首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this study, the combustion and pyrolysis processes of three sewage sludge were investigated. The sewage sludge came from three wastewater treatment plants.Proximate and ultimate analyses were performed. The thermal behaviour of studied sewage sludge was investigated by thermogravimetric analysis with mass spectrometry (TGA-MS). The samples were heated from ambient temperature to 800 °C at a constant rate 10 °C/min in air (combustion process) and argon flows (pyrolysis process). The thermal profiles presented in form of TG/DTG curves were comparable for studied sludges. All TG/DTG curves were divided into three stages. The main decomposition of sewage sludge during the combustion process took place in the range 180–580 °C with c.a. 70% mass loss. The pyrolysis process occurred in lower temperature but with less mass loss. The evolved gaseous products (H2, CH4, CO2, H2O) from the decomposition of sewage sludge were identified on-line.  相似文献   

2.
The chemical structure of liquid products of the pinewood sawdust (W) co-pyrolysis with polystyrene (PS) and polypropylene (PP) with and without the zinc chloride as an additive was investigated. The pyrolysis process was carried out at 450 °C with the heating rate of 5 °C/min. The yield of liquid products of pyrolysis was in the range of 37–91 wt% and their form was liquid or semi-solid depending on the composition of the wood/polymer blend. The zinc chloride addition to wood/polymer blends has influenced the range of samples decomposition as well as the chemical structure of resulted bio-oils. All bio-oils from wood/polypropylene blends were two-phase (liquid and solid). Contrarily, all bio-oils obtained from biopolymer/polypropylene blends with zinc chloride added were yellow liquids. All analyses proved that the structure and the quality of bio-oil strongly depend on both the composition of the blend and the presence of ZnCl2 as an additive. The FT-IR analyses of oils showed that oxygen-containing groups and hydrocarbons content highly depend on the composition of biomass/synthetic polymer mixture. The fractionation of bio-oils by column chromatography with four different solvents was followed by GC–MS analysis. Results confirmed the significant removal and/or transformation of oxygen-containing organic compounds due to the zinc chloride presence during pyrolysis process.  相似文献   

3.
Cellulose/polyethylene (CPE) mixture 3:1, w/w with and without three clay catalysts (K10 – montmorillonite K10, KSF – montmorillonite KSF, B – Bentonite) addition were subjected to pyrolysis at temperatures 400, 450 and 500 °C with heating rate of 100 °C/s to produce bio-oil with high yield. The pyrolytic oil yield was in the range of 41.3–79.5 wt% depending on the temperature, the type and the amount of catalyst. The non-catalytic fast pyrolysis at 500 °C gives the highest yield of bio-oil (79.5 wt%). The higher temperature of catalytic pyrolysis of cellulose/polyethylene mixture the higher yield of bio-oil is. Contrarily, increasing amount of montmorillonite results in significant, almost linear decrease in bio-oil yield followed by a significant increase of gas yield. The addition of clay catalysts to CPE mixture has a various influence on the distribution of bio-oil components. The addition of montmorillonite K10 to cellulose/polyethylene mixture promotes the deepest conversion of polyethylene and cellulose. Additionally, more saturated than unsaturated hydrocarbons are present in resultant bio-oils. The proportion of liquid hydrocarbons is the highest when a montmorillonite K10 is acting as a catalyst.  相似文献   

4.
Pyrolysis of sewage sludge was studied in a free-fall reactor at 1000–1400 °C. The results showed that the volatile matter in the sludge could be completely released to gaseous product at 1300 °C. The high temperature was in favor of H2 and CO in the produced gas. However, the low heating value (LHV) of the gas decreased from 15.68 MJ/N m3 to 9.10 MJ/N m3 with temperature increasing from 1000 °C to 1400 °C. The obtained residual solid was characterized by high ash content. The energy balance indicated that the most heating value in the sludge was in the gaseous product.  相似文献   

5.
A promising strategy for effectively incorporating metal-containing waste materials into a variety of ceramic products was devised in this study. Elemental analysis confirmed that copper was the predominant metal component in the collected electroplating sludge, and aluminum was the predominant constituent of waterworks sludge collected in Hong Kong. The use of waterworks sludge as an aluminum-rich precursor material to facilitate copper stabilization under thermal conditions provides a promising waste-to-resource strategy. When sintering the mixture of copper sludge and the 900 °C calcined waterworks sludge, the CuAl2O4 spinel phase was first detected at 650 °C and became the predominant product phase at temperatures higher than 850 °C. Quantification of the XRD pattern using the Rietveld refinement method revealed that the weight of the CuAl2O4 spinel phase reached over 50% at 850 °C. The strong signals of the CuAl2O4 phase continued until the temperature reached 1150 °C, and further sintering initiated the generation of the other copper-hosting phases (CuAlO2, Cu2O, and CuO). The copper stabilization effect was evaluated by the copper leachability of the CuAl2O4 and CuO via the prolonged leaching experiments at a pH value of 4.9. The leaching results showed that the CuAl2O4 phase was superior to the CuAlO2 and CuO phases for immobilizing hazardous copper over longer leaching periods. The findings clearly indicate that spinel formation is the most crucial metal stabilization mechanism when sintering multiphase copper sludge with aluminum-rich waterworks sludge, and suggest a promising and reliable technique for reusing both types of sludge waste for ceramic materials.  相似文献   

