanders, respectively. Rapid depletion of dissolved oxygen concentrations along lateral hyporheic flow paths and denitrifying potentials assayed by the acetylene block technique in hyporheic sediments suggests that denitrification was an important mechanism of nitrate depletion. Despite the high rate of nitrate removal, the flux of stream water laterally entering the constructed gravel bar and meander bends was very small, and hyporheic nitrate removal was <0.015% of the daily stream load during base‐flow periods in summer and fall. The effects of restoration projects on hyporheic zone dynamics are often limited in lowland streams by low channel gradients and fine floodplain sediments with low interstitial flows that restrict the magnitude of the stream‐hyporheic connection.  相似文献   

5.
Acid-neutralizing capacity (ANC) and pH were measured weekly from October 1991 through September 2001 in three streams in the western Adirondack Mountain region of New York to identify trends in stream chemistry that might be related to changes in acidic deposition. A decreasing trend in atmospheric deposition of SO4/2- was observed within the region over the 10-yr period, although most of the decrease occurred between 1991 and 1995. Both ANC and pH were inversely related to flow in all streams; therefore, a trend analysis was conducted on (i) the measured values of ANC and pH and (ii) the residuals of the concentration-discharge relations. In Buck Creek, ANC increased significantly (p < 0.05) over the 10 yr, but the residuals of ANC showed no trend (p > 0.10). In Bald Mountain Brook, ANC and residuals of ANC increased significantly (p < 0.01), although the trend was diatonic-a distinct decrease from 1991 to 1996 was followed by a distinct increase from 1996 to 2001. In Fly Pond outlet, ANC and residuals of ANC increased over the study period (p < 0.01), although the trend of the residuals resulted largely from an abrupt increase in 1997. In general, the trends observed in the three streams are similar to results presented for Adirondack lakes in a previous study, and are consistent with the declining trend in atmospheric deposition for this region, although the observed trends in ANC and pH in streams could not be directly attributed to the trends in acidic deposition.  相似文献   

6.
Morley, Terry R., Andrew S. Reeve, and Aram J.K. Calhoun, 2011. The Role of Headwater Wetlands in Altering Streamflow and Chemistry in a Maine, USA Catchment. Journal of the American Water Resources Association (JAWRA) 1‐13. DOI: 10.1111/j.1752‐1688.2011.00519.x Abstract: Headwater wetlands, including hillside seeps, may contribute to downstream systems disproportionately to their relatively small size. We quantified the hydrology and chemistry of headwater wetlands in a central Maine, USA, catchment from 2003 to 2005 to determine their role in maintaining headwater streamflow and in affecting stream chemistry. A few of these headwater wetlands, commonly referred to as “seeps,” were characterized by relatively high groundwater discharge. During summer base flow, seeps were the primary source of surface water to the stream, contributing between 40 and 80% of stream water. Comparisons of groundwater and surface water dominant ion chemistry revealed only slight differences at the bedrock interface; however, significant changes occurred at the shallow groundwater‐surface water interface where we found decreases in total and individual cation concentrations with decreasing depth. Seep outflows significantly increased total cation and calcium concentrations in streams. Outflows at two seeps produced relatively high nitrate concentrations (88 ± 15 and 93 ± 15 μg/l respectively), yet did not correspond to higher nitrate in stream water below seep outflows (2 ± 1 μg/l). We demonstrate that small wetlands (< 1,335 m2) can contribute to headwater stream processes by linking groundwater and surface‐water systems, increasing the duration and magnitude of stream discharge, and by affecting stream chemistry, particularly during periods of base flow.  相似文献   

7.
Herbicide concentrations in streams of the U.S. Midwest have been shown to decrease through the growing season due to a variety of chemical and physical factors. The occurrence of herbicide degradation products at the end of the growing season is not well known. This study was conducted to document the occurrence of commonly used herbicides and their degradation products in Illinois, Iowa, and Minnesota streams during base-flow conditions in August 1997. Atrazine, the most frequently detected herbicide (94%), was present at relatively low concentrations (median 0.17 microg L(-1)). Metolachlor was detected in 59% and cyanazine in 37% of the samples. Seven of nine compounds detected in more than 50% of the samples were degradation products. The total concentration of the degradation products (median of 4.4 microg L(-1)) was significantly greater than the total concentration of parent compounds (median of 0.26 microg L(-1)). Atrazine compounds were present less frequently and in significantly smaller concentrations in streams draining watersheds with soils developed on less permeable tills than in watersheds with soils developed on more permeable loess. The detection and concentration of triazine compounds was negatively correlated with antecedent rainfall (April-July). In contrast, acetanalide compounds were positively correlated with antecedant rainfall in late spring and early summer that may transport the acetanalide degradates into ground water and subsequently into nearby streams. The distribution of atrazine degradation products suggests regional differences in atrazine degradation processes.  相似文献   

