首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Toxicity of tributyltin to willow trees   总被引:1,自引:0,他引:1  
BACKGROUND: Tributyltin is an organotin compound, used as an antifouling agent in ship paint, with heavy impact on the marine environment. Contaminated dredged harbor sludge is now dumped on land. The toxicity of tributyltin (TBT) to trees has not yet been quantified. Eventually, a vegetation cover on the dumped sludge could be established for the purpose of non-food cash crop production and phytoremediation. METHODS: The phytotoxicity of tributyltin chloride (TBTCl) and tributyltin hydride (TBTH) was measured at pH 4 and at pH 7 using the willow tree transpiration test. Different pH levels of the nutrient solutions were achieved by adding ammonium salt (low pH) or nitrate (high pH) as nitrogen source. RESULTS AND DISCUSSION: At low pH (pH 4), all trees showed symptoms of poor health. Transpiration decreased at concentrations above or equal to 0.1 mg TBTCl/l and 1 mg TBTH/L. The TBT toxicity was more pronounced at pH 7. The trees survived even the highest dose of 10 mg/l TBTCl or TBTH, although their growth and transpiration was strongly reduced. CONCLUSION: In contrast to other organisms, TBTCl and TBTH were less toxic to higher plants. RECOMMENDATIONS AND OUTLOOK: The toxicity of TBT is no hindrance for establishing vegetation on TBT-contaminated sludge. Phytoremediation and cash crop production could be possible with suitable plants.  相似文献   

2.
Background Worldwide, large amounts of sediments have to be dredged annually from waterways and harbours. These sediments are sometimes polluted with a variety of toxic compounds. In some countries, including Belgium, the load with the biocide tributyltin (TBT) from ship coatings prohibits the dumping of harbour sludge into the sea. Land-based dumping is a commonly used alternative. Objective This research investigated the feasibility to use land-deposited harbour sludge for plant production. In a field trial, the growth of 38 more or less salt-tolerant plant species on low and high TBT-contaminated sediments was studied. The elimination of TBT from sludge with and without vegetation was compared. The uptake of TBT and its degradation products di- and monobutyltin (DBT and MBT) into harvest products under field conditions was determined. - Experimental Set-up. Sediments dredged in May 2003 from the brackish waters of the port of Antwerp were analysed in the laboratory for soil texture, pH, electroconductivity, sodium, magnesium, potassium, calcium, ammonium, nitrate, total nitrogen, chloride, sulphur and the organotins TBT, DBT and MBT. The sediments were lagooned for one year to dewater, desalinate and improve their structure. Salt-tolerant domestic and wild plants were selected and sown in May 2004. In August 2004, plants were harvested and the produced biomass was determined. Samples were taken from vegetated and non-vegetated top and bottom sediments and from plants growing above soil and analysed for TBT, DBT and MBT. Results The fresh sediments showed a good supply with nutrients and a neutral pH, but were rather saline (EC 14 mS cm-1 of the saturated paste extract). The salinity decreased to 3.7 mS cm-1 during lagoonation. The high and the low contaminated sediment had initially 43 and 1.6 mg TBT kg-1 dry weight, respectively. Besides TBT, several other contaminants were present in the sediments at critical levels. The biomass production of the plant species from the field trial ranged from 0.2 to 13 tons dry mass per hectare. Plants performing excellently were barley, sorghum, rape seed, a clover/grass mix and reed. If at all, a positive influence of TBT on plant growth was seen. TBT was degraded significantly faster (>40%) below barley. The uptake of TBT, DBT and MBT into stem and leaves of reed, grass and clover was very low, but measurable and not related to concentrations in soil. No uptake of TBT or its metabolites into corn of barley was found. Discussion This study confirmed former results: the toxicity of TBT to higher plants is low, and even high levels in soils would not be a hindrance for crop production. The removal of TBT seemed to be increased by both lagooning and plant growth, although the target values for sea dumping in use in certain European countries were not reached. A plausible explanation for the faster degradation of TBT under vegetation is that oxygen is a limiting factor, and plants dewater the soil, thus aerating it. The uptake of the organotins TBT, DBT and MBT into harvest products is probably due to attached soil particles. Conclusions To summarize, barley was the optimal species: it grew very well despite the salinity of the dredged sediments, it had a significantly positive effect on TBT removal; it showed no measurable uptake of TBT or the other butyltins into the harvested product; and it is a cash crop well established in European agriculture. Outlook The amounts of dredged sediments are high, and good soils are becoming increasingly rare. The feasibility of using dredged sediments for non-food production, such as energy crops, should be investigated by a critical risk assessment.  相似文献   

