首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
This discussion explores the possibility of having a measure of the biodegradable organic carbon content in solid wastes. Currently, indirect measures for determining the concentration of biodegradable organic matter are being used and most of them are based on respiration indices (oxygen consumption or carbon dioxide production) or chemical parameters (volatile solids or total organic carbon). The results obtained for the cumulative carbon dioxide production in composting experiments can be expressed as "aerobic biodegradable carbon" for the wastes that were studied. The calculation of a useful biodegradable C/N can also be obtained from the aerobic biodegradable carbon content. A comparison with some results obtained in measuring the concentration of "anaerobic biodegradable carbon" also is presented.  相似文献   

2.
This response follows on from a recent discussion by Sánchez (2009) on test methods to aid in the evaluation of the diversion of biodegradable municipal waste (BMW) from landfill. Test methods to assess the biodegradability/biodegradable content of organic waste are of great interest across Europe for different purposes, such as landfill acceptance criteria, monitoring treatment facility performance and for monitoring the diversion of biodegradable municipal waste (BMW) from landfill. Many studies have recently attempted to correlate short-term test methods with long-term anaerobic test methods. This response discusses recent findings and conclusions made by Sánchez (2009) and describes recent work undertaken at Cranfield University to develop the enzymatic hydrolysis test (EHT) method. The EHT has previously shown potential as a short-term, non-biological, biodegradability assessment tool, however there is a requirement to further develop this test method. We conclude that aerobic and anaerobic biological test methods are not the only suitable methods of assessing waste treatment process performance; and that alternative methods such as EHT are feasible and potentially suitable.  相似文献   

3.
Municipal solid waste (MSW) landfills worldwide are experiencing the consequences of conventional landfilling techniques, whereby anaerobic conditions are created within the landfilled waste. Under anaerobic conditions within a landfill site slow stabilization of the waste mass occurs, producing methane, (an explosive 'green house' gas) and leachate (which can pollute groundwater) over long periods of time. As a potential solution, it was demonstrated that the aerobic degradation of MSW within a landfill can significantly increase the rate of waste decomposition and settlement, decrease the methane production and leachate leaving the system, and potentially increase the operational life of the site. Readily integrated into the existing landfill infrastructure, this approach can safely and cost-effectively convert a MSW landfill from anaerobic to aerobic degradation processes, thereby effectively composting much of the organic portions (one of the potentially polluting elements in a conventional landfill site) of the waste. This paper summarizes the successful results of two separate aerobic landfill projects located in Georgia (USA) and discusses the potential economic and environmental impacts to worldwide solid waste management practices.  相似文献   

4.
Stable isotopic signatures of landfill leachates are influenced by processes within municipal solid waste (MSW) landfills mainly depending on the aerobic/anaerobic phase of the landfill. We investigated the isotopic signatures of δ13C, δ2H and δ18O of different leachates from lab-scale experiments, lysimeter experiments and a landfill under in situ aeration. In the laboratory, columns filled with MSW of different age and reactivity were percolated under aerobic and anaerobic conditions. In landfill simulation reactors, waste of a 25 year old landfill was kept under aerobic and anaerobic conditions. The lysimeter facility was filled with mechanically shredded fresh waste. After starting of the methane production the waste in the lysimeter containments was aerated in situ. Leachate and gas composition were monitored continuously. In addition the seepage water of an old landfill was collected and analysed periodically before and during an in situ aeration.We found significant differences in the δ13C-value of the dissolved inorganic carbon (δ13C-DIC) of the leachate between aerobic and anaerobic waste material. During aerobic degradation, the signature of δ13C-DIC was mainly dependent on the isotopic composition of the organic matter in the waste, resulting in a δ13C-DIC of ?20‰ to ?25‰. The production of methane under anaerobic conditions caused an increase in δ13C-DIC up to values of +10‰ and higher depending on the actual reactivity of the MSW. During aeration of a landfill the aerobic degradation of the remaining organic matter caused a decrease to a δ13C-DIC of about ?20‰. Therefore carbon isotope analysis in leachates and groundwater can be used for tracing the oxidation–reduction status of MSW landfills.Our results indicate that monitoring of stable isotopic signatures of landfill leachates over a longer time period (e.g. during in situ aeration) is a powerful and cost-effective tool for characterising the biodegradability and stability of the organic matter in landfilled municipal solid waste and can be used for monitoring the progress of in situ aeration.  相似文献   