8.
Abstract: In January 2001, the U.S. Supreme Court ruled that the U.S. Army Corps of Engineers exceeded its statutory authority by asserting Clean Water Act (CWA) jurisdiction over non‐navigable, isolated, intrastate waters based solely on their use by migratory birds. The Supreme Court’s majority opinion addressed broader issues of CWA jurisdiction by implying that the CWA intended some “connection” to navigability and that isolated waters need a “significant nexus” to navigable waters to be jurisdictional. Subsequent to this decision (SWANCC), there have been many lawsuits challenging CWA jurisdiction, many of which are focused on headwater, intermittent, and ephemeral streams. To inform the legal and policy debate surrounding this issue, we present information on the geographic distribution of headwater streams and intermittent and ephemeral streams throughout the U.S., summarize major findings from the scientific literature in considering hydrological connectivity between headwater streams and downstream waters, and relate the scientific information presented to policy issues surrounding the scope of waters protected under the CWA. Headwater streams comprise approximately 53% (2,900,000 km) of the total stream length in the U.S., excluding Alaska, and intermittent and ephemeral streams comprise approximately 59% (3,200,000 km) of the total stream length and approximately 50% (1,460,000 km) of the headwater stream length in the U.S., excluding Alaska. Hillslopes, headwater streams, and downstream waters are best described as individual elements of integrated hydrological systems. Hydrological connectivity allows for the exchange of mass, momentum, energy, and organisms longitudinally, laterally, vertically, and temporally between headwater streams and downstream waters. Via hydrological connectivity, headwater, intermittent and ephemeral streams cumulatively contribute to the functional integrity of downstream waters; hydrologically and ecologically, they are a part of the tributary system. As this debate continues, scientific input from multiple fields will be important for policymaking at the federal, state, and local levels and to inform water resource management regardless of the level at which those decisions are being made. Strengthening the interface between science, policy, and public participation is critical if we are going to achieve effective water resource management.  相似文献   

9.
Ephemeral and intermittent streams are abundant in the arid and semiarid landscapes of the Western and Southwestern United States (U.S.). Connectivity of ephemeral and intermittent streams to the relatively few perennial reaches through runoff is a major driver of the ecohydrology of the region. These streams supply water, sediment, nutrients, and biota to downstream reaches and rivers. In addition, they provide runoff to recharge alluvial and regional groundwater aquifers that support baseflow in perennial mainstem stream reaches over extended periods when little or no precipitation occurs. Episodic runoff, as well as groundwater inflow to surface water in streams support limited naturally occurring riparian communities. This paper provides an overview and comprehensive examination of factors affecting the hydrologic, chemical, and ecological connectivity of ephemeral and intermittent streams on perennial or intermittent rivers in the arid and semiarid Southwestern U.S. Connectivity as influenced and moderated through the physical landscape, climate, and human impacts to downstream waters or rivers is presented first at the broader Southwestern scale, and secondly drawing on a specific and more detailed example of the San Pedro Basin due to its history of extensive observations and research in the basin. A wide array of evidence clearly illustrates hydrologic, chemical, and ecological connectivity of ephemeral and intermittent streams throughout stream networks.  相似文献   

10.
ABSTRACT: Programs of monthly or annual stream water sampling will rarely observe the episodic extremes of acidification chemistry that occur during brief, unpredictable runoff events. When viewed in the context of data from several streams, however, baseflow measurements of variables such as acid neutralizing capacity, pH and NO3· are likely to be highly correlated with the episodic extremes of those variables from the same stream and runoff season. We illustrate these correlations for a water chemistry record, nearly two years in length, obtained from intensive sampling of 13 small Northeastern U.S. streams studied during USEPA's Episodic Response Project. For these streams, simple regression models estimate episodic extremes of acid neutralizing capacity, pH, NO3·, Ca2+, SO42?, and total dissolved Al with good relative accuracy from statistics of monthly or annual index samples. Model performances remain generally stable when episodic extremes in the second year of sampling are predicted from first-year models. Monthly or annual sampling designs, in conjunction with simple empirical models calibrated and maintained through intensive sampling every few years, may estimate episodic extremes of acidification chemistry with economy and reasonable accuracy. Such designs would facilitate sampling a large number of streams, thereby yielding estimates of the prevalence of episodic acidification at regional scales.  相似文献   