3.
Fritioff A  Greger M 《Chemosphere》2006,63(2):220-227
A better understanding of metal uptake and translocation by aquatic plants can be used to enhance the performance of constructed wetland systems for stormwater treatment. Specifically, this study examines whether the uptake of Zn, Cu, Cd, and Pb by Potamogeton natans is via the leaves, stems, or roots, and whether there is translocation from organs of uptake to other plant parts. Competition between the metals at uptake and at the level of the cell wall-bound part of the metals accumulated in stem and leaf tissue was also examined. The results show that Zn, Cu, Cd, and Pb were taken up by the leaves, stems, and roots, with the highest accumulation found in the roots. At the elevated metal concentrations common in stormwater the uptake of Cu, but not of Zn, Cd, or Pb, by the roots was somewhat limited at uptake due to competition with other metals. Between 24% and 59% of the metal content was bound to the cell walls of the plant. Except in the case of Pb, the cell wall-bound fraction was generally smaller in stems than in leaves. No translocation of the metals to other parts of the plant was found, except for Cd which was translocated from leaf to stem and vice versa. Dispersion of metals from sediment to water through P. natans is therefore unlikely.  相似文献   

4.
Knowledge of mechanisms for uptake, translocation, and accumulation of soil contaminants in plants is essential to successful applications of the phytoremediation technique. Analysis and evaluation of these mechanisms would be greatly facilitated by the availability of a dynamic model that can predict soil contaminant uptake by roots, transport from roots through stems to leaves, and accumulation in plant during the transport process. In this study, a dynamic model for uptake and translocation of contaminants from a soil-plant ecosystem (UTCSP) was developed using the STELLA modeling tool. The structure of UTCSP consists of time-dependent simultaneous upward transport, accumulation, and transpiration of water and contaminants in the soil-plant-atmosphere continuum, which was driven by water potential gradients among soils, roots, stems, leaves, and atmosphere. The UTCSP model was calibrated using the experimental measurements and applied to predict phytoremediation of 1,4-dioxane from a sandy soil by a poplar tree. Simulation results showed that about 20% of 1,4-dioxane was removed from the soil by the poplar tree in 90 days. The simulations further revealed that while the mass of 1,4-dioxane in the poplar tree increased consecutively with time, the rates of water and 1,4-dioxane uptake and translocation in the roots, stems, and leaves have a typical diurnal distribution pattern: increasing during the day and decreasing during the night, resulting from daily variations of plant water potentials that were caused by leaf water transpiration. This study suggests that the UTCSP model is a useful tool for estimating phytoremediation of contaminants in the soil-plant ecosystems.  相似文献   

