首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Combined glassification of EAF dust and incinerator fly ash   总被引:7,自引:0,他引:7  
Cheng TW 《Chemosphere》2003,50(1):47-51
Stainless steelmaking dust contains large amount of heavy metals, such as Cr and Ni. If these hazardous materials are not treated properly, they will cause detrimental secondary contamination. Preliminary study on recycling stainless steelmaking dust employed the thermal molten technology. Glass-ceramics were formed by combination stainless steel dust and incinerator fly ash with the ratio of 1:9. The major phases were Augite, Akermanite, and Donathite. It was found that the glass-ceramics shows the best characteristic at 900 degrees C after 5 h of heat treatment. This product can be used as building materials or refractory materials.  相似文献   

2.
Cheng TW 《Chemosphere》2004,56(2):127-131
There are 21 Metro-waste incinerators in Taiwan under construction and are expected to be finished at year 2003. It is estimated that these incinerators will produce about two million tons of incinerator ash. In order to reduce the volume and eliminate contamination problems, high temperature molten technology studies have been conducted. The purpose of this research was that of trying to control the chemical composition of the glass-ceramic produced from incinerator fly ash, in order to improve the characteristics of the glass-ceramic. The experimental results showed that the additional materials, Mg(OH)2 and waste glass cullet, can change glass-ceramic phases from gehlenite to augite, pigeonite, and diopside. The physical, mechanical and chemical resistance properties of the glass-ceramic also showed much better characteristics than prepared glass-ceramic using incinerator fly ash alone.  相似文献   

3.
Both grate and fluidized bed incinerators are widely used for MSW incineration in China. CaO addition for removing hazardous emissions from MSWI flue gas changes the characteristics of fly ash and affects the thermal behavior of heavy metals when the ash is reheated. In the present work, two types of MSWI fly ashes, sampled from both grate and fluidized bed incinerators respectively, were thermal treated at 1023–1323 K and the fate of heavy metals was observed. The results show that both of the fly ashes were rich in Ca and Ca-compounds were the main alkaline matter which strongly affected the leaching behavior of heavy metals. Ca was mostly in the forms of Ca(OH)2 and CaCO3 in the fly ash from grate incinerator in which nascent fly ash particles were covered by Ca-compounds. In contrast, the content of Ca was lower in the fly ash from fluidized bed incinerator and Ca was mostly in the form of CaSO4. Chemical reactions among Ca-compounds caused particle agglomeration in thermal treated fly ash from grate incinerator, restraining the heavy metals volatilization. In thermal treated fly ash from fluidized bed incinerator, Ca was converted into aluminosilicates especially at 1323 K which enhanced heavy metals immobilization, decreasing their volatile fractions as well as leaching concentrations. Particle agglomeration hardly affected the leaching behavior of heavy metals. However, it suppressed the leachable-CaCrO4 formation and lowered Cr leaching concentration.  相似文献   

4.
This work investigated the possibilities of immobilizing incineration fly ash by applying different processing methods. Direct sintering of fly ash at 1050 degrees C produced material with increased resistance to leaching; however, the high content of halides prevented the achievement of appropriate strength. Fly ash melting and casting into metallic moulds resulted in the formation of glass with good chemical resistivity and mechanical properties, which were further improved by devitrification, and the formation of glass-ceramics. The most successful combination of strength and resistance to leaching was obtained by a process consisting of fly ash melting, by pouring the melt into water, then grinding, and sintering without additives at 850-950 degrees C. In this way, a material was produced that cannot only be landfilled as a stabilised and non-reactive waste in landfills for non-hazardous wastes, but can also be utilized as a valuable material for manufacturing useful products. This article provided valuable results for policy-makers in Slovenia, about the handling fly ash from incineration plants. Implications: Fly ash from an incineration plant was thermally treated using several processing routes. Ash-melting, by pouring the melt into water and sintering, produced glass-ceramics having an optimal combination of strength and resistance to leaching that can find applications as useful products. These results provide important data for policy makers in Slovenia regarding the building of incineration plants, and handling the solid-waste products, especially fly ash.  相似文献   