6.
The objective of this work is the study of pyrolysis as a feedstock recycling process, for valorizing the rejected streams that come from industrial plants, where packing and packaging wastes are classified and separated for their subsequent mechanical recycling. Four real samples collected from an industrial plant at four different times of the year, have been pyrolysed under nitrogen in a 3.5 dm3 autoclave at 500 °C for 30 min. Pyrolysis liquids are a complex mixture of organic compounds containing valuable chemicals as styrene, ethyl-benzene, toluene, etc. Pyrolysis solids are composed of the inorganic material contained in the raw materials, as well as of some char formed in the pyrolysis process, and pyrolysis gases are mainly composed of hydrocarbons together with some CO and CO2, and have very high gross calorific values (GCV).It has been proved by the authors that the composition of the raw material (paper, film, and metals contents) plays a significant role in the characteristics of pyrolysis products. High paper content yields water in the pyrolysis liquids, and CO and CO2 in the gases, high PE film content gives rise to high viscosity liquids, and high metals content yields more aromatics in the liquid products, which may be attributed to the metals catalytic effect.  相似文献   

7.
Environment-friendly treatment of sewage sludge has become tremendously important. Conversion of sewage sludge into energy products by environment-friendly conversion process, with its energy recovery and environmental benefits, is being paid significant attention. Direct liquefaction of sewage sludge into bio-oils with supercritical water (SCW) was therefore put forward in this study, as de-water usually requiring intensive energy input is not necessary in this direct liquefaction. Supercritical water may act as a strong solvent and also a reactant, as well as catalyst promoting reaction process. Experiments were carried out in a self designed high-pressure reaction system with varying operating conditions. Through orthogonal experiments, it was found that temperature and residence time dominated on bio-oil yield compared with other operating parameters. Temperature from 350 to 500 °C and reaction residence time of 0, 30, 60 min were accordingly investigated in details, respectively. Under supercritical conversion, the maximum bio-oil yield could achieve 39.73%, which was performed at 375 °C and 0 min reaction residence time. Meanwhile, function of supercritical water was concluded. Fuel property analysis showed the potential of bio-oil application as crude fuel.  相似文献   

8.
Pyrolysis and steam gasification of woody biomass chip (WBC) obtained from construction and demolition wastes, refuse-derived fuel (RDF), and refuse paper and plastic fuel (RPF) were performed at various temperatures using a lab-scale instrument. The gas, liquid, and solid products were examined to determine their generation amounts, properties, and the carbon balance between raw material and products.The amount of product gas and its hydrogen concentration showed a considerable difference depending on pyrolysis and steam gasification at higher temperature. The reaction of steam and solid product, char, contributed to an increase in gas amount and hydrogen concentration. The amount of liquid products generated greatly depended on temperature rather than pyrolysis or steam gasification. The compositions of liquid product varied relying on raw materials used at 500 °C but the polycyclic aromatic hydrocarbons became the major compounds at 900 °C irrespective of the raw materials used. Almost fixed carbon (FC) of raw materials remained as solid products under pyrolysis condition whereas FC started to decompose at 700 °C under steam gasification condition.For WBC, both char utilization by pyrolysis at low temperature (500 °C) and syngas recovery by steam gasification at higher temperature (900 °C) might be practical options. From the results of carbon balance of RDF and RPF, it was confirmed that the carbon conversion to liquid products conspicuously increased as the amount of plastic increased in the raw material. To recover feedstock from RPF, pyrolysis for oil recovery at low temperature (500 °C) might be one of viable options. Steam gasification at 900 °C could be an option but the method of tar reforming (e.g. catalyst utilization) should be considered.  相似文献   

9.
Many Chinese biogas plants run in the lower range of mesophilic conditions. This study evaluated the performance of a completely stirred anaerobic reactor treating pig manure at different temperatures (20, 28 and 38 °C). The start-up phase of the reactor at 20 °C was very long and extremely poor performance was observed with increasing organic loading rate (OLR). At an OLR of 4.3 g ODM L?1 d?1, methane production at 28 °C was comparable (3% less) with that at 38 °C, but the risk of acidification was high at 28 °C. At low OLR (1.3 g ODM L?1 d?1), the biogas process appeared stable at 28 °C and gave same methane yields as compared to the reactor operating at 38 °C. The estimated sludge yield at 28 °C was 0.065 g VSS g?1 CODremoved, which was higher than that at 38 °C (0.016 g VSS g?1 CODremoved).  相似文献   