11.
ABSTRACT: Quaker Run, a fourth order stream located in southwestern New York State, exhibits a highly unusual chemical gradient along its upper reaches. Weekly water samples showed an increase in the mean annual pH from 5.07 to 7.01 along a stretch of only 2.2 km. Mean alkalinity, calcium, magnesium, sodium, potassium, nitrate-nitrite-nitrogen, silica, and conductivity also increased appreciably over this distance. The study area receives some of the most highly acidic atmospheric deposition in the United States. Minimal buffering of these acidic inputs in the extreme upper watershed, and an abrupt downstream increase in buffering associated with changes in soil type, apparently produce the observed streamwater chemistry gradient. In contrast, a comparison between 11 midstream, downstream, and tributary sites showed relatively little variation in streamwater chemistry. In addition to the pronounced longitudinal chemistry changes along the upper portion of the stream, pronounced temporal chemistry variations were also observed at all sampling sites. High flow during snowmelt and heavy rains produced more dilute, acidic conditions, while streamwater pH and dissolved base cations were generally highest during low flow. Much of this temporal variation in streamwater chemistry is attributed to seasonal variation in residence times of soil water.  相似文献   

12.
ABSTRACT: Nitrate levels in the Ocklawaha River Basin in north central Florida were reviewed over a 50‐year period. Data were obtained from the literature, U.S. Environmental Protection Agency (USEPA) STOrage and RETrieval (STORET), and U.S. Geological Survey (USGS) databases. The study objective was to determine whether nitrate concentrations are increasing and if so, whether this increase is linked to land use changes. Increasing nitrate levels were seen at 5 of the 14 stations, while other stations showed no trend or a decreasing trend. Median nitrate concentrations in the Ocklawaha River increased from 0.07 mg‐N/L to 0.78 mg‐N/L at sites downstream from the Silver River. Throughout the Rodman Reservoir, median nitrate concentrations decreased from 0.48 mg‐N/L to 0.01 mg‐N/L and increased to 0.04 mg‐N/L after the Kirkpatrick Dam. Flow and concentration relationships were correlated for five stations. At four of the five stations nitrate concentrations decreased in response to increasing flow, likely the result of dilution with nitrate poor water. Changes in land use over a 20‐ year period (1970 to 1990) also were monitored. Sources of nitrate have been linked by isotopic analysis to organic and inorganic fertilizers, which appear to be related to increased urbanization and an increase in lawns that require nutrient fertilization.  相似文献   

13.
There is detailed literature on the mobilization of aluminum (Al) from soil to surface waters as a result of elevated acidic deposition to base‐poor forest watersheds. There is considerably less information on the mobilization and effects of Al from the application of alum that is used in some water supplies to control turbidity during high‐flow events. We report on the results of field measurements, laboratory sediment release experiments, and chemical equilibrium calculations conducted to evaluate the potential for the mobilization of Al from alum floc deposits in sediments of Kensico Reservoir, New York. Under ambient water quality conditions, mobilization of sediment Al is not a noteworthy concern at Kensico Reservoir. However, under experimental conditions of low pH, low acid neutralizing capacity (ANC), and low temperature, the inorganic fraction of monomeric Al can be mobilized from Kensico sediments to concentrations that would likely impair the health of aquatic organisms (>2 μmol/l). Elevated concentrations of monomeric Al were observed only when ANC decreased below 50 μeq/l, which is outside the range of values observed in Kensico during the 1997‐2007 interval (120‐460 μeq/l). Concentrations of complexing ligands are relatively low in Kensico waters (i.e., fluoride, naturally occurring organic solutes) and do not appear to substantially contribute to potential Al mobilization. For other water supplies with low ANC, the potential for sediment release of Al may exist.  相似文献   

