首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
Particle-bound polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDD/Fs) in ambient air were monitored together with particulate matter less than 10 μm (PM10) at three sampling sites of the Andean city of Manizales, Colombia; during September 2009 and July 2010. PCDD/Fs ambient air emissions ranged from 1 fg WHO-TEQ m−3 to 52 fg WHO-TEQ m−3 in particulate fraction. The PM10 concentrations ranged from 23 μg m−3 to 54 μg m−3. Concentrations of PM10 and PCDD/Fs in ambient air observed for Manizales - a medium sized city with a population of 380 000 - were comparable to concentrations in larger cities. The highest concentrations of PCDD/Fs and PM10 found in this study were determined at the central zone of the city, characterized by public transportation density, where diesel as principal fuel is used. In addition, hypothetical gas fractions of PCDD/Fs were calculated from theoretical Kp data. Congener profiles of PCDD/Fs exhibited ratios associated with different combustion sources at the different sampling locations, ranging from steel recycling to gasoline and diesel engines. Taking into account particle and gas hypothetical fraction of PCDD/Fs, Manizales exhibited values of PCDD/Fs equivalent to rural and urban-industrial sites in the southeast and center of the city respectively. Poor correlation of PCDDs with PM10 (r = −0.55 and r = 0.52) suggests ambient air PCDDs were derived from various combustion sources. Stronger correlation was observed of PCDFs with PM10. Poor correlation between precipitation and reduced PM10 concentration in ambient air (r = −0.45) suggested low PM10 removal by rainfall.  相似文献   

2.
Biomagnetic monitoring of industry-derived particulate pollution   总被引:2,自引:0,他引:2  
Clear association exists between ambient PM10 concentrations and adverse health outcomes. However, determination of the strength of associations between exposure and illness is limited by low spatial-resolution of particulate concentration measurements. Conventional fixed monitoring stations provide high temporal-resolution data, but cannot capture fine-scale spatial variations. Here we examine the utility of biomagnetic monitoring for spatial mapping of PM10 concentrations around a major industrial site. We combine leaf magnetic measurements with co-located PM10 measurements to achieve inter-calibration. Comparison of the leaf-calculated and measured PM10 concentrations with PM10 predictions from a widely-used atmospheric dispersion model indicates that modelling of stack emissions alone substantially under-predicts ambient PM10 concentrations in parts of the study area. Some of this discrepancy might be attributable to fugitive emissions from the industrial site. The composition of the magnetic particulates from vehicle and industry-derived sources differ, indicating the potential of magnetic techniques for source attribution.  相似文献   

3.
Children’s exposures to ambient and non-ambient fine particulate matter (PM2.5) were determined using the sulphate and elemental carbon components of the PM2.5 mixture as tracers of the ambient contribution during a 6-week winter period in Prince George, British Columbia, Canada. Personal exposures to PM2.5 were measured in children at 5 elementary schools located throughout the city and ambient samples were collected on school rooftops. Average ambient levels and personal exposures during this time period were 13.8 μg m?3 and 16.4 μg m?3 respectively. From the data pooled across individuals, use of the two different tracers indicated identical estimates of median exposure to ambient PM2.5 (7.5 μg m?3) and similar estimates of non-ambient generated exposure (6.4 and 5.0 μg m?3) and infiltration (0.49 and 0.52) for the sulphate and elemental carbon approach, respectively. The median fraction of the ambient concentration resulting in exposure or exposure factors were 0.54 and 0.55 respectively, however lower values of 0.46 and 0.42 were determined from regression analysis. A strong association was found between exposure to ambient PM2.5 and measured ambient concentrations at both the closest school monitor (median r = 0.92) and a central site (median r = 0.88) demonstrating that the central site monitor was suitable for assessing longitudinal ambient generated exposure throughout the city. These results support the use of elemental carbon as a tracer of ambient generated exposure and the use of ambient data as estimates of longitudinal changes in children’s exposure in this setting. The importance of both ambient and non-ambient sources of PM2.5 is emphasized by their almost equal contribution to total personal exposures. Comparison with other studies suggests a limited influence of climate and the cold season in Prince George on exposure levels and found similar mean non-ambient generated exposures despite large variability across and within subjects in any given location.  相似文献   

