首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 313 毫秒
1.
This work investigated the possibilities of immobilizing incineration fly ash by applying different processing methods. Direct sintering of fly ash at 1050 degrees C produced material with increased resistance to leaching; however, the high content of halides prevented the achievement of appropriate strength. Fly ash melting and casting into metallic moulds resulted in the formation of glass with good chemical resistivity and mechanical properties, which were further improved by devitrification, and the formation of glass-ceramics. The most successful combination of strength and resistance to leaching was obtained by a process consisting of fly ash melting, by pouring the melt into water, then grinding, and sintering without additives at 850-950 degrees C. In this way, a material was produced that cannot only be landfilled as a stabilised and non-reactive waste in landfills for non-hazardous wastes, but can also be utilized as a valuable material for manufacturing useful products. This article provided valuable results for policy-makers in Slovenia, about the handling fly ash from incineration plants. Implications: Fly ash from an incineration plant was thermally treated using several processing routes. Ash-melting, by pouring the melt into water and sintering, produced glass-ceramics having an optimal combination of strength and resistance to leaching that can find applications as useful products. These results provide important data for policy makers in Slovenia regarding the building of incineration plants, and handling the solid-waste products, especially fly ash.  相似文献   

2.
小型垃圾热处理设备可实现就地处置,节约运输成本,目前在中国山区、丘陵地带的村镇得到广泛应用.为了解村镇小型生活垃圾热处理炉底渣的理化特性及其影响因素,对中国云南、贵州、安徽村镇实际运行的小型生活垃圾热处理设备产生的底渣进行取样,分析其热灼减率、物理组成、化学组成、晶相组成、重金属含量和浸出特性,探讨处理工艺、地域及季节...  相似文献   

3.
This study was conducted to examine the synthesis and application of novel nano-size calcium/iron-based composite material as an immobilizing and separation treatment of the heavy metals in fly ash from municipal solid waste incineration. After grinding with nano-Fe/Ca/CaO and with nano-Fe/Ca/CaO/[PO4], approximately 30 wt% and 25 wt% of magnetic fraction fly ash were separated. The highest amount of entrapped heavy metals was found in the lowest weight of the magnetically separated fly ash fraction (i.e., 91% in 25% of treated fly ash). Heavy metals in the magnetic or nonmagnetic fly ash fractions were about 98% and 100% immobilized, respectively. Additionally, scanning electron microscopy combined with energy-dispersive X-ray spectrometry (SEM-EDS) observations indicate that the main fraction of enclosed/bound materials on treated fly ash includes Ca/PO4-associated crystalline complexes. After nano-Fe/Ca/CaO/[PO4] treatment, the heavy metal concentrations in the fly ash leachate were much lower than the Japan standard regulatory limit for hazardous waste landfills. These results appear to be extremely promising. The addition of a nano-Fe/Ca/CaO/PO4 mixture with simple grinding technique is potentially applicable for the remediation and volume reduction of fly ash contaminated by heavy metals.

Implications: After grinding with nano-Fe/Ca/CaO and nano-Fe/Ca/CaO/[PO4], approximately 30 wt% and 25 wt% of magnetic fraction fly ash were separated. The highest amount of entrapped heavy metals was found in the lowest weight of the magnetically separated fly ash fraction (i.e., 91% in 25% of treated fly ash), whereas heavy metals either in the magnetic or nonmagnetic fly ash fractions were about 98% and 100% immobilized. These results appear to be very promising, and the addition of nano-Fe/Ca/CaO/PO4 mixture with simple grinding technique may be considered potentially applicable for the remediation and volume reduction of contaminated fly ash by heavy metals.  相似文献   