5.
BACKGROUND, AIM, AND SCOPE: Due to its essentiality, deficiency, and toxicity to living organisms and the extensive use in industrial activities, selenium (Se) has become an element of global environmental and health concern. Se removal from contaminated sites using physical, chemical, and engineering techniques is quite complicated and expensive. The goal of this study was to investigate uptake and translocation of Se in willows and to provide quantitative information for field application whether Se phytoremediation is feasible and ecologically safe. MATERIALS AND METHODS: Intact pre-rooted plants of hybrid willows (Salix matsudana Koidz x alba L.) and weeping willows (Salix babylonica L.) were grown hydroponically and treated with selenite or selenate at 24.0 +/- 1 degrees C for 144 h. Removal of leaves was also performed as a treatment to quantify the effect of transpiration on translocation and volatilization of Se. At the end of the study, total Se in the hydroponic solution and in different parts of plant tissues was analyzed quantitatively by hydride generation-atomic fluorescence spectrometry. The capacity of willows to assimilate both chemical forms of Se was also evaluated using detached leaves and roots in sealed glass vessels in vivo. Translocation efficiency of Se in both plants was estimated. RESULTS: Significant amounts of the applied selenite and selenate were eliminated from plant growth media by willows during the period of incubation. Both willows showed a significantly higher removal rate for selenate than for selenite (p < 0.05). Substantial differences existed in the distribution of both chemical forms of Se in plant materials: lower stems and roots were the major sites for accumulation of selenite and selenate, respectively. Translocation efficiency for selenite was significantly higher than that for selenate in both willow species (p < 0.01). Compared to the intact trees, remarkable decrease in the removal rate of both chemical forms of Se was found for willows without any leaves (p < 0.01). Volatilization of Se by plant leaves was estimated to be approximately 10% of the total applied selenite or selenate. Significant reduction (>20%) of selenate was observed in the sealed vessel with excised roots of willows, whereas trace amounts of selenite were eliminated from the hydroponic solution in the presence of roots. Detached leaves from neither of them reduced the concentration of selenite or selenate in the solution. DISCUSSION: Due to the significant difference in the removal rate and the distribution of the two chemical forms of Se in plant materials, the conversion of selenate to selenite in hydroponic solution prior to uptake and within plant tissues is unlikely. An independent uptake and translocation mechanisms are likely to exist for each Se chemical species. Uptake of selenate is mediated possibly through an active transport mechanism, whereas that of selenite may possibly depend on plant transpiration. Uptake velocities of selenite are linear (zero-order kinetics), while selenate removal processes obey first-order kinetics. In experiments with detached leaves in closed bottles, the cuticle of leaves was the major obstacle to extract both chemical forms of Se from the hydroponic solution. Phytovolatilization is a biological process playing an important role in Se removal. CONCLUSIONS: Although faster removal rates of selenate than selenite from plant growth media were observed by both willow species, selenite in plant materials was more mobile than selenate. Significant decrease in removal rates of both chemical forms of Se was detected for willows without any leaves. Significant differences in extraction, assimilation and transport pathways for selenite and selenate exist in willow trees. RECOMMENDATIONS AND PERSPECTIVES: Phytoremediation of Se is an attractive approach of cleaning up Se contaminated environmental sites. More detailed investigation on the assimilation of Se in plant roots and transport in tissues will provide further biochemical evidence to explain the differences in uptake and translocation mechanisms between selenite and selenate in willows. A relevant phytoremediation scheme can then be designed to clean up Se contaminated sites. Willows show a great potential for uptake, assimilation and translocation of both selenite and selenate. Phytotreatment of Se is potentially an efficient and practical technology for cleaning up contaminated environmental sites.  相似文献   

6.
The reasons why some cultivars of hot pepper (Capsicum annuum L.) accumulate low levels of Cd are poorly understood. We aimed to compare the characteristics of Cd uptake and translocation in low-Cd and high-Cd hot pepper cultivars by determining the subcellular locations and chemical forms of Cd, and its distribution among different plant organs. We conducted a hydroponic experiment to investigate the subcellular distribution and chemical forms of Cd in roots, stems, and leaves of a low-Cd (Yeshengchaotianjiao, YCT) and a high-Cd cultivar (Jinfuzaohuangjiao, JFZ). The results showed that the concentrations of Cd in almost all subcellular fractions of roots, and in all chemical forms in roots, were higher in YCT than in JFZ. Compared with YCT, JFZ had higher Cd concentrations in almost all subcellular fractions of stems and leaves, and higher Cd concentrations in almost all chemical forms in stems and leaves. Additionally, YCT had significantly higher total Cd accumulation but a lower Cd translocation rate compared with JFZ. In general, the results presented in this study revealed that root-to-shoot Cd translocation via the xylem is the key physiological processes determining the Cd accumulation level in stems and leaves of hot pepper plants. Immobilization of Cd by the cell walls of different organs is important in Cd detoxification and limiting the symplastic movement of Cd.  相似文献   

7.
Filter feeding clams, Venerupis decussata, were sampled every 4 months for 8 years at five locations on the southwest Spain coast and analysed for organotins. All the stations showed a significant sinusoidally shaped seasonal evolution pattern for tributyltin (TBT) superimposed upon a linear decreasing tendency. The amplitude and frequency of fluctuations differed among stations and were correlated to the harbour activities. Fluctuations were greatest at stations with the greatest TBT presence. The long-term trend of TBT in clams indicated half-life values of about 7-14 years. During 1993, water and sediment samples were also collected at monthly intervals and analysed. Correlations between TBT bivalve contents and water concentrations were higher than those found between biota and sediments.  相似文献   