4.
Concentrations of ultrafine (<0.1 μm) particles (UFPs) and PM2.5 (<2.5 μm) were measured whilst commuting along a similar route by train, bus, ferry and automobile in Sydney, Australia. One trip on each transport mode was undertaken during both morning and evening peak hours throughout a working week, for a total of 40 trips. Analyses comprised one-way ANOVA to compare overall (i.e. all trips combined) geometric mean concentrations of both particle fractions measured across transport modes, and assessment of both the correlation between wind speed and individual trip means of UFPs and PM2.5, and the correlation between the two particle fractions. Overall geometric mean concentrations of UFPs and PM2.5 ranged from 2.8 (train) to 8.4 (bus) × 104 particles cm?3 and 22.6 (automobile) to 29.6 (bus) μg m?3, respectively, and a statistically significant difference (p < 0.001) between modes was found for both particle fractions. Individual trip geometric mean concentrations were between 9.7 × 103 (train) and 2.2 × 105 (bus) particles cm?3 and 9.5 (train) to 78.7 (train) μg m?3. Estimated commuter exposures were variable, and the highest return trip mean PM2.5 exposure occurred in the ferry mode, whilst the highest UFP exposure occurred during bus trips. The correlation between fractions was generally poor, and in keeping with the duality of particle mass and number emissions in vehicle-dominated urban areas. Wind speed was negatively correlated with, and a generally poor determinant of, UFP and PM2.5 concentrations, suggesting a more significant role for other factors in determining commuter exposure.  相似文献   

5.
Chang YK  Wu CC  Lee LT  Lin RS  Yu YH  Chen YC 《Chemosphere》2012,87(1):26-30
A mass screening of lung function associated with air pollutants for children is limited. This study assessed the association between air pollutants exposure and the lung function of junior high school students in a mass screening program in Taipei city, Taiwan. Among 10,396 students with completed asthma screening questionnaires and anthropometric measures, 2919 students aged 12-16 received the spirometry test. Forced vital capacity (FVC) and forced expiratory flow in 1 s (FEV1) in association with daily ambient concentrations of particulate matter with diameter of 10 μm or less (PM10), sulfur dioxide (SO2), carbon monoxide (CO), nitrogen dioxide (NO2), and ozone (O3) were assessed by regression models controlling for the age, gender, height, weight, student living districts, rainfall and temperature. FVC, had a significant negative association with short-term exposure to O3 and PM10 measured on the day of spirometry testing. FVC values also were reversely associated with means of SO2, O3, NO2, PM10 and CO exposed 1 d earlier. An increase of 1-ppm CO was associated with the reduction in FVC for 69.8 mL (95% CI: −115, −24.4 mL) or in FEV1 for 73.7 mL (95% CI: −118, −29.7 mL). An increase in SO2 for 1 ppb was associated with the reductions in FVC and FEV1 for 12.9 mL (95% CI: −20.7, −5.09 mL) and 11.7 mL (95% CI: −19.3, −4.16 mL), respectively. In conclusion, the short-term exposure to O3 and PM10 was associated with reducing FVC and FEV1. CO and SO2 exposure had a strong 1-d lag effect on FVC and FEV1.  相似文献   

6.
The Detroit Exposure and Aerosol Research Study (DEARS) provided data to compare outdoor residential coarse particulate matter (PM10–2.5) concentrations in six different areas of Detroit with data from a central monitoring site. Daily and seasonal influences on the spatial distribution of PM10–2.5 during Summer 2006 and Winter 2007 were investigated using data collected with the newly developed coarse particle exposure monitor (CPEM). These data allowed the representativeness of the community monitoring site to be assessed for the greater Detroit metro area. Multiple CPEMs collocated with a dichotomous sampler determined the precision and accuracy of the CPEM PM10–2.5 and PM2.5 data.CPEM PM2.5 concentrations agreed well with the dichotomous sampler data. The slope was 0.97 and the R2 was 0.91. CPEM concentrations had an average 23% negative bias and R2 of 0.81. The directional nature of the CPEM sampling efficiency due to bluff body effects probably caused the negative CPEM concentration bias.PM10–2.5 was observed to vary spatially and temporally across Detroit, reflecting the seasonal impact of local sources. Summer PM10–2.5 was 5 μg m?3 higher in the two industrial areas near downtown than the average concentrations in other areas of Detroit. An area impacted by vehicular traffic had concentrations 8 μg m?3 higher than the average concentrations in other parts of Detroit in the winter due to the suspected suspension of road salt. PM10–2.5 Pearson Correlation Coefficients between monitoring locations varied from 0.03 to 0.76. All summer PM10–2.5 correlations were greater than 0.28 and statistically significant (p-value < 0.05). Winter PM10–2.5 correlations greater than 0.33 were statistically significant (p-value < 0.05). The PM10–2.5 correlations found to be insignificant were associated with the area impacted by mobile sources during the winter. The suspected suspension of road salt from the Southfield Freeway, combined with a very stable atmosphere, caused concentrations to be greater in this area compared to other areas of Detroit. These findings indicated that PM10–2.5, although correlated in some instances, varies sufficiently across a complex urban airshed that that a central monitoring site may not adequately represent the population's exposure to PM10–2.5.  相似文献   