5.
To evaluate carbonization as a thermal pretreatment method for landfilling, the releasing characteristics of organic and inorganic constituents from carbonization residue derived from shredded residue of bulky waste was investigated by means of batch and column leaching tests. Shredded residue of bulky waste itself and its incineration ash were tested together to compare pretreatment methods. In batch leaching tests at a liquid/solid ratio of 10, the release of organic carbon from carbonization residue was at a remarkably low level. Besides, carbonization contributed to immobilize heavy metals such as chromium, cadmium, and lead within its residue. In column tests, the discharges of organic constituents were lowest from carbonization residue under aerobic conditions due to microbial activity. The leaching of Cd, Cr, Pb, and Cu from carbonization residue was suppressed under anaerobic conditions; however, this suppression effect tended to be weaker under aerobic conditions. From the results showing that the total releasing amounts of organic and inorganic constituents from carbonization residue are so low as to be comparable to that of incineration ash, carbonization can be considered as one of the thermal pretreatment methods of organic wastes.  相似文献   

6.
Results of investigations from many old landfills in Germany and Europe indicate that significant emissions occur under conventional landfill operating conditions (i.e., anaerobic conditions). Significant emissions via the gas phase are predicted to last at least three decades after landfill closure, while leachate emissions are predicted to continue for many decades, potentially even lasting for centuries. When considering the specific type and quality, and quite often lack of, protection barriers associated with old landfills, these leachate and gas emissions may result in a significant negative impact on the environment. However, complete sealing of the landfill only temporarily reduces emissions because dry-conservation of the biodegradable waste fraction results, thus not allowing any severe reduction in the emission and hazardous potential of the landfill to occur. If noticeable damage of the surface capping system occurred in these landfills, infiltrating water would restart the interrupted emission formation. In contrast, aerobic in situ stabilization by means of low pressure aeration attempts to stabilize and modify the inventory of organic matter inside the landfill, acting to reduce the emission potential in a more sustainable manner. By enabling faster and more extensive aerobic degradation processes in the landfill (compared with anaerobic processes), the organics (e.g., hydrocarbons) are degraded significantly faster, resulting in an increased carbon discharge via the gas phase, as well as reduced leachate concentrations. Because carbon dioxide (CO(2)) is the main compound in the extracted off-gas (instead of methane (CH(4)), which dominated under anaerobic landfill conditions), the negative impact of diffuse LFG emissions towards an increased global warming effect may be significantly lowered. With respect to leachate quality, a reduction of organic compounds as well as ammonia-nitrogen can be expected. In addition to these positive ecological effects, aerobic in situ stabilization is associated with significant cost savings potential due to both quantitative and qualitative reductions in the aftercare period. This paper describes the fundamental processes and implications of in situ landfill aeration. Additionally, possible criteria for defining an endpoint of the active aeration process are presented and discussed.  相似文献   

7.
The objective of this study was to evaluate a new alternative for yard waste management by constructing, operating and monitoring a landfill-based two-stage batch digester (anaerobic/aerobic) with the recovery of energy and compost. The system was initially operated under anaerobic conditions for 366 days, after which the yard waste was aerated for an additional 191 days. Off gas generated from the aerobic stage was treated by biofilters. Net energy recovery was 84.3MWh, or 46kWh per million metric tons of wet waste (as received), and the biochemical methane potential of the treated waste decreased by 83% during the two-stage operation. The average removal efficiencies of volatile organic compounds and non-methane organic compounds in the biofilters were 96-99% and 68-99%, respectively.  相似文献   