4.
This study focuses on artificial lightweight aggregates (ALWAs) formed from sewage sludge and ash at lowered co-melting temperatures using boric acid as the fluxing agent. The weight percentages of boric acid in the conditioned mixtures of sludge and ash were 13% and 22%, respectively. The ALWA derived from sewage sludge was synthesized under the following conditions: preheating at 400 °C 0.5 hr and a sintering temperature of 850 °C 1 hr. The analytical results of water adsorption, bulk density, apparent porosity, and compressive strength were 3.88%, 1.05 g/cm3, 3.93%, and 29.7 MPa, respectively. Scanning electron microscope (SEM) images of the ALWA show that the trends in water adsorption and apparent porosity were opposite to those of bulk density. This was due to the inner pores being sealed off by lower-melting-point material at the aggregates' surface. In the case of ash-derived aggregates, water adsorption, bulk density, apparent porosity, and compressive strength were 0.82%, 0.91 g/cm3, 0.82%, and 28.0 MPa, respectively. Both the sludge- and ash-derived aggregates meet the legal standards for ignition loss and soundness in Taiwan for construction or heat insulation materials.

Implications Artificial lightweight aggregates (ALWAs) could be synthesized from sewage sludge and derived ash. In this study, co-melting technology of low temperature was applied with boric acid as a fluxing agent and the formation temperature of glass phase was decreased to 900 °C. Both aggregates derived from sludge and ash meet regulatory standards of ignition loss and soundness in Taiwan for construction or heat insulation material.  相似文献   

5.
为了开发除磷填料,以红壤为基本材料,并以烧结温度、粉煤灰添加量、外加剂A用量和外加剂B用量作为4个因素设计正交实验,制造了不同配方的红壤烧结填料,进行等温吸附实验并利用Langmuir模型拟合最大吸磷量进行比较。结果表明,通过烧结可使粉末状红壤成型,同时提高了其除磷能力;对填料理论吸磷量的影响因素主次顺序为外加剂B用量、外加剂A用量、粉煤灰用量及烧结温度;通过比较理论吸附量,同时考虑到成本,可以确定正交实验结果中较优填料配方组成为(重量比):61%红壤,30%粉煤灰,0%外加剂A,9%外加剂B,烧结温度1150℃,其最大理论的磷吸附量2.274mg/cm^2,单位除磷原料成本约0.047元/g.  相似文献   

6.
The objectives of this work are to understand the details of the mechanism of dioxin formation in the part of a sintering bed termed the dry zone, and to obtain ideas on how to prevent their formation. Sinter mixtures of various composition types were heated in a packed bed reactor, and dioxins in the outlet gas and in the sinter mixture residue were measured. The dioxin formation potential of a simple sinter mixture composed of iron ore, coke and limestone was markedly lower than that of fly ash from a municipal solid waste incinerator (MSWI). In consideration of this result, a series of experiments were conducted using a sinter mixture impregnated with CuCl2. Experimental results showed that dioxin formation was temperature-dependent in the range of 300-550 degrees C, with the maximum observed at around 300 degrees C, which was quite similar to that of fly ash from the MSWI. The homologue distribution of PCDD/Fs in gas and solid reflected the possible difference in carbonaceous materials in coke and activated coke. Gaseous hydrogen chloride acted as a chlorinating reagent for dioxin formation.  相似文献   

7.
将垃圾焚烧飞灰添加进烧结冷固球团配料进行造球,对冷固小球的成分及强度进行分析,结果表明,添加垃圾焚烧飞灰冷固小球化学组成稳定,重金属浸出毒性远低于危险废物鉴别标准,落下强度较基准期略微降低,但符合运输、贮存的要求.并对添加了飞灰的冷固小球对其后续烧结、冶炼工序的影响进行分析,结果表明,用添加飞灰的冷固小球进行烧结所得烧结矿的转鼓强度、落下强度及常规化学成分较基准期没有太大变化,添加飞灰进行造球、烧结,对其后续冶炼工序的顺行几乎没有影响,所带来的额外的环境污染微乎其微.  相似文献   