7.
Inhalation of particulate pollutants below 10 μm in size (PM10) is associated with adverse health effects. Here we use magnetic remanence measurements of roadside tree leaves to examine levels of vehicle-derived PM around Lancaster, UK. Leaf saturation remanence (SIRM) values exhibit strong correlation with both the SIRM and particulate mass of co-located, pumped-air samples, indicating that these leaf magnetic values are an effective proxy for ambient PM10 concentrations. Biomagnetic monitoring using tree leaves can thus provide high spatial resolution data sets for assessment of particulate pollution levels at pedestrian-relevant heights. Leaf SIRM values not only increase with proximity to roads with higher traffic volumes, but are also ~100% higher at 0.3 m than at ~1.5–2 m height. Magnetic and SEM data indicate that the particle populations are dominated by spherical, iron-rich particles ~0.1–1 μm in diameter, with fewer larger, more angular, silica-rich particles. Comparison of the roadside leaf-calculated PM10 concentrations with PM10 concentrations predicted by a widely-used atmospheric dispersion model indicates some agreement between them. However, the model under-predicts PM10 concentrations at ‘urban hotspots’ such as major–minor road junctions and traffic lights. Conversely, the model over-predicts PM10 concentrations with distance from the road wherever one tree is screened by another, indicating the filtering/protective effect of roadside trees in leaf.  相似文献   

8.
Real time number concentrations and size distributions of ultrafine particles (UFPs, diameter <100 nm) and time integrated black carbon, PM2.5 mass, and chemical species were studied at the Los Angeles International Airport (LAX) and a background reference site. At LAX, data were collected at the blast fence (∼140 m from the takeoff position) and five downwind sites up to 600 m from the takeoff runway and upwind of the 405 freeway. Size distributions of UFPs collected at the blast fence site showed very high number concentrations, with the highest numbers found at a particle size of approximately 14 nm. The highest spikes in the time series profile of UFP number concentrations were correlated with individual aircraft takeoff. Measurements indicate a more than 100-fold difference in particle number concentrations between the highest spikes during takeoffs and the lowest concentrations when no takeoff is occurring. Total UFP counts exceeded 107 particles cm−3 during some monitored takeoffs. Time averaged concentrations of PM2.5 mass and two carbonyl compounds, formaldehyde and acrolein, were statistically elevated at the airport site relative to a background reference site. Peaks of 15 nm particles, associated with aircraft takeoffs, that occurred at the blast fence were matched with peaks observed 600 m downwind, with time lags of less than 1 min. The results of this study demonstrate that commercial aircraft at LAX emit large quantities of UFP at the lower end of currently measurable particle size ranges. The observed highly elevated UFP concentrations downwind of LAX associated with aircraft takeoff activities have significant exposure and possible health implications.  相似文献   