8.
This study was aimed to determine organotin concentrations in the muricids Thais clavigera, Thais tuberosa and Morula granulata on an island wide scale and to find an adequate bioindicator species for long-term monitoring purpose. Samples were collected from the coast of Taiwan and vicinity islands with organotin analysis by graphite furnace atomic absorption spectrophotometry. Because triphenyltin (TPT) could not be discriminated from tributyltin (TBT) by the extraction method, organotins were measured as TBT + TPT and total hexane extractable organotins. Severity of imposex in the muricid population samples expressed as relative penis size (RPS) indices were calculated and compared to determine a suitable bioindicator species. In T. clavigera, T. tuberosa and M. granulata, TBT + TPT were 17-157, 1-44 and 117-1343 ng Sn g(-1) dry wt, respectively. And total organotins varied in the range of 181 to 1125, 23 to 44 and 229 to 1402 ng Sn g(-1) dry wt, respectively. A positive correlation was found between TBT + TPT and total organotins in M. granulata (TBT + TPT = Total organotins x 1.01-110.79; R2=0.97; p<0.001). At the site of Dapaisha, total organotins in M. granulata was 10 times higher than in T. tuberosa (i.e. 242 versus 23 ng Sn g(-1) dry wt). No signs of imposex were found in T. tuberosa (a single site in two subsequent years) and in M. granulata (seven collection sites). The degree of imposex (RPS) of T. clavigera varied from 0.2 to 38.1%. The RPS indices from fishing harbors were not higher than from rocky shores and oyster culture sites. No correlation was found between RPS indices and concentrations of TBT + TPT or total organotins. M. granulata seemed to be insensitive to organotin pollution although organotins were also detected. Our results indicate that organotin pollution is wide spread in coastal waters of Taiwan and pollutants at least include butyltins and phenyltins. As a bioindicator species, T. clavigera is more appropriate than T. tuberosa and M. granulata to monitor organotin contamination.  相似文献   

9.
The highly toxic compound tributyltin (TBT) is the active agent in many effective antifouling paints. In 1988 the U.S. regulated its use in such paints. Sediments taken from four sites in Boston Harbor, MA., USA in the summer of 1990 were assayed for organotins. There was significantly less TBT at all sites in 1990 than there was in 1988. Dibutyltin (DBT) and monobutyltin (MBT), were also detected, confirming that TBT degradation occurs in the estuary. It is suggested that the decreases are due to biological and/or chemical mechanisms rather than to photochemical reactions or transport away from the sites on resuspended particulate matter.  相似文献   

10.
Widespread use of tributyltin (TBT) poses a serious environmental problem. Adsorption by black carbon (BC) may strongly affect its behavior. The adsorption of TBT to well characterized soot and two charcoals with specific surface area in the range of 62-111 m2 g−1 have been investigated with main focus on pH effects. The charcoals but not soot possess acidic functional groups. TBT adsorption reaches maximum at pH 6-7 for charcoals, and at pH > 6 for soot. Soot has between 1.5 and 15 times higher adsorption density (0.09-1.77 μmol m−2) than charcoals, but charcoals show up to 17 times higher sorption affinities than soot. TBT adsorption is successfully described by a new pH-dependent dual Langmuir model considering electrostatic and hydrophobic adsorption, and pH effects on TBT speciation and BC surface charge. It is inferred that strong sorption of the TBTOH species to BC may affect TBT toxicity.  相似文献   

11.
Seedlings of Helianthus annuus L. (HA) and Brassica juncea (BJ) were used to test the effect of the pH, the presence of phosphates, and the addition of ethylene-diamine-tetraacetic acid (EDTA) or citrate on the uptake and the translocation of uranium isotopes ((238)U, (235)U, and (234)U) and (226)Ra. The results indicated that the presence of phosphates generally reduces the uptake and transfer of uranium from the roots to the shoots of HA. In the case of BJ, while phosphate enhanced the retention of uranium by roots, the translocation was poorer. Likewise, for (226)Ra, the best translocation was in the absence of phosphates for both species. The addition of citrate increased the translocation of uranium for both species, but had no clear effect on the transfer of (226)Ra. The effect of EDTA was much more moderate both for uranium and for (226)Ra, and for both plant species. Only noticeable was a slightly better uptake of (226)Ra by BJ at neutral pH, although the translocation was lower.  相似文献   