8.
Polyhydroxyalkanoates (PHAs) are energy/carbon storage materials accumulated under unfavorable growth condition in the presence of excess carbon source. PHAs are attracting much attention as substitute for non-degradable petrochemically derived plastics because of their similar material properties to conventional plastics and complete biodegradability under natural environment upon disposal. In this paper, PHA production and degradation in waste environment as well as its role in biological phosphorus removal are reviewed. In biological phosphorus removal process, bacteria accumulating polyphosphate (poly P) uptake carbon substrates and accumulate these as PHA by utilizing energy from breaking down poly P under anaerobic condition. In the following aerobic condition, accumulated PHA is utilized for energy generation and for the regeneration of poly P. PHA production from waste has been investigated in order to utilize abundant organic compounds in waste water. Since PHA content and PHA productivity that can be obtained are rather low, PHA production from waste product should be considered as a coupled process for reducing the amount of organic waste. PHAs can be rapidly degraded to completion in municipal anaerobic sludge by various microorganisms. ©  相似文献   

9.
We utilize life cycle assessment to trace conversion of degradable organic carbon (DOC) contained in organic waste from city markets in Da Nang, Vietnam. Our methodology makes explicit the process of conversion of DOC under aerobic and anaerobic conditions, as well as the balance of nutrients. Greenhouse gas emissions were calculated for six alternative scenarios: (i) anaerobic landfilling (current situation); (ii) semi-aerobic landfilling; (iii) landfill gas capture; (iv) composting; (v) pre-composting before landfill; and (vi) biogas production. We calculate that 1 t of waste in anaerobic landfilling emits 1.70 t CO2-eq. with life-cycle perspective. Lowest emission occurs in biogas scenario with 0.26 t CO2-eq./t. Composting occupies an intermediate position with 0.39 t CO2-eq./t. Likewise, we estimate that cost of emission reduction in solid waste sector of Vietnam is 15.13 US$/t CO2-eq., given by alternative of composting and taking anaerobic landfilling as reference. On the other hand, if social cost of carbon (SCC) is incorporated lowest cost to treat 1 t of waste is given by composting and semi-aerobic landfilling at discount rate of 5 %. However, using lower discount rates, and consequently higher values of SCC, composting and biogas production become the alternatives with lowest treatment costs.  相似文献   

10.
Leaching tests on flue gas ashes from waste incineration showed low leaching of Cr from ashes that under moist anaerobic conditions also produced hydrogen gas. In some cases, also the redox levels (aerobic/anaerobic conditions) during the leaching test affected Cr leaching. Aerobic ashes tested in an open batch leaching test leached Cr up to 2-3 orders of magnitude more than the ashes kept moist under anaerobic conditions and tested in a closed leaching test. Model experiments showed that metallic Al could reduce Cr and at the same time produce H(2). The hydrogen gas per se could not reduce Cr. Laboratory experiments with ashes provided evidence that metallic Al, present naturally in the ashes or amended, could reduce Cr under moist anaerobic, but not under aerobic storage. Significant Cr reduction was linked to, but not caused by hydrogen formation. The reduced Cr seemed to be partially reoxidizable upon aeration or drying. The observations presented provide a basis for understanding the complexity of Cr leaching from waste incineration ashes, as for example, why some chemical stabilization methods increase Cr leaching, and point out the need for standardizing leaching test conditions with respect to Cr.  相似文献   