14.
Recently, our attention has focused on the low level detection of many antibiotics, pharmaceuticals, and other organic chemicals in water resources. The limited studies available suggest that urban or rural streams receiving wastewater effluent are more susceptible to contamination. The purpose of this study was to evaluate the occurrence of antibiotics, pharmaceuticals, and other organic chemicals at 18 sites on seven selected streams in Arkansas, USA, during March, April, and August 2004. Water samples were collected upstream and downstream from the influence of effluent discharges in northwestern Arkansas and at one site on a relatively undeveloped stream in north-central Arkansas. At least one antibiotic, pharmaceutical, or other organic chemical was detected at all sites, except at Spavinaw Creek near Mayesville, Arkansas. The greatest number of detections was observed at Mud Creek downstream from an effluent discharge, including 31 pharmaceuticals and other organic chemicals. The detection of these chemicals occurred in higher frequency at sites downstream from effluent discharges compared to those sites upstream from effluent discharges; total chemical concentration was also greater downstream. Wastewater effluent discharge increased the concentrations of detergent metabolites, fire retardants, fragrances and flavors, and steroids in these streams. Antibiotics and associated degradation products were only found at two streams downstream from effluent discharges. Overall, 42 of the 108 chemicals targeted in this study were found in water samples from at least one site, and the most frequently detected organic chemicals included caffeine, phenol, para-cresol, and acetyl hexamethyl tetrahydro naphthalene (AHTN).  相似文献   

15.
We tested the effect of nutrient inputs from wastewater treatment plants (WWTPs) on stream nutrient retention efficiency by examining the longitudinal patterns of ammonium, nitrate, and phosphate concentrations downstream of WWTP effluents in 15 streams throughout Catalonia (Spain). We hypothesized that large nutrient loadings would saturate stream communities, lowering nutrient retention efficiency (i.e., nutrient retention relative to nutrient flux) relative to less polluted streams. Longitudinal variation in ambient nutrient concentration reflected the net result of physical, chemical, or biological uptake and release processes. Therefore, gradual increases in nutrient concentration indicate that the stream acts as a net source of nutrients to downstream environments, whereas gradual declines indicate that the stream acts as a net sink. In those streams where gradual declines in nutrient concentration were observed, we calculated the nutrient uptake length as an indicator of the stream nutrient retention efficiency. No significant decline was found in dilution-corrected concentrations of dissolved inorganic nitrogen (DIN) and phosphate in 40 and 45% of streams, respectively. In the remaining streams, uptake length (estimated based on the decline of nutrient concentrations at ambient levels) ranged from 0.14 to 29 km (DIN), and from 0.14 to 14 km (phosphate). Overall, these values are longer (lower retention efficiency) than those from nonpolluted streams of similar size, supporting our hypothesis, and suggest that high nutrient loads affect fluvial ecosystem function. This study demonstrates that the efficiency of stream ecosystems to remove nutrients has limitations because it can be significantly altered by the quantity and quality of the receiving water.  相似文献   

16.
ABSTRACT: Geochemistry of fine-fraction streambed sediments collected from the upper illinois River basin was surveyed in the fall of 1987 as part of the U.S. Geological Survey National Water-Quality Assessment pilot projects. The survey included 567 samples analyzed for 46 elements. Three distinctive distribution patterns were found for seven U.S. Environmental Protection Agency priority pollutants surveyed, as well as for boron and phosphorus: (1) enrichment of elements in the Chicago urban area and in streams draining the urban area relative to rural areas, (2) enrichment in main stems relative to tributaries, and (3) enrichment in low-order streams at high-population-density sites relative to low-population-density sites. Significant differences in background concentrations, as measured by samples from low-order streams, were observed among five subbasins in the study area. Uncertain geochemical correspondence between low-order, background sites and high-order, generally metal enriched sites prevented determination of background levels that would be appropriate for high-order sites. The within-sample ratio of enriched elements was variable within the Chicago area but was constant in the Illinois River downstream from Chicago. Element ratios imply a composite fine-fraction sediment in the Illinois River of 35–40 percent Des Plaines River origin and 60–65 percent Kankakee River origin.  相似文献   

17.
ABSTRACT: Regression models were developed for estimating stream concentrations of the herbicides alachlor, atrazine, cyanazine, metolachior, and trilluralin from use‐intensity data and watershed characteristics. Concentrations were determined from samples collected from 45 streams throughout the United States during 1993 to 1995 as part of the U.S. Geological Survey's National Water‐Quality Assessment (NAWQA). Separate regression models were developed for each of six percentiles (10th, 25th, 50th, 75th, 90th, 95th) of the annual distribution of stream concentrations and for the annual time‐weighted mean concentration. Estimates for the individual percentiles can be combined to provide an estimate of the annual distribution of concentrations for a given stream. Agricultural use of the herbicide in the watershed was a significant predictor in nearly all of the models. Several hydrologic and soil parameters also were useful in explaining the variability in concentrations of herbicides among the streams. Most of the regression models developed for estimation of concentration percentiles and annual mean concentrations accounted for 50 percent to 90 percent of the variability among streams. Predicted concentrations were nearly always within an order of magnitude of the measured concentrations for the model‐development streams, and predicted concentration distributions reasonably matched the actual distributions in most cases. Results from application of the models to streams not included in the model development data set are encouraging, but further validation of the regression approach described in this paper is needed.  相似文献   