10.
In this paper rejected streams coming from a waste packaging material recovery facility have been characterized and separated into families of products of similar nature in order to determine the influence of different types of ingredients in the products obtained in the pyrolysis process. The pyrolysis experiments have been carried out in a non-stirred batch 3.5 dm3 reactor, swept with 1 L min?1 N2, at 500 °C for 30 min. Pyrolysis liquids are composed of an organic phase and an aqueous phase. The aqueous phase is greater as higher is the cellulosic material content in the sample. The organic phase contains valuable chemicals as styrene, ethylbenzene and toluene, and has high heating value (HHV) (33–40 MJ kg?1). Therefore they could be used as alternative fuels for heat and power generation and as a source of valuable chemicals. Pyrolysis gases are mainly composed of hydrocarbons but contain high amounts of CO and CO2; their HHV is in the range of 18–46 MJ kg?1. The amount of COCO2 increases, and consequently HHV decreases as higher is the cellulosic content of the waste. Pyrolysis solids are mainly composed of inorganics and char formed in the process. The cellulosic materials lower the quality of the pyrolysis liquids and gases, and increase the production of char.  相似文献   

11.
Several animal (lamb, poultry and swine) fatty wastes were pyrolyzed under nitrogen, in a laboratory scale fixed-bed reactor and the main products (liquid bio-oil, solid bio-char and syngas) were obtained. The purpose of this study is to produce and characterize bio-oil and bio-char obtained from pyrolysis of animal fatty wastes. The maximum production of bio-oil was achieved at a pyrolysis temperature of 500 °C and a heating rate of 5 °C/min. The chemical (GC–MS analyses) and spectroscopic analyses (FTIR analyses) of bio-oil showed that it is a complex mixture consisting of different classes of organic compounds, i.e., hydrocarbons (alkanes, alkenes, cyclic compounds…etc.), carboxylic acids, aldehydes, ketones, esters,…etc. According to fuel properties, produced bio-oils showed good properties, suitable for its use as an engine fuel or as a potential source for synthetic fuels and chemical feedstock. Obtained bio-chars had low carbon content and high ash content which make them unattractive for as renewable source energy.  相似文献   

12.
To simulate the substrate degradation kinetics of the composting process, this paper develops a mathematical model with a first-order reaction assumption and heat/mass balance equations. A pilot-scale composting test with a mixture of sewage sludge and wheat straw was conducted in an insulated reactor. The BVS (biodegradable volatile solids) degradation process, matrix mass, MC (moisture content), DM (dry matter) and VS (volatile solid) were simulated numerically by the model and experimental data. The numerical simulation offered a method for simulating k (the first-order rate constant) and estimating k20 (the first-order rate constant at 20 °C). After comparison with experimental values, the relative error of the simulation value of the mass of the compost at maturity was 0.22%, MC 2.9%, DM 4.9% and VS 5.2%, which mean that the simulation is a good fit. The k of sewage sludge was simulated, and k20, k20s (first-order rate coefficient of slow fraction of BVS at 20 °C) of the sewage sludge were estimated as 0.082 and 0.015 d?1, respectively.  相似文献   

13.
Based on the physical and chemical properties as well as calorific values of pulp sludge and textile sludge, this study investigates the differences between manufacturability, relationship between extrusion pressure and formability, as well as stability and combustion behaviors of extruded sludge-derived fuel briquettes (ESBB) and cemented sludge-derived fuel blocks (CSBB). The optimum proportion and relevant usage ESBB policies are proposed as well. Experimental results indicate that a large amount of water can be saved during the ESBB manufacturing process. Additionally, energy consumption decreases during the drying process. ESBB also has a more compact structure than that of CSBB, and its mean penetration loading is approximately 18.7 times higher as well. Moreover, the flame temperature of ESBB (624–968 °C) is significantly higher than that of CSBB (393–517 °C). Also, the dry bulk density and moisture regain of ESBB is significantly related to the penetration loading. Furthermore, the optimum mix proportion of ESBB is co-determined by the formability of pulp sludge and the calorific values of textile sludge. While considering the specific conditions (including formability, stability and calorific values), the recommended mix proportion for ESBB is PS50TS50.  相似文献   

14.
A new method to simplify calculation the kinetics model is applied to sewage sludge pyrolysis based on the assumption that volatile run out as soon as it formed and during temperature arising process in this study. Difference method widely used to solve math problems is conducted to calculate kinetics parameters. Pyrolysis experiments are carried out at heating rates of 10, 15, 20, and 50 °C/min. All the TG curves are divided into three parts which are beginning decomposition temperature range, main decomposition temperature range, and final decomposition temperature range. The second one is employed to determine the parameters for more than 70% of the total mass loss occurs in this range. According to the developed method, the react order, reaction energy and pre-exponential factor are obtained, which are in the range of 3.9–4.1, 82.3–109.2 kJ/mol and 7.7 × 106–2.8 × 109/min, respectively, which are in the range of that reported previously. As a comparison experimental data with calculated data, the well fitting results indicate that this method is appropriate for simulating sludge pyrolysis kinetics.  相似文献   

15.
The treatment and disposal of sewage sludge are significant environmental problems in China. The reuse of sewage sludge for fuel could be an effective solution. The aim of this study was to characterize the behavior of