11.
Control of GHG emission at the microbial community level   总被引:1,自引:0,他引:1  
All organic material eventually is decomposed by microorganisms, and considerable amounts of C and N end up as gaseous metabolites. The emissions of greenhouse relevant gases like carbon dioxide, methane and nitrous oxides largely depend on physico-chemical conditions like substrate quality or the redox potential of the habitat. Manipulating these conditions has a great potential for reducing greenhouse gas emissions. Such options are known from farm and waste management, as well as from wastewater treatment. In this paper examples are given how greenhouse gas production might be reduced by regulating microbial processes. Biogas production from manure, organic wastes, and landfills are given as examples how methanisation may be used to save fossil fuel. Methane oxidation, on the other hand, might alleviate the problem of methane already produced, or the conversion of aerobic wastewater treatment to anaerobic nitrogen elimination through the anaerobic ammonium oxidation process might reduce N2O release to the atmosphere. Changing the diet of ruminants, altering soil water potentials or a change of waste collection systems are other measures that affect microbial activities and that might contribute to a reduction of carbon dioxide equivalents being emitted to the atmosphere.  相似文献   

12.
Waste settlement in bioreactor landfill models   总被引:2,自引:0,他引:2  
Prediction of landfill settlement is one of the important parameters that affects the design and maintenance of bioreactor landfills. Due to the large number of variables involved in the settlement mechanism, accurate prediction of landfill settlement is a real challenge. The operational protocol of a landfill, the presence of municipal sludge from treatment plants, the addition of soybean peroxidase (SBP) enzymes, and the fraction of organic matter in the municipal solid waste (MSW) have to be reflected in the parameters of any model used to predict the settlement of MSW. In this work, a biodegradation-induced settlement model incorporating two parameters (A and B) was developed. The settlement data of two researchers were used to estimate the parameter values with two different approaches; the first considered the overall experiment and results, and the second separated the aerobic phase, if present, from the anaerobic phase. The rate of initial settlement occurring under aerobic conditions has been greater than that under anaerobic conditions. Parameters increased with the increase in the concentration of enzymes and with the presence of sludge in both aerobic and anaerobic stages. Increasing organic content of MSW has resulted in the enhancement of the biodegradation rate and settlement. This has been reflected on the higher values of the parameters compared to their values in the absence of organic waste.  相似文献   

13.
Emissions from old landfills via leachate and the gas phase are influenced by state and stability of the organic matter in the solid waste and by environmental conditions within the landfill. Remediation of landfills by means of in-situ aeration is one possibility to reduce these emissions. By establishing aerobic conditions, biological processes in the landfill are accelerated. To investigate the effects of this remediation technology, lab-scale experiments with column tests have been carried out. The main goal of the present work is to characterize the changes of the carbon and nitrogen compounds in the aerated solid waste, the leachate and the gas phase under varying conditions. The results demonstrate a clear reduction of emissions and a stabilization of the organic matter. Furthermore, it is shown that both the intensity of aeration and the amount of water affect biological processes to a certain extent. Even when columns were operated under anaerobic conditions after a long running period of aeration, the emissions remained low.  相似文献   

14.
In this study a combined anaerobic/aerobic full-scale treatment plant designed for the treatment of the source-separated organic fraction of municipal solid waste (OFMSW) was monitored over a period of one year. During this period, full information was collected about the waste input material, the biogas production, the main rejects and the compost characteristics. The plant includes mechanical pre-treatment, dry thermophilic anaerobic digestion, tunnel composting system and a curing phase to produce compost. To perform the monitoring of the entire plant and the individual steps, traditional chemical methods were used but they present important limitations in determining the critical points and the efficiency of the stabilization of the organic matter. Respiration indices (dynamic and cumulative) allowed for the quantitative calculation of the efficiency of each treatment unit. The mass balance was calculated and expressed in terms of Mgy(-1) of wet (total) matter, carbon, nitrogen and phosphorus. Results show that during the pre-treatment step about 32% of the initial wet matter is rejected without any treatment. This also reduces the biodegradability of the organic matter that continues to the treatment process. About 50% of the initial nitrogen and 86.4% of the initial phosphorus are found in the final compost. The final compost also achieves a high level of stabilization with a dynamic respiration index of 0.3±0.1g O(2) per kg of total solids per hour, which implies a reduction of 93% from that of the raw OFMSW, without considering the losses of biodegradable organic matter in the refuse (32% of the total input). The anaerobic digestion process is the main contributor to this stabilization.  相似文献   