8.
This study focuses on artificial lightweight aggregates (ALWAs) formed from sewage sludge and ash at lowered co-melting temperatures using boric acid as the fluxing agent. The weight percentages of boric acid in the conditioned mixtures of sludge and ash were 13% and 22%, respectively. The ALWA derived from sewage sludge was synthesized under the following conditions: preheating at 400 degrees C 0.5 hr and a sintering temperature of 850 degrees C 1 hr. The analytical results of water adsorption, bulk density, apparent porosity, and compressive strength were 3.88%, 1.05 g/cm3, 3.93%, and 29.7 MPa, respectively. Scanning electron microscope (SEM) images of the ALWA show that the trends in water adsorption and apparent porosity were opposite to those of bulk density. This was due to the inner pores being sealed off by lower-melting-point material at the aggregates'surface. In the case of ash-derived aggregates, water adsorption, bulk density, apparent porosity, and compressive strength were 0.82%, 0.91 g/cm3, 0.82%, and 28.0 MPa, respectively. Both the sludge- and ash-derived aggregates meet the legal standards for ignition loss and soundness in Taiwan for construction or heat insulation materials.  相似文献   

9.
The leachability of heavy metals such as chromium (Cr), lead (Pb) and cadmium (Cd) from the ash material obtained from waste combustion was studied. The effects of ash surface topography and morphology on the leachability of these elements were examined using atomic force microscopy (AFM) and scanning electron microscopy (SEM). The AFM (scan size 10 x 10 microns) and SEM images of the simulated ash pellet obtained at various operating temperatures (1000, 1400 and 1500 degrees C) showed significant microstructural and topographical changes. Ash pellets treated at 1000 degrees C contain porous and non-continuous surface. On the other hand, the ash pellet obtained at higher temperature (1500 degrees C) was found to contain a smooth, continuous and non-porous surface. The AFM height profile studies indicated that the top surface variation of the ash pellet at 1000, 1400 and 1500 degrees C were found to be -40.0 to 25.5, -3.7 to 4.7 and -0.10 to 0.66 nm respectively. The SEM analyses also confirmed the presence of smooth, non-porous outer surface of ash formed at 1500 degrees C. In addition, it also showed the presence of compact and rigid interior for the same ash pellet. The leachability of the heavy metals was determined using standard toxicity characteristic leaching procedure (TCLP) test and the samples were analysed using atomic absorption spectroscopy. The results showed that the TCLP leaching ratios of the heavy metals were Cr = 0.30, Pb = 0.05 and Cd = 0.09 at 1000 degrees C. However, the ash obtained at 1400 degrees C showed negligible heavy metals leaching ratio while at 1500 degrees C no leachability was detected (TCLP concentration dropped to nondetectable levels). The use of high temperature treatment enabled the immobilization of heavy metals in the ash preventing their leaching. Such ash can be considered as a non-hazardous material for reuse or safe disposal.  相似文献   

10.
城市生活污泥烧结制陶粒的两种工艺比较研究   总被引:10,自引:0,他引:10  
通过试验比较了"湿法造粒-烧结"和"干化-烧结"2种利用城市生活污泥烧结制陶粒的工艺路线.分析了工艺路线、原料配比和烧结温度对污泥陶粒的产品强度、吸水率和密度等性能指标的影响,同时指出了沸石粉和粘土作为助熔剂的不同作用机理和作用温度.实验结果表明,污泥"干化-烧结"制陶粒更有优势.烧结陶粒不会造成二次污染.综合考虑产品性能与经济性,适宜的物料配比为干污泥50%、粉煤灰30%~40%、粘土10%~20%.  相似文献   

11.
粉煤灰的改性及其在垃圾渗滤液深度处理中的应用研究   总被引:3,自引:1,他引:2  
实验采用物理方法和化学方法对粉煤灰进行改性,并用改性粉煤灰深度处理垃圾渗滤液。通过扫描电镜和X-射线衍射对改性前后粉煤灰的表面结构和主要晶相组成进行分析,同时考察其在垃圾渗滤液深度处理中的吸附效果。结果表明,改性后粉煤灰的比表面积和孔隙度增大,吸附能力增强。通过比较,吸附能力最强的改性粉煤灰是将引发剂A与粉煤灰以质量比为1∶9的比例混合,在800℃下恒温焙烧2 h所制得的改性粉煤灰,该改性粉煤灰对垃圾渗滤液中COD和色度的去除率可达到67.3%和87.3%,相对于改性前去除率提高了96.0%和57.8%。  相似文献   