12.
Many polluted sites are typically characterized by contamination with multiple heavy metals, drought, salinity, and nutrient deficiencies. Here, an Australian native succulent halophytic plant species, Carpobrotus rossii (Haw.) Schwantes (Aizoaceae) was investigated to assess its tolerance and phytoextraction potential of Cd, Zn, and the combination of Cd and Zn, when plants were grown in soils spiked with various concentrations of Cd (20–320 mg kg?1 Cd), Zn (150–2,400 mg kg?1 Zn) or Cd + Zn (20?+?150, 40?+?300, 80?+?600 mg kg?1). The concentration of Cd in plant parts followed the order of roots > stems > leaves, resulting in Cd translocation factor (TF, concentration ratio of shoots to roots) less than one. In contrast, the concentration of Zn was in order of leaves > stems > roots, with a Zn TF greater than one. However, the amount of Cd and Zn were distributed more in leaves than in stems or roots, which was attributed to higher biomass of leaves than stems or roots. The critical value that causes 10 % shoot biomass reduction was 115 μg g?1 for Cd and 1,300 μg g?1 for Zn. The shoot Cd uptake per plant increased with increasing Cd addition while shoot Zn uptake peaked at 600 mg kg?1 Zn addition. The combined addition of Cd and Zn reduced biomass production more than Cd or Zn alone and significantly increased Cd concentration, but did not affect Zn concentration in plant parts. The results suggest that C. rossii is able to hyperaccumulate Cd and can be a promising candidate for phytoextraction of Cd from polluted soils.  相似文献   

13.
Occurrence of organotin compounds in house dust in Berlin (Germany)   总被引:1,自引:0,他引:1  
Fromme H  Mattulat A  Lahrz T  Rüden H 《Chemosphere》2005,58(10):1377-1383
In a study in the year 2000 on the occurrence of hazardous environmental contaminants house dust samples from 28 Berlin apartments were measured for the presence and concentrations of six organotin compounds, monobutyltin (MBT), dibutyltin (DBT), tributyltin (TBT), monooctyltin (MOT), dioctyltin (DOT) and triphenyltin (TPT). The concentrations of MBT and DBT determined ranged considerably from 0.01 mg kg-1 to 1.5 mg kg-1 (median: 0.05 mg kg-1) and 0.01 to 5.6 mg kg-1 (median: 0.03 mg kg-1), respectively. Maximum levels of TBT and MOT were only 0.08 mg kg-1 and 0.04 mg kg-1. The maximum total value of the organotins was 7.2 mg kg-1 (median: 0.11 mg kg-1). MBT was found in 86% and DBT in 82% of the samples above the limit of quantification, TBT and MOT only in 50% and DOT in 43%. The focus of ecotoxicology is on the risks arising from organotin compounds (especially butyltins) when used as biocides in antifouling paints. TBT acts as an endocrine disrupter in animals, inducing masculinization (imposex) in female gastropods of different species by increasing testosterone levels. The most critical organ site in experimental animals is the cellular immune system, where lymphocyte depletion in the thymus and peripheral lymphoid tissues takes place. Our study does not provide data on the basis of which population exposure could be estimated; house dust containing harmful organotins could, however, under some conditions, become a relevant intake possibility for young children.  相似文献   

14.
有机锡类化合物对环境生态和人类有很强内分泌毒性.其主要来源包括有机锡产品的生产和消耗、生物和化学甲基化效应.当前饮用水日益受到有机锡污染的严重威胁,主要原因有水源水的有机锡污染、PVC管材稳定剂的渗出和管网生物甲基化作用.通过分析提出解决饮用水有机锡问题应从3方面考虑,一是采用紫外光解或化学氧化处理受污染水源水,破坏水中有机锡化合物并消除其毒性;二是加强PVC管材质量要求,尽量采用低毒管材;三是定期更换给水管段以减少管网中生物甲基化导致的二次污染.  相似文献   