15.
Mineralization potentials are often used to classify organic wastes. These methods involve measuring CO2 production during batch experiments, so variations in chemical compounds are not addressed. Moreover, the physicochemical conditions are not monitored during the reactions. The present study was designed to address these deficiencies. Incubations of a mixture of soil and waste (vinasse at 20% dry matter from a fermentation industry) were conducted in aerobic and anaerobic conditions, and liquid samples obtained by centrifugation were collected at 2 h, 1 d and 28 d. Dissolved organic carbon (DOC) patterns highlighted that: there was a “soil effect” which increased organic matter (OM) degradation in all conditions compared to vinasse incubated alone; and OM degradation was faster under aerobic conditions since 500 mg kg?1 of C remained after aerobic incubation, as compared to 4000 mg kg?1 at the end of the anaerobic incubation period. No changes were detected by Fourier transform infrared spectroscopy (FTIR) between 2 h and 1 d incubation. At 28 days incubation, the FTIR signal of the aerobic samples was deeply modified, thus confirming the high OM degradation. Under anaerobic conditions, the main polysaccharide contributions (ν(C–O)) disappeared at 1000 and 1200 cm?1, as also confirmed by the 13C NMR findings. Under aerobic incubation, a 50% decrease in the polysaccharide proportion was observed. Under anaerobic conditions, significant chemical modifications of the organic fraction were detected, namely formation of low molecular weight organic acids.  相似文献   

16.
A wide range of waste characterization methods are available, each developed for a specific purpose such as determining compost stability, or for landfill acceptance criteria. Here test methods have been evaluated for the purpose of assessing waste treatment process performance and monitoring the diversion of biodegradable municipal waste (BMW) from landfill. The suitability factors include the timescale of the method, applicability to a wide range of materials and ability to indicate the long-term biodegradability of organic waste samples. The anaerobic test methods, whilst producing reliable results, take at least several weeks to complete, therefore, not allowing for regular routine analysis often required for diversion assessments. Short-term tests are required which can correlate with, and, therefore, estimate, values obtained from long-term anaerobic methods. Aerobic test methods were found to offer a significantly improved timescale compared with anaerobic test methods; however, they have limitations due to not measuring the full extent of sample biodegradability. No single test method was found to be completely sufficient for routine biodegradability analysis suitable for monitoring the BMW diversion from landfill. Potential areas for further research include spectrographic FT-IR or enzyme-based approaches such as the ECD or EHT methods.  相似文献   

17.
The biodegradability and the biodegradation rate of two kinds biodegradable polymers; poly(caprolactone) (PCL)-starch blend and poly(butylene succinate) (PBS), were investigated under both aerobic and anaerobic conditions. PCL-starch blend was easily degraded, with 88% biodegradability in 44 days under aerobic conditions, and showed a biodegradation rate of 0.07 day−1, whereas the biodegradability of PBS was only 31% in 80 days under the same conditions, with a biodegradation rate of 0.01 day−1. Anaerobic bacteria degraded well PCL-starch blend (i.e., 83% biodegradability for 139 days); however, its biodegradation rate was relatively slow (6.1 mL CH4/g-VS day) compared to that of cellulose (13.5 mL CH4/g-VS day), which was used as a reference material. The PBS was barely degraded under anaerobic conditions, with only 2% biodegradability in 100 days. These results were consistent with the visual changes and FE-SEM images of the two biodegradable polymers after the landfill burial test, showing that only PCL-starch blend had various sized pinholes on the surface due to attack by microorganisms. This result may be use in deciding suitable final disposal approaches of different types of biodegradable polymers in the future.  相似文献   