12.
Removal of PCDDs/DFs and dl-PCBs in MWI fly ash by heating under vacuum   总被引:1,自引:0,他引:1  
Temperature dependence of PCDD/DF and dioxin-like polychlorinated biphenyl (dl-PCB) concentrations in fly ash from a municipal waste incinerator (MWI) heated under vacuum has been investigated as a function of sample temperature ranging from T(s)=425 to 800 K to find out if PCDDs/DFs in fly ash evaporate and are trapped in a liquid nitrogen-cooled trap. The results show that more than 99.98% of PCDDs/DFs in TEQ is removed from fly ash by vacuum heat treatment at T(s)>650 K for 4 h. Almost no PCDDs/DFs were detected in the liquid nitrogen-cooled trap. Homologue distributions indicate that dechlorination/hydrogenation (DCH) reactions proceed in fly ash at T(s)>450 K. Arrhenius rate parameters for the DCH reactions have been determined for each homologue assuming that only DCH reactions occur. The fly ash heated under vacuum at 650 or 800 K was reheated at 573 K (300 degrees C) in a stream of dry or humid air to see how much PCDDs/DFs and dl-PCBs are regenerated. We have found that (1) PCDDs/DFs are regenerated in both 650 K and 800 K treated fly ash, whereas dl-PCBs are regenerated in 650 K treated fly ash, (2) formation of PCDFs predominates over that of PCDDs or dl-PCBs, and (3) less chlorinated homologues are abundant for PCDDs/DFs and dl-PCBs.  相似文献   

13.
Waste oil fly ash (OFA) collected from disposal of power generation plants was treated by physicochemical activation technique to improve the surface properties of OFA. This synthesized material was further used for potential hydrogen sulfide (H2S) adsorption from synthetic natural gas. The raw OFA was basically modified with a mixture of acids (20% nitric acid [HNO3] and 80% phosphoric acid [H3PO4]), and it was further treated with 2 M potassium hydroxide (KOH) to enhance the surface affinity as well as surface area of synthesized activated carbon. Correspondingly, it enhanced the adsorption of H2S. Crystallinity, surface morphology, and pore volume distribution of prepared activated carbon were investigated using X-ray diffraction (XRD), scanning electron microscopy (SEM), and Brunauer-Emmett-Teller (BET) analyses. Fourier transform infrared (FTIR) study was also performed to identify the functional groups during different synthesis stages of modified activated carbon. The Langmuir, Freundlich, Sips, and dual-site Langmuir (DSL) models were used to study the kinetic and breakthrough behavior of H2S adsorption over alkali-modified activated carbon. Modeling results of isotherms indicated that OFA has dual sites with high and low affinity for H2S adsorption. The Clark model, Thomas model, and Yoon-Nelson model were used to examine the effects of flow rate and inlet concentration on the adsorption of H2S. Maximum uptake capacity of 8.5 mg/g was achieved at 100 ppm inlet concentration and flow rate of 0.2 L/min.

Implications: Utilization of worthless oil fly ash from power plant is important not only for cleaning the environment but also for solid waste minimization. This research scope is to eradicate one pollutant by using another pollutant (waste ash) as a raw material. Chemical functionalization of synthesized activated carbon from oil fly ash would lead to attachment of functional groups of basic nature to attract the acidic H2S. Such type of treatment can enhance the uptake capacity of sorbent several times.  相似文献   


14.
Cheng TW  Chen YS 《Chemosphere》2003,51(9):817-824
CaO-Al(2)O(3)-SiO(2) system glass ceramics of incinerator fly ash have been prepared by vitrification and then heat-treated in different conditions. The thermal molten process (TMP) was applied to heat treat vitrified samples at high temperatures whereas in the powder sintering process water-quenched vitrified samples were ground into powder and then sintered at high temperatures. Gehlenite was found present as the major phase in all treated samples. Treated samples in general exhibited good leachability characteristics as well as chemical durability, except in the HCl solution. Microstructure and physical properties varied with the treatment condition. Fine and relatively high dense structures with desirable properties were obtained for samples treated by the TMP. For both processes, higher temperature treatments caused crystal growth and thus poor properties were attained. Good physical and mechanical properties achieved at 900-950 degrees C in this study imply the treated samples have attractive potential for engineering applications.  相似文献   