15.
As active ingredients of anti-fouling paints that are widely used on ship hulls, organotin compounds, in particular tributyltin (TBT), are well-known endocrine disruptors causing sex changes in marine organisms and widespread in coastal waters and sediments worldwide. In this study, a comprehensive ecological risk assessment (ERA) of organotins was conducted in Hong Kong waters through determining the imposex status, sex ratio and tissue burdens of these compounds in the neogastropods, Thais clavigera and Thais luteostoma collected from 29 coastal sites. We also investigated the historical trend of organotin effects on these gastropods, and performed a probabilistic ERA based on tissue burden of TBT in the animals. Our results demonstrated that imposex indices were positively correlated with the body burden of organotins in the gastropods. Across all sites, the sex ratio (female:male) decreased significantly with increasing imposex levels or tissue burden of organotins, implying that such pollutants can result in a male-biased population, potentially leading to local extinction in extreme cases. Based on the ERA, 5.4% of all populations of T. clavigera are at risk due to exposure to TBT; the risks include growth inhibition, impairment of immune functions and reduced fitness. Seriously impacted areas included Aberdeen, Repulse Bay, Butterfly Beach, Mui Wo and Ha Mei Wan. A comparison with historical data revealed that there had been some improvement in the areas with low marine traffic, and distant from the major harbour/port. This could partly be due to the restriction on the use of TBT on small vessels (<25m in length) since 1992. Nevertheless, the organotin contamination still remains severe in areas with high marine traffic or adjacent to large harbours/ports. In particular, the situation in the northeastern waters of Hong Kong has been getting worst since 1996 that is probably associated with the rapid development of the cargo container port at Yantian in China.  相似文献   

16.
Fritioff A  Greger M 《Chemosphere》2007,67(2):365-375
Elodea canadensis is a submersed macrophytes, widely distributed in stormwater treatment ponds and able to remove heavy metals from water. This study examines the Cd uptake, translocation, and efflux patterns in Elodea. Several experiments were set up in a climate chamber. To study the root and shoot Cd uptake, living and dead roots and shoots were treated with (109)Cd in one- and two-compartment systems. Furthermore, to examine Cd translocation and distribution, either roots or shoots were treated with (109)Cd. Finally, the efflux of Cd from roots and shoots, respectively, to the external solution was studied after loading whole plants with (109)Cd. Results from the two compartment studies show that Cd is accumulated via direct uptake by both roots and shoots of Elodea. The Cd accumulation proved not to be metabolically dependent in Elodea, and the apoplastic uptake in particular was decreased by Cd pretreatment. In one week, up to 23% of the root uptake was translocated to the shoots, while about 2% of the Cd accumulated by shoots was translocated to the roots. Thus, slight dispersion of Cd is possible, while metal immobilization will not be directly mediated via the Elodea plant. The efflux experiment proved that both shoots of dead plants and roots of living plants had a faster efflux than did shoots of living plants. This information is relevant for an understanding of the fate of Cd in stormwater treatment ponds with Elodea.  相似文献   

17.
The sorption behavior of dibutyltin (DBT) to four types of natural clay-rich sediments as a function of pH and salinity was studied. The strongest affinity of DBT was found to the montmorillonite-rich sediment, which is characterized by the highest specific surface area and cation exchange capacity of the four used sediments. Kd values range between 12 and 40 (l/kg) on simulated marine conditions (pH 8, salinity 32%). A maximum of DBT adsorption was found at a salinity of 0% and pH 6. Desorption occurred over the entire studied pH range (4-8) when contaminated sediments interact with butyltin-free water. The maximum of desorption coincided with the minimum of adsorption, and vice versa. The results of DBT adsorption are compared with tributyltin (TBT), and the mechanism of the adsorption process is discussed.  相似文献   