9.
Long-term study of air pollution plays a decisive role in formulating and refining pollution control strategies. In this study, two 12-month measurements of PM2.5 mass and speciation were conducted in 00/01 and 04/05 to determine long-term trend and spatial variations of PM2.5 mass and chemical composition in Hong Kong. This study covered three sites with different land-use characteristics, namely roadside, urban, and rural environments. The highest annual average PM2.5 concentration was observed at the roadside site (58.0±2.0 μg m−3 (average±2σ) in 00/01 and 53.0±2.7 μg m−3 in 04/05), followed by the urban site (33.9±2.5 μg m−3 in 00/01 and 39.0±2.0 μg m−3 in 04/05), and the rural site (23.7±1.9 μg m−3 in 00/01 and 28.4±2.4 μg m−3 in 04/05). The lowest PM2.5 level measured at the rural site was still higher than the United States’ annual average National Ambient Air Quality Standard of 15 μg m−3. As expected, seasonal variations of PM2.5 mass concentration at the three sites were similar: higher in autumn/winter and lower in summer. Comparing PM2.5 data in 04/05 with those collected in 00/01, a reduction in PM2.5 mass concentration at the roadside (8.7%) but an increase at the urban (15%) and rural (20%) sites were observed. The reduction of PM2.5 at the roadside was attributed to the decrease of carbonaceous aerosols (organic carbon and elemental carbon) (>30%), indicating the effective control of motor vehicle emissions over the period. On the other hand, the sulfate concentration at the three sites was consistent regardless of different land-use characteristics in both studies. The lack of spatial variation of sulfate concentrations in PM2.5 implied its origin of regional contribution. Moreover, over 36% growth in sulfate concentration was found from 00/01 to 04/05, suggesting a significant increase in regional sulfate pollution over the years. More quantitative techniques such as receptor models and chemical transport models are required to assess the temporal variations of source contributions to ambient PM2.5 mass and chemical speciation in Hong Kong.  相似文献   

10.
This study attempts to determine the influence of air quality in a residential area near a medical waste incineration plant. Ambient air concentrations of polycyclic aromatic hydrocarbons (PAHs), PM10 and PM2.5 (PM—particulate matter) were determined by collecting air samples in areas both upwind and downwind of the plant. The differences in air pollutant levels between the study area and a reference area 11 km away from the plant were evaluated.Dichotomous samplers were used for sampling PM2.5 and PM10 from ambient air. Two hundred and twenty samples were obtained from the study area, and 100 samples were taken from a reference area. Samples were weighed by an electronic microbalance and concentrations of PM2.5 and PM10 were determined. A HPLC equipped with a fluorescence detector was employed to analyze the concentrations of 15 PAHs compounds adsorbed into PM2.5 and PM10.The experimental results indicated that the average concentrations of PM2.5 and PM10 were 30.34±17.95 and 36.81±20.45 μg m−3, respectively, in the study area, while the average ratio of PM2.5/PM10 was 0.82±0.01. The concentrations of PM2.5 and PM10 of the study area located downwind of the incinerator were significantly higher than the study area upwind of the incinerator (P<0.05).The concentration of PAHs in PM2.5 in the study area was 2.2 times higher than in the reference area (P<0.05). Furthermore, the benzo(a)pyrene concentrations in PM2.5 and PM10 were 0.11±0.05 ng m−3 and 0.12±0.06 ng m−3 in the study area, respectively. The benzo(a)pyrene concentrations of PM2.5 and PM10 in the study area were 7 and 5.3 times higher than in the reference area (P<0.05), respectively.The study indicated that the air quality of PM2.5, PM10 and PAHs had significant contamination by air pollutants emitted from a medical waste incineration factory, representing a public health problem for nearby residences, despite the factory being equipped with a modern air pollution control system.  相似文献   

11.
Indoor and outdoor particulate matter (PM0.3-10) number concentrations were established in two medieval churches in Cyprus. In both churches incense was burnt occasionally during Mass. The highest indoor PM0.5-1 concentrations compared with outdoors (10.7 times higher) were observed in the church that burning of candles indoors was allowed. Peak indoor black carbon concentration was 6.8 μg m−3 in the instances that incense was burning and 13.4 μg m−3 in the instances that the candles were burning (outdoor levels ranged between 0.6 and 1.3 μg m−3). From the water soluble inorganic components determined in PM10, calcium prevailed in all samples indoors or outdoors, whilst high potassium concentration indoors were a clear marker of combustion. Indoor sources of PM were clearly identified and their emission strengths were estimated via modeling of the results. Indoor estimated PM0.3-10 mass concentrations exceeded air quality standards for human health protection and for the preservation of works of art.  相似文献   