5.
This study investigates the pozzolanic reactions and compressive strength of the blended cement manufactured using synthetic slag obtained from municipal solid waste incinerator (MSWI) cyclone ash and scrubber ash as partial replacement of portland cement. The synthetic slag was made by co-melting the MSWI scrubber ash and cyclone ash mixtures at 1400 degrees C for 30 min. Following pulverization, the different types of slag were blended with cement as cement replacement at ratios ranging from 10 to 40 wt %. The synthetic slag thus obtained was quantified, and the characteristics of the slag-blended cement pastes were examined. These characteristics included the pozzolanic activity, compressive strength, hydration activity, crystal phases, species, and microstructure at various ages. The 90-day compressive strength developed by slag-blended cement pastes with 10 and 20 wt % of the cement replaced by the synthetic slag outperformed ordinary portland cement by 1-7 MPa. X-ray diffraction species analyses indicated that the hydrates in the slag-blended cement pastes were mainly portlandite, the calcium silicate hydrate gels, and calcium aluminate hydrate salts, similar to those found in ordinary portland cement paste. Differential thermal and thermogravimetric analysis also indicated that the slag reacted with portlandite to form calcium silicate hydrate gels.  相似文献   

6.
Adsorption and thermal reactions of 1,2,3,4-tetrachlorodibenzo-p-dioxin (TCDD) on fly ash from a municipal incinerator were determined for temperatures between 100 to 300°C in air and in helium atmospheres. Results show 1,2,3,4-TCDD undergoes partial irreversable adsorption or decomposition in air at these temperatures. However, no decomposition products in air atmosphere were detected using gas chromatographic/mass spectrometric analysis of fly ash extracts and effluent.  相似文献   

7.
Abstract

An assessment of the short- and long-term hazards from municipal solid waste incinerator (MSWI) ash is made through the elemental analysis of 40 to 50 elements in the ash and leachates produced by several leaching procedures. The ash was analyzed using neutron activation analysis (NAA) and x-ray fluorescence (XRF). The leachates were analyzed using NAA and inductively-coupled plasma atomic emission spectroscopy (ICP). The leaching dynamics of an ash monofill were modelled with a series of extractions using simulated acid rain. An initial spike of the metals Ag, Ba, Be, Cr, Cu, Mo, Pb, Sr, and Zn in the leachates appears to be the greatest hazard posed by MSWI ash monofills. The elements As, Cd, Cu, Hg, Pb, S, and Zn were identified as potential long term hazards utilizing a sequential extraction procedure which approximates the total amount of the elements available over the lifetime of the monofill.

The pH of the resulting leachate is the single greatest factor governing the concentration of metals in solution, more important than the concentration of the element in the ash. These results are applied to an assessment of the suitability of the Toxicity Characteristic Leaching Procedure (TCLP) in measuring leaching potential of an MSWI ash monofill.  相似文献   

8.
An experimental work was carried out to investigate the feasibility of application of a sintering process to mixtures composed of Municipal Solid Waste Incinerator (MSWI) fly ash and low-cost additives (waste from feldspar production and cullet). The proportions of the three constituents were varied to adjust the mixture compositions to within the optimal range for sintering. The material was compacted in cylindrical specimens and treated at 1100 and 1150 degrees C for 30 and 60 min. Engineering and environmental characteristics including weight loss, dimensional changes, density, open porosity, mechanical strength, chemical stability and leaching behavior were determined for the treated material, allowing the relationship between the degree of sintering and both mixture composition and treatment conditions to be singled out. Mineralogical analyses detected the presence of neo-formation minerals from the pyroxene group. Estimation of the extent of metal loss from the samples indicated that the potential for volatilization of species of Pb, Cd and Zn is still a matter of major concern when dealing with thermal treatment of incinerator ash.  相似文献   