18.
The effects of several silicates (talcum powder (TP), calcium silicate (CS), sodium silicate (SS), and potassium silicate (PS)), in comparison with other amendments (quicklime (QL) and potassium dihydrogen phosphate (PDP)) on cadmium (Cd) uptake by three dicotyledonous crops (Amaranthus hypochondriacus L. Cv. ‘K112’, Amaranthus tricolor L., and Brassica oleracea var. albiflora Kuntze) were investigated in Cd–contaminated soil. The effects of both application methods of amendments (singly and combined) and timing of application were also evaluated. Sodium silicate was the most effective in reducing crop Cd uptake and translocation, which was diminished by 51 % in roots, 53 % in stems, and 72 % in leaves on average. Application of CS amendment showed greater efficiency than PDP amendment in decreasing Cd uptake by crops and resulted in increased biomass. Potassium silicate only slightly decreased shoot Cd concentration. Combination of PDP and SS was able to overcome the inhibitory effect of SS on crop yield while decreasing Cd concentrations in roots, stems and leaves of the tested crops by average rates of 52, 65, and 68 % respectively. Applications of SS and PS significantly reduced the root-to-shoot Cd transfer factor. We found that Si accumulation in crops was not associated with lower Cd concentration, indicating that Si in crops may play a major role in alleviating metal stress rather than inhibiting crop Cd accumulation. We suggested that the inhibitive effect of silicates on crops Cd uptake was majorly attributed to the properties of the silicates, those were their specific effects on soil pH and cations, which increased Cd adsorption by soil and suppressed Cd uptake from soil solution by increasing the relative dissolved concentrations of competing cations.  相似文献   

19.
Mercury in salt marshes ecosystems: Halimione portulacoides as biomonitor   总被引:1,自引:0,他引:1  
Mercury concentrations were quantified in Halimione portulacoides (roots, stems and leaves) as well as in sediments from eight Portuguese estuarine systems, covering seventeen salt marshes with distinct degrees of mercury contamination. The concentration of mercury in the sediments ranged from 0.03 to 17.0 microg g(-1). The results show that the accumulation of mercury differed according to the organ of the plant examined and the concentration of mercury in the sediments. Higher mercury concentrations were found in the roots (up to 12.9 microg g(-1)) followed by the leaves (up to 0.12 microg g(-1)), while the stems had the lowest concentrations (up to 0.056 microg g(-1)). A linear model explained the relation between the concentrations of mercury in the different plant organs: roots and stems (R(adj)(2)=0.75), stems and leaves (R(adj)(2)=0.85) and roots and leaves (R(adj)(2)=0.78). However, the results show that the variation of mercury concentration in the roots versus mercury concentration in the sediments was best fitted by a sigmoidal model (R(adj)(2)=0.89). Mercury accumulation in the roots can be described in three steps: at a low range of mercury concentrations in the sediments (from 0.03 up to 2 microg g(-1)), the accumulation of mercury in roots is also low reaching a maximum concentration of 1.3 microg g(-1); the highest rates of mercury accumulation in the roots occur in a second step, until the concentrations of mercury in the sediments reach approximately 4.5 microg g(-1); after reaching this maximum value, the rate of mercury accumulation in the roots slows down leading to a plateau in the concentration of mercury in the roots of about 9.4 microg g(-1), which corresponds to a mercury concentration in the sediments of about 11 microg g(-1). A linear model explained also the accumulation of mercury in leaves versus the mercury concentration in the sediments (R(adj)(2)=0.88). Differences in responses of roots and leaves are explained by the dynamics of the plant organs: old roots are mineralised in situ close to new roots, while leaves are renewed. Previous studies have already shown that H. portulacoides is a bioindicator for mercury and the results from this work sustain that H. portulacoides may also be used as a biomonitor for mercury contamination in salt marshes. Nevertheless, caution should be taken in the application of the models, concerning the life cycle of the species and the spatial variability of the systems.  相似文献   

20.
The effect of aging on the solid/pore-water partitioning and desorption behaviour of tributyltin (TBT) in sediments was examined. Three sediment samples with contrasting physical and chemical properties were spiked with 10 mg/kg TBT and aged under sterile conditions for periods of time ranging from 1 to 84 days. Aging had a negligible effect on partitioning and desorption behaviour in a sandy sample with very low organic carbon content (0.2% w/w). In contrast, for samples with larger amounts of organic carbon (2.6% and 4.8% w/w), aging caused substantial increases in TBT sorption. For these samples, apparent distribution coefficients (KD,app) obtained from sequential 2 h desorption experiments also exhibited a twofold increase between spiked sediments subjected to aging for 1 day and 84 days. This study demonstrates that aging effects may be an important aspect of TBT fate in contaminated sediments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号