15.
The coal-fired electric utility generation industry has been identified as the largest anthropogenic source of mercury (Hg) emissions in the United States. One of the promising techniques for Hg removal from flue gas is activated carbon injection (ACI). The aim of this project was to liberate Hg bound to fly ash and activated carbon after ACI and provide high-quality coal combustion products for use in construction materials. Both bench- and pilot-scale tests were conducted to liberate Hg using a thermal desorption process. The results indicated that up to 90% of the Hg could be liberated from the fly ash or fly-ash-and-activated-carbon mixture using a pilot-scale apparatus (air slide) at 538 degrees C with a very short retention time (less than 1 min). Scanning electron microscope (SEM) evaluation indicated no significant change in fly ash carbon particle morphology following the thermal treatment. Fly ash particles collected in the baghouse of the pilot-scale apparatus were smaller in size than those collected at the exit of the air slide. A similar trend was observed in carbon particles separated from the fly ash using froth flotation. The results of this study suggest a means for power plants to reduce the level of Hg in coal-combustion products and potentially recycle activated carbon while maintaining the resale value of fly ash. This technology is in the process of being patented.  相似文献   

16.
Element distribution in a combined fly ash and bottom ash from combustion of copper chromate arsenate (CCA) treated wood waste was investigated by scanning electron microscopy (SEM/EDX) before and after electrodialytic extraction. The untreated ash contained various particles, including pieces of incompletely combusted wood rich in Cr and Ca, and irregular particles rich in Si, Al and K. Cr was also found incorporated in silica-based matrix particles. As was associated with Ca in porous (char) particles, indicating that Ca-arsenates had been formed during combustion. Cu was associated with Cr in the incompletely combusted wood pieces and was also found in almost pure form in a surface layer of some matrix particles - indicating surface condensation of volatile Cu species. In treated ash, Ca and As were no longer found together, indicating that Ca-arsenates had been dissolved due to the electrodialytic treatment. Instead particles rich in Ca and S were now found, indicating precipitation of Ca-sulphates due to addition of sulphuric acid in connection with the electrodialytic treatment. Cu and Cr were still found associated with incompletely combusted wood particles and incorporated in matrix particles. Chemical analyses of untreated and treated ash confirmed that most As, but only smaller amounts of Cu and Cr was removed due to the electrodialytic extraction. Overall metal contents in the original ash residue were: 1.4 g As, 2.76 g Cu and 2.48 g Cr, after electrodialytic extraction these amounts were reduced by 86% for As, 15% for Cu and 33% for Cr.  相似文献   

17.
ABSTRACT

To solve the disposal problem of municipal solid waste incineration bottom ash sludge (MSWI-BAS), using it as the main raw material to prepare lightweight aggregates (LWA) for resource utilization. Sintering is an important process to achieve the desired microstructure and material properties. This paper investigates the characteristics of LWA affected by single factor of sintering mechanism (sintering temperature, heating rate and soaking time). Results show that sintering temperature increased from 1130°C to 1160°C caused high-density microstructure materials gradually formed in LWA, leading to particle strength increased from 0.1 MPa to 3.64 MPa, particle density showed an overall upward trend, reaching a maximum of 916 Kg/m3 at 1160°C, and 1 h water absorption reduced from 68% to 25%. The heating rate of 15 K/min was beneficial to the formation of dense phase structure which could increase the particle strength, and the water absorption rate reached the lowest at this time, while the particle density was less affected by heating rate. When soaking time extended from 5 min to 20 min, particle strength and compressive density were gradually increased, and 1 h water absorption showed an overall downward trend, indicating that a longer soaking time was not conducive to the retention of pores. This study demonstrates that the utilization of MSWI-BAS to make high-performance LWA is feasible, along with the preferable environmental and economic benefits.