9.
Huang H  Buekens A 《Chemosphere》2001,44(6):1505-1510
A kinetic model is developed for de novo synthesis of PCDD/F from carbon in incinerator fly ash. The main mechanistic steps considered in the model are carbon gasification, PCDD/F formation, desorption and degradation. Rate equations are derived which can relate PCDD/F formation with process variables including carbon concentration of fly ash, partial pressure of oxygen, reaction temperature and time. The kinetic model has been verified using laboratory de novo synthesis data reported in the literature. When the model is applied to industrial incinerator conditions, PCDD/F formation levels of 0.1-0.5 microg/N m3 in the gas phase and 0.1-1.2 microg/g in the solid phase are calculated, and both are in good agreement with incinerator measurements.  相似文献   

10.
Three types of hydraulic cements have been developed by incorporating sludge ash from a primary sewage treatment plant and a water purification plant, as well as slag from steelworks (ferrate), as a partial replacement for clay, silica, alumina, and iron oxide in raw cement meal. The raw meal for the pre-determined recipes was prepared by heating it to 1400 degrees C for 6 hr in a clinkerization process, using a simulated incinerator and smelter. The major components of ordinary Portland cement, C3S, C2S, C3A, and C4AF, were all found in the clinkers. Of the three types of eco-cements, the eco-cement A paste was most similar to ordinary Portland cement in terms of composition and compressive strength development, while the eco-cement B paste showed early strength development. The differential thermal analysis species analyses indicated that the hydrates in the eco-cement pastes were mainly calcium hydroxide and CSH gels, like those found in ordinary Portland cement paste. Moreover, the degree of hydration, as determined by nuclear magnetic resonance, increased in all eco-cement pastes with an increasing curing age. The results indicate that it indeed is feasible to use sludge ash and ferrate to replace up to 20% of the mineral components of raw materials for cement.  相似文献   

11.
Metal partitioning in products of incineration of municipal solid waste   总被引:8,自引:0,他引:8  
Thipse SS  Dreizin EL 《Chemosphere》2002,46(6):837-849
Metals contained in the waste transfer to the waste incineration products, including flue gas, fly ash, and bottom ash, as different oxide, nitride, carbides, and other phases. Most of the metal-based phases formed in incineration are toxic and their emissions need to be strictly controlled. Therefore, behavior of metal species during incineration must be well understood. Such understanding is possible based on the experimental identification of the metal phases formed in the waste combustion and determination of their concentration in various incineration products. To avoid well-known experimental difficulties of the industrial waste incinerators associated with the poor fuel/conditions reproducibility and limited instrumentation, a 140,000 Btu/h pilot-scale, laboratory burner was constructed, characterized and operated at NJIT. A synthetic fuel representative of the municipal solid waste in the US was formulated and produced in 600-Lb batches. The solid fuel contained Fe and SiO2 as main constituents, and was doped with trace amounts of Al, Ni, Cr, Hg and PbO. Several experiments have been conducted on combustion of the synthetic fuel in the pilot-scale incinerator with varying fuel-air equivalence ratio. Both gaseous and condensed combustion products were sampled and analyzed. Atomic absorption spectroscopy and X-ray diffraction were used to analyze total metal contents and metal containing phases in the incineration products. Thermodynamic equilibrium computations were performed to obtain the adiabatic flame temperature and identify the phases of the metal-containing products formed at the equilibrium conditions. The results of the equilibrium computations performed at the varied fuel/air ratios were compared with the observed experimental results.  相似文献   

12.
The final disposal of ash from an incinerator is of special concern because of the possibility of its releasing toxic substances. Melting/vitrification has been regarded as a prospective technology of ash treatment. The object of this investigation was to evaluate the effect of silica (SiO2) addition on the immobilization of hazardous metals and the encapsulation of a glass network during the vitrification process. Four specimens with SiO2/fly ash mixing ratios of 0, 0.1, 0.2, and 0.3, respectively, were tested. The mobility of metals in slag was then estimated by a sequential extraction procedure. X-ray diffraction analysis indicates that SiO2 leads to the polymerization of silicates. The encapsulation of aluminum, calcium, and magnesium would not be observed unless adequate amount of SiO2 was added. It was also found that SiO2 addition enhances the formation of a compact and interconnected glass network structure and, thus, contributes to the chemical stability of metals in slag. After vitrification, the mobility of cadmium, copper, iron, chromium, nickel, lead, and zinc was significantly reduced. However, there is no significant correlation between the immobilization of these metals and the addition of SiO2.  相似文献   