18.
ABSTRACT: A regional assessment of water quality in small streams was conducted within four areas of distinct physiography and lithology in the upper Potomac River Basin. The Potomac River is a major tributary to the Chesapeake Bay, and this study provides new insight on the relationships between nutrient concentrations in small streams and watershed characteristics within this river basin. Nutrient concentrations were compared to land-use data including categories for agriculture (cropland and pasture), urban areas, and forests. Among agricultural areas, streams draining areas of intense row cropping typically contained higher nitrate concentrations than did those draining pastures. Streams draining forested areas typically had the lowest nutrient concentrations. Streams in areas underlain by carbonate bedrock were more likely to contain elevated concentrations of inorganic nitrogen and potassium than did streams in areas underlain by fractured siliciclastic or crystalline rocks, and we suggest that this is a physical phenomenon related to high hydraulic conductivities in carbonate ground-water systems. The median nitrate concentrations were highest in the Great Valley portion of the Valley and Ridge physiographic province, particularly in watersheds that have both carbonate bedrock and intensive row cropping. Values of nitrate in these streams ranged up to 8.99 mg/L as nitrogen. The soluble phosphorus concentrations during baseflow were generally low in all sub-units, even in some settings with potential for high phosphorus inputs such as urban areas with municipal point sources or agricultural areas. The mobility of phosphorus in these environments may be hindered by adsorption and geochemical reactions.  相似文献   

19.
ABSTRACT: Natural aquatic bacterial populations in three streams located at the Savannah River Project, Aiken, S.C. have been studied in relation to the effects of ambient temperatures, dissolved River Project, Aiken, oxygen (DO), nitrate and phosphate concentrations. 3 3 This work was supported in part by Contract #AT (38–1–824) with the U.S. Atomic Energy Commission, and was done in part in connection with AEC Contract #AT (07–2)–1.
Samples collected at monthly intervals for a period of one year from each system, were plated in duplicate at each of two dilutions on 1/4 strength Standard Plate Count Agar (Difco). After incubation at 25±1 °C for four days, total colony forming units, percent chromagens, and number of colony types (diversity) were determined and colonies were picked for identification. Temperatures were generally equal in two of the streams throughout the year, being lowest in Upper Three Runs (U3R) and Tirns Branch (TB), and highest in the Ash Basin System (ABS). DO content did not vary appreciably between the streams. Nitrates and phosphates were lowest in U3R, next lowest in TB, higher in the last station in ABS, and highest in the ash basin per se. Total colony forming units were highest in the ash basin, whereas chromagen percentage and diversity were highest in the last station in ABS. Results of these studies indicate that high nitrates and phosphates, in the absence of high organic carbon concentrations, have little, if any detrimental effect on the stability of natural aquatic bacterial populations.  相似文献   

20.
ABSTRACT: The decline of many fish populations within the mid-Appalachian region has been attributed to stream acidification as a result of acid precipitation. Many previous attempts to examine relationships between fish occurrence and acidification have been hindered by a lack of data on water quality and fish distributions. To assess relationships between water quality and bedrock type in the upper Cheat River drainage, we used EPA STORET water quality data (1969–1993) and calculated mean pH and mean alkalinity of streams associated with four bedrock types (Hampshire, Chemung, Mauch Chunk, and Pottsville). We examined the relationship between fish occurrence and bedrock type for 53 headwater streams. We found that acidity in headwater streams associated with Pottsville and Mauch Chunk groups often exceeded biological thresholds for acid-sensitive fish species (pH < 5.5). Streams associated with the Pottsville group typically had fewer cyprinid species and fewer total species than those associated with Mauch Chunk, Chemung, and Hampshire bedrock types. The congruent occurrence of streams with low buffering capacity, streams with pH > 5.5, and streams with low fish species richness indicate that acidification has influenced fish distributions in the upper Cheat River drainage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号