12.
The role of vegetation in mitigating the effects of PM10 pollution has been highlighted as one potential benefit of urban greenspace. An integrated modelling approach is presented which utilises air dispersion (ADMS-Urban) and particulate interception (UFORE) to predict the PM10 concentrations both before and after greenspace establishment, using a 10 × 10 km area of East London Green Grid (ELGG) as a case study. The corresponding health benefits, in terms of premature mortality and respiratory hospital admissions, as a result of the reduced exposure of the local population are also modelled. PM10 capture from the scenario comprising 75% grassland, 20% sycamore maple (Acer pseudoplatanus L.) and 5% Douglas fir (Pseudotsuga menziesii (Mirb.) Franco) was estimated to be 90.41 t yr−1, equating to 0.009 t ha−1 yr−1 over the whole study area. The human health modelling estimated that 2 deaths and 2 hospital admissions would be averted per year.  相似文献   

13.
On Zugspitze (2670 m a.s.l.), Alps, higher concentrations were observed during a winter than during a summer measurement campaign of PAHs, chlorobenzenes (43.6 vs. 2.0 pg m−3) and DDTs (3.7 vs. 1.2 pg m−3), while hexachlorocyclohexanes and PCBs were found at similar levels. The PCB, HCH and DDT levels are among the lowest ever reported from outside the Arctic. Mostly lower levels were found in samples collected in summer than in winter despite a significant boundary layer air influence, but no such influence on samples collected during the winter campaign. Boundary layer influence was quantified by Lagrangian particle dispersion model retroplume analyses. Photochemical lifetimes corresponding to kOH < 1.5 × 10−12 cm3 molec−1 s−1 are found for p,p′-DDT, kOH < 0.75 × 10−12 cm3 molec−1 s−1 for p,p′-DDE and kOH < 1.0 × 10−12 cm3 molec−1 s−1 for p,p′-DDD.  相似文献   

14.
Behavioral and environmental determinants of PM2.5 personal exposures were analyzed for 201 randomly selected adult participants (25–55 years old) of the EXPOLIS study in Helsinki, Finland. Personal exposure concentrations were higher than respective residential outdoor, residential indoor and workplace indoor concentrations for both smokers and non-smokers. Mean personal exposure concentrations of active smokers (31.0±31.4 μg m−3) were almost double those of participants exposed to environmental tobacco smoke (ETS) (16.6±11.8 μg m−3) and three times those of participants not exposed to tobacco smoke (9.9±6.2 μg m−3). Mean indoor concentrations of PM2.5 when a member of the household smoked indoors (20.8±23.9 μg m−3) were approximately 2.5 times the concentrations of PM2.5 when no smoking was reported (8.2±5.2 μg m−3). Interestingly, however, both mean (8.2 μg m−3) and median (6.9 μg m−3) residential indoor concentrations for non-ETS exposed participants were lower than residential outdoor concentrations (9.5 and 7.3 μg m−3, respectively). In simple linear regression models residential indoor concentrations were the best predictors of personal exposure concentrations. Correlations (r2) between PM2.5 personal exposure concentrations of all participants, both smoking and non-smoking, and residential indoor, workplace indoor, residential outdoor and ambient fixed site concentrations were 0.53, 0.38, 0.17 and 0.16, respectively. Predictors for personal exposure concentrations of non-ETS exposed participants identified in multiple regression were residential indoor concentrations, workplace concentrations and traffic density in the nearest street from home, which accounted for 77% of the variance. Subsequently, step-wise regression not including residential and workplace indoor concentrations as input (as these are frequently not available), identified ambient PM2.5 concentration and home location, as predictors of personal exposure, accounting for 47% of the variance. Ambient fixed site PM2.5 concentrations were closely related to residential outdoor concentrations (r2=0.9, p=0.000) and PM2.5 personal exposure concentrations were higher in summer than during other seasons. Personal exposure concentrations were significantly (p=0.040) higher for individuals living downtown compared with individuals in suburban family homes. Further analysis will focus on comparisons of determinants between Helsinki and other EXPOLIS centers.  相似文献   