13.
Huang WJ  Tsai JL  Liao MH 《Chemosphere》2008,71(10):1860-1865
In this study, three municipal solid waste incinerator (MSWI) ash wastes-bottom ash, scrubber residue, and baghouse ash-were extracted using a toxicity characteristic leaching procedure (TCLP) extractant. These so-called final TCLP extracts were applied to African green monkey kidney cells (Vero), baby hamster kidney cells (BHK-21), and pig kidney cells (PK-15), multi-well absorption reader analysis was performed to test how the cytotoxicity of the incineration ashes would affect the digestive systems of animals. Ion-coupled plasma analyses indicated that the baghouse ash extract possessed the highest pH and heavy metal concentration, its cytotoxicity was also the highest. In contrast, the bottom ash and the scrubber residue exhibited very low cytotoxicities. The cytotoxicities of mixtures of baghouse ash and scrubber residue toward the three tested cell lines increased as the relative ratio of the baghouse ash increased, especially for the Vero cells. The slight cytotoxicity of the scrubber residue arose mainly from the presence of Cr species, whereas the high cytotoxicity of the baghouse ash resulted from its high content of heavy metals and alkali ions. In addition, it appears that the dissolved total organic carbon content of these ash wastes can reduce the cytotoxicity of ash wastes that collect in animal cells.  相似文献   

14.
Rendek E  Ducom G  Germain P 《Chemosphere》2006,64(7):1212-1218
The biodegradation of organic matter in municipal solid waste incinerator (MSWI) bottom ash was studied in order to investigate the interaction between the CO(2) produced by microbial respiration and bottom ash. Respiration tests were performed on bottom ash at different moisture contents in an incubator at 30 degrees C. O(2) consumption and CO(2) production were monitored and quantified. Leaching tests were carried out at the end of the experiments. Total organic carbon (TOC) leaching had decreased. Over a period of three weeks, pH decreased from 10.7 to 8.2 and bottom ash was considered to be fully carbonated. This showed that the organic matter found in bottom ash can provide a substrate for microbial activity. The CO(2) produced by microbial respiration was directly dissolved in bottom ash pore water in order to be mineralized in carbonate form. The origin of the carbon dioxide which induces maturation of bottom ash on weathering areas has never been really discussed and is often presumed to be atmospheric CO(2). However, biodegradation of organic matter could contribute for a large part to this phenomenon, depending on field-scale physico-chemical weathering conditions.  相似文献   

15.
生活垃圾安全无害化处理是目前迫切需要解决的问题,直接气化熔融焚烧垃圾技术以降低二恶英排放方面巨大优势得到广泛关注,在此基础上提出纯氧熔融焚烧垃圾技术,几乎可以实现所有二次污染物近零排放。以350 t/d回转窑垃圾焚烧炉为例,对纯氧代替空气应用在回转窑上熔融焚烧垃圾系统进行了详细热力计算及分析。结果表明,纯氧熔融焚烧垃圾系统的锅炉效率可达90.56%,回转窑熔融焚烧系统还可以在垃圾焚烧后灰渣达到熔融温度的条件下,保持该系统热量平衡,稳定燃烧。并参考回转窑设计标准对该纯氧熔融焚烧城市生活垃圾的回转窑参数进行确定。  相似文献   

16.
G.A. Eiceman  H.O. Rghei 《Chemosphere》1984,13(9):1025-1032
Treatment of tetrachlorodibenzo-p-dioxin (T4CDD) on municipal incinerator fly ash at 30 to 150°C for 10 minutes using 5% (Vol/Vol) NO2 in air resulted in production of nitro-T4CDD. Percent conversion was between 40% at 50°C to 100% at 150°C. Nitro-T4CDD produced in the laboratory was unstable in hexane/methanol or hexane/acetone solutions and decomposed at ?5°C with half-lives of 8–10 days?1 to the original T4CDD.Fly ash from a municipal incinerator in Toronto, Ontario was extracted using toluene/methanol for 12 hrs in a Soxhlet extractor. Condensate of this extract was analyzed using capillary gas chromatography with flame ionization, nitrogen-selective, and mass spectrometric detectors. Retention times for nitro-T4CDD, multi-ion selected ion monitoring, and nitrogen detector response were used as supporting evidence for the presence of nitro-chlorinated dioxins as naturally occurring in this sample.  相似文献   