18.
The aim of the present study was to investigate the efficiency in physical pretreatment processes of source-separated solid organic household waste. The investigation of seventeen Swedish full-scale pretreatment facilities, currently receiving separately collected food waste from household for subsequent anaerobic digestion, shows that problems with the quality of produced biomass and high maintenance costs are common. Four full-scale physical pretreatment plants, three using screwpress technology and one using dispergation technology, were compared in relation to resource efficiency, losses of nitrogen and potential methane production from biodegradable matter as well as the ratio of unwanted materials in produced biomass intended for wet anaerobic digestion. Refuse generated in the processes represent 13–39% of TS in incoming wet waste. The methane yield from these fractions corresponds to 14–36 Nm3/ton separately collected solid organic household waste. Also, 13–32% of N-tot in incoming food waste is found in refuse. Losses of both biodegradable material and nutrients were larger in the three facilities using screwpress technology compared to the facility using dispersion technology.1 Thus, there are large potentials for increase of both the methane yield and nutrient recovery from separately collected solid organic household waste through increased efficiency in facilities for physical pretreatment. Improved pretreatment processes could thereby increase the overall environmental benefits from anaerobic digestion as a treatment alternative for solid organic household waste.  相似文献   

19.
Odor pollution caused by municipal solid waste (MSW) treatment plants has become a growing public concern. Although aerobic pretreatment of MSW has advantages in accelerating landfill stabilization, the property of non-methane organic compound (NMOC) emissions from aerobically pretreated MSW (APMSW) during landfilling is unknown. To investigate NMOC emissions from anaerobic degradation of APMSW and to study the impact of organic compositions of APMSW and their decomposition stages, five simulative anaerobic bioreactors (R1-R5) were filled up with APMSW of different original organic compositions in a laboratory. For NMOC analysis, samples were collected from the gas that accumulated separately during two successive independent stages of the whole experiment. The results showed that the cumulative quantities of NMOCs from R1 to R5 were 1.11, 0.30, 0.18, 0.28, and 0.31 mg/kg DM, respectively, when volatile solid was degraded by 34.8-47.2%. As the organic content of the original waste was lower, the proportion of NMOCs generated in the early stage of anaerobic degradation became higher. Multiple linear regression analyses of the relationship between the quantities of degraded organics and generated NMOCs showed that lipid and protein have a strong effect on NMOC amount. The effect of lipid on NMOC quantity lasts longer than that of protein. This observation suggests that controlling the lipid and protein contents in MSW can reduce the odor from landfills.  相似文献   

20.
A study was conducted on two types of plastic materials, Mater-Bi Novamont (MB) and Environmental Product Inc. (EPI), to assess their biodegradability under aerobic and anaerobic conditions. For aerobic conditions, organic fractions of municipal solid wastes were composted. For the anaerobic process, anaerobic inoculum from a wastewater treatment plant was used. Cellulose filter papers (CFP) were used as a positive control for both mediums. The composting process was monitored in terms of temperature, moisture and volatile solids and the biodegradation of the samples were monitored in terms of mass loss. Monitoring results showed a biodegradation of 27.1% on a dry basis for MB plastic within a period of 72 days of composting. Biodegradability under an anaerobic environment was monitored in terms of biogas production. A cumulative methane gas production of 245ml was obtained for MB, which showed good degradation as compared to CFP (246.8ml). However, EPI plastic showed a cumulative methane value of 7.6ml for a period of 32 days, which was close to the blank (4.0ml). The EPI plastic did not biodegrade under either condition. The cumulative carbon dioxide evolution after 32 days was as follows: CFP 4.406cm(3), MB 2.198cm(3) and EPI 1.328cm(3). The cumulative level of CO(2) varying with time fitted sigmoid type curves with R(2) values of 0.996, 0.996 and 0.995 for CFP, MB and EPI, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号