15.
Measurements carried out in Paris Magenta railway station in April–May 2006 underlined a repeatable diurnal cycle of aerosol concentrations and optical properties. The average daytime PM10 and PM2.5 concentrations in such a confined space were approximately 5–30 times higher than those measured in Paris streets. Particles are mainly constituted of dust, with high concentrations of iron and other metals, but are also composed of black and organic carbon. Aerosol levels are linked to the rate at which rain and people pass through the station. Concentrations are also influenced by ambient air from the nearby streets through tunnel ventilation. During daytime approximately 70% of aerosol mass concentrations are governed by coarse absorbing particles with a low Angström exponent (~0.8) and a low single-scattering albedo (~0.7). The corresponding aerosol density is about 2 g cm?3 and their complex refractive index at 355 nm is close to 1.56–0.035 i. The high absorption properties are linked to the significant proportion of iron oxides together with black carbon in braking systems. During the night, particles are mostly submicronic, thus presenting a greater Angström exponent (~2). The aerosol density is lower (1.8 g cm?3) and their complex refractive index presents a lower imaginary part (1.58–0.013 i), associated to a stronger single-scattering albedo (~0.85–0.90), mostly influenced by the ambient air. For the first time we have assessed the emission (deposition) rates in an underground station for PM10, PM2.5 and black carbon concentrations to be 3314 ± 781(?1164 ± 160), 1186 ± 358(?401 ± 66) and 167 ± 46(?25 ± 9) μg m?2 h?1, respectively.  相似文献   

16.
Between November 1995 and October 1996, particulate matter concentrations (PM10 and PM2.5) were measured in 25 study areas in six Central and Eastern European countries: Bulgaria, Czech Republic, Hungary, Poland, Romania and Slovak Republic. To assess annual mean concentration levels, 24-h averaged concentrations were measured every sixth day on a fixed urban background site using Harvard impactors with a 2.5 and 10 μm cut-point. The concentration of the coarse fraction of PM10 (PM10−2.5) was calculated as the difference between the PM10 and the PM2.5 concentration. Spatial variation within study areas was assessed by additional sampling on one or two urban background sites within each study area for two periods of 1 month. QA/QC procedures were implemented to ensure comparability of results between study areas. A two to threefold concentration range was found between study areas, ranging from an annual mean of 41 to 98 μg m−3 for PM10, from 29 to 68 μg m−3 for PM2.5 and from 12 to 40 μg m−3 for PM10−2.5. The lowest concentrations were found in the Slovak Republic, the highest concentrations in Bulgaria and Poland. The variation in PM10 and PM2.5 concentrations between study areas was about 4 times greater than the spatial variation within study areas suggesting that measurements at a single sampling site sufficiently characterise the exposure of the population in the study areas. PM10 concentrations increased considerably during the heating season, ranging from an average increase of 18 μg m−3 in the Slovak Republic to 45 μg m−3 in Poland. The increase of PM10 was mainly driven by increases in PM2.5; PM10−2.5 concentrations changed only marginally or even decreased. Overall, the results indicate high levels of particulate air pollution in Central and Eastern Europe with large changes between seasons, likely caused by local heating.  相似文献   

17.
This study examined commuter’s exposure to respirable suspended particulate matters while commuting in public transportation modes. The survey was conducted between October 1999 and January 2000 in Hong Kong. A total of eight public transportation modes, that are bus, tram, public light bus, taxi, ferry, Kowloon–Canton Railway, Mass Transit Railway and Light Rail Transit, were selected in the study. They were grouped into four categories: (T1) railway transport; (T2) non-air-conditioned roadway transport; (T3) air-conditioned roadway transport and (T4) marine transport. Both PM10 and PM2.5 levels were investigated. The results indicate that the particulate level is greatly affected by the mode of transport as well as the ventilation system of the transport. The overall average PM10 concentration level in T2 (147 μg m−3) is the highest and is followed by T4 (81 μg m−3) and T3 (65 μg m−3). The PM10 level in T1 (50 μg m−3) is the lowest. Notably, the commuter exposure in tram (175 μg m−3) is the highest among all the monitored commuting modes. Commuting modes such as railway and air-conditioned vehicle are recommended as a substitute for non-air-conditioned vehicle. The PM2.5 to PM10 ratio in transports ranged from 63% to 78%. Higher PM2.5 to PM10 ratio is found in vehicles with air-conditioning system. For the double deck vehicle, higher PM10 level has resulted in the lower deck. The average upper-deck to lower-deck PM10 ratio is 0.836, 0.751 and 0.738 in air-conditioned bus, non-air-conditioned bus and non-air-conditioned tram, respectively. Typical concentration profiles in different transports are also presented.  相似文献   