17.
测定了流化床垃圾焚烧炉焚烧产生的飞灰、烟尘和烟气中的2,3,7,8位氯取代二噁英同类物的含量及其毒性当量。结果表明,产生的二噁英主要存在于飞灰中,烟气中的含量很少。飞灰中二噁英总浓度和毒性当量分别为8.44ng/g和0.80ng/g,经过布袋除尘器后的烟尘和烟气中二噁英的浓度之和与毒性当量之和分别为0.34ng/m^3和0.02ng/m^3,而布袋除尘器前的烟尘和烟气中二噁英的浓度之和与毒性当量之和分别为40.78ng/m^3和3.0ng/m^3。飞灰和烟尘中2,3,7,8位氯取代二噁英同类物的分布相似,但是与烟气中2,3,7,8位氯取代二噁英同类物的分布差别较大。通过了解有毒二噁英同类物的分布,可以进一步优化流化床垃圾焚烧炉的焚烧条件,降低二噁英的排放量,减少垃圾焚烧对环境的污染。  相似文献   

18.
Microwave plasma conversion of volatile organic compounds   总被引:1,自引:0,他引:1  
A microwave-induced, steam/Ar/O2, plasma "torch" was operated at atmospheric pressure to determine the feasibility of destroying volatile organic compounds (VOCs) of concern. The plasma process can be coupled with adsorbent technology by providing steam as the fluid carrier for desorbing the VOCs from an adsorbent. Hence, N2 can be excluded by using a relatively inexpensive carrier gas, and thermal formation of oxides of nitrogen (NOx) is avoided in the plasma. The objectives of the study were to evaluate the technical feasibility of destroying VOCs from gas streams by using a commercially available microwave plasma torch and to examine whether significant byproducts were produced. Trichloroethene (TCE) and toluene (TOL) were added as representative VOCs of interest to a flow that contained Ar as a carrier gas in addition to O2 and steam. The O2 was necessary to ensure that undesirable byproducts were not formed in the process. Microwave power applied at 500-600 W was found to be sufficient to achieve the destruction of the test compounds, down to the detection limits of the gas chromatograph that was used in the analysis. Samples of the postmicrowave gases were collected on sorbent tubes for the analysis of dioxins and other byproducts. No hazardous byproducts were detected when sufficient O2 was added to the flow. The destruction efficiency at a fixed microwave power improved with the addition of steam to the flow that passed through the torch.  相似文献   

19.
Huang H  Buekens A 《Chemosphere》2000,41(6):943-951
A kinetic model is developed for PCDD formation from chlorophenol catalysed by incinerator fly ash. The key step in the model is a Langmuir-Hinshelwood type elementary step for the coupling of two adsorbed chlorophenol species to PCDD. Kinetic expression is derived which can relate PCDD formation rates with process variables including temperature, precursor concentration, fly ash loading and number of active sites in fly ash. Calculated PCDD formation rates based on this kinetic model are in good agreement with laboratory measurements reported in the literature. When the model is applied to industrial incinerator conditions, at maximum a PCDD yield of 10(-3) microg/N m3 is calculated.  相似文献   

20.
本文从微珠、粉煤灰和粘土相近的化学成分出发 ,分析了混合料的结合和反应机理 ,在这个基础上研究了各种配方情况下的保温砖的成型工艺 ,指出烧结法工艺品有良好的性能 ,掺入较多的粉煤灰将有更好的环境效益和经济效益。为了简化工艺 ,节约能源 ,便于推广 ,初步研究了用化学方法粘结的非烧结工艺———这是一种有前途的保温砖成型工艺。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号