Implications: MSWI-BAS were selected to produce lightweight aggregate (LWA), so that the sludge disposal problem is reduced. The effects of sintering temperature, heating rate and soaking time on the characteristics of LWA were investigated. Compact glass structures are formed at 1150°C and 1160°C which greatly improve the strength. The heating rate has little influence on the physical properties of LWA products. The particle density of LWA increases after the sintering soaking time reaches 15 minutes.  相似文献   

18.
This study identified material with high phosphorus sorption suitable for bioretention filter media. Materials examined were fly ash, two expanded shales, peat moss, limestone, and two common Oklahoma soils--Teller loam and Dougherty sand. The peat moss was a phosphorus source, while the two soils, limestone, and one expanded shale had only modest sorption capacity. One expanded shale and the fly ash had significant phosphorus sorption. Fly ash is unsuitable for use in a pure form, as a result of its low permeability, but phosphorus sorption on the sand was increased significantly with the incorporation of small amounts of fly ash. Column leaching experiments found that the sand with 2.5 and 5% fly ash and the better expanded shale had linear, non-equilibrium transport retardation factors of 272, 1618, and 185, with first-order rate coefficients of 0.153, 0.0752, and 0.113 hour(-1), respectively. Desorption experiments showed that the phosphorus sorption on the sand/fly ash mixture is largely nonreversible. Transport simulation assuming a 1-m-deep sand/fly ash treatment layer, with 5% of the watershed area, showed that the sand/fly ash filter media could effectively treat 1 mg/L influent for 12 years in a paved watershed and 34 years in a grassed watershed before exceeding Oklahoma's scenic rivers' phosphorus criterion of 0.037 mg/L. Significant phosphorus removal would continue for over 100 years.  相似文献   

19.
Wang S  Liang K 《Chemosphere》2007,69(11):1798-1801
A new glass–ceramic was synthesized by crystal growth from a homogenous glass obtained by melting a mixture of fly ash collected from a power plant in Hebei province of China, titanium slag collected from a titanium factory in Sichuan province of China, and MgCO3 as an additive. According to the measurement results of differential thermal analysis, a thermal treatment of nucleating at 850 °C for 2 h and crystallizing at 985 °C for 1.5 h was used to obtain the crystallized glass. X-ray diffraction and scanning electron microscopy measurements showed that the main crystalline phase of this material was iron-ion substituted cordierite, (Mg,Fe)2Al4Si5O18, which is homogeneously dispersed within the parent glass matrix. The infrared radiance and thermal expansion coefficient of this material have been examined, and the results demonstrate that this glass–ceramic material has potential for application in a wide range of infrared heating and drying materials.  相似文献   

20.
Air-surface exchange of mercury (Hg) was measured from soil low in Hg (0.013 mg/kg) amended with four different ash materials: a wood ash containing -10% coal ash (0.070 mg/kg Hg), a mixture of two subbituminous coal fly ashes (0.075 mg/kg Hg), a subbituminous coal ash containing -10% petroleum coke ash (1.2 mg/kg Hg), and an ash from incinerated municipal sewage sludge (4.3 mg/kg Hg) using a dynamic flux chamber. Ash was added to soil to simulate agricultural supplements, soil stabilization, and pad layers used in livestock areas. For the agricultural amendment, -0.4% ash was well mixed into the soil. To make the stabilized soil that could be used for construction purposes, -20% ash was mixed into soil with water. The pad layer consisted of a wetted 1-cm layer of ash material on the soil surface. Diel trends of Hg flux were observed for all of the substrates with significantly higher Hg emissions during the day and negligible flux or deposition of Hg during the night. Hg fluxes, which were measured in the summer months, were best correlated with solar radiation, temperature, and air O3 concentrations. Mean Hg fluxes measured outdoors for unamended soils ranged from 19 to 140 ng/m2 day, whereas those for soil amended with ash to simulate an agricultural application ranged from 7.2 to 230 ng/m2 day. Fluxes for soil stabilized with ash ranged from 77 to 530 ng/m2 day and for soil with pads constructed of ash ranged from -50 to 90 ng/m2 day. Simple analytical tests (i.e., total Hg content, synthetic precipitation leaching procedure, heating, and indoor gas-exchange experiments) were performed to assess whether algorithms based on these tests could be used to predict Hg fluxes observed outdoors using the flux chamber. Based on this study, no consistent relationships could be developed. More work is needed to assess long-term and seasonal variations in Hg flux from (intact and disturbed) substrates before annual estimates of emissions can be developed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号