18.
Particulate matter, including coarse particles (PM2.5–10, aerodynamic diameter of particle between 2.5 and 10 μm) and fine particles (PM2.5, aerodynamic diameter of particle lower than 2.5 μm) and their compositions, including elemental carbon, organic carbon, and 11 water-soluble ionic species, and elements, were measured in a tunnel study. A comparison of the six-hour average of light-duty vehicle (LDV) flow of the two sampling periods showed that the peak hours over the weekend were higher than those on weekdays. However, the flow of heavy-duty vehicles (HDVs) on the weekdays was significant higher than that during the weekend in this study. EC and OC content were 49% for PM2.5–10 and 47% for PM2.5 in the tunnel center. EC content was higher than OC content in PM2.5–10, but EC was about 2.3 times OC for PM2.5. Sulfate, nitrate, ammonium were the main species for PM2.5–10 and PM2.5. The element contents of Na, Al, Ca, Fe and K were over 0.8 μg m?3 in PM2.5–10 and PM2.5. In addition, the concentrations of S, Ba, Pb, and Zn were higher than 0.1 μg m?3 for PM2.5–10 and PM2.5. The emission factors of PM2.5–10 and PM2.5 were 18 ± 6.5 and 39 ± 11 mg km?1-vehicle, respectively. The emission factors of EC/OC were 3.6/2.7 mg km?1-vehicle for PM2.5–10 and 15/4.7 mg km?1-vehicle for PM2.5 Furthermore, the emission factors of water-soluble ions were 0.028(Mg2+)–0.81(SO42?) and 0.027(NO2?)–0.97(SO42?) mg km?1-vehicle for PM2.5–10 and PM2.5, respectively. Elemental emission factors were 0.003(V)–1.6(Fe) and 0.001(Cd)–1.05(Na) mg km?1-vehicle for PM2.5–10 and PM2.5, respectively.  相似文献   

19.
We report on ambient atmospheric aerosols present at sea during the Atlantic–Mediterranean voyage of Oceanic II (The Scholar Ship) in spring 2008. A record was obtained of hourly PM10, PM2.5, and PM1 particle size fraction concentrations and 24-h filter samples for chemical analysis which allowed for comparison between levels of crustal particles, sea spray, total carbon, and secondary inorganic aerosols. On-board monitoring was continuous from the equatorial Atlantic to the Straits of Gibraltar, across the Mediterranean to Istanbul, and back via Lisbon to the English Channel. Initially clean air in the open Atlantic registered PM10 levels <10 μg m?3 but became progressively polluted by increasingly coarse PM as the ship approached land. Away from major port cities, the main sources of atmospheric contamination identified were dust intrusions from North Africa (NAF), smoke plumes from biomass burning in sub-Saharan Africa and Russia, industrial sulphate clouds and other regional pollution sources transported from Europe, sea spray during rough seas, and plumes emanating from islands. Under dry NAF intrusions PM10 daily mean levels averaged 40–60 μg m?3 (30–40 μg m?3 PM2.5; c. 20 μg m?3 PM1), peaking briefly to >120 μg m?3 (hourly mean) when the ship passed through curtains of higher dust concentrations amassed at the frontal edge of the dust cloud. PM1/PM10 ratios ranged from very low during desert dust intrusions (0.3–0.4) to very high during anthropogenic pollution plume events (0.8–1).  相似文献   

20.
Perfluorinated compounds (PFCs) measured in surface running waters indicated the existence of different emission sources in eight main city basins. The tap water reflected the contamination pattern and levels in their corresponding source water basins. The daily intakes through tap water consumption ranged from <0.01 to 0.73 ng kg−1 d−1 for perfluorooctanoate (PFOA) and <0.01 to 0.08 ng kg−1 d−1 for perfluorooctanesulfonate (PFOS). Tap water intake-derived exposure accounted for 8.6%-101% (for PFOA) and while <10% (for PFOS) of total daily exposure, which was estimated from Korean serum concentrations using a pharmacokinetic model. Our findings indicate that tap water intake could be an important contributor to PFOA exposure in Korean populations; accordingly, additional efforts are necessary to improve the removal efficiency of perfluorinated compounds (PFCs) in the water purification process. However, more fundamentally the aim would be to reduce the discharge of PFCs from potential sources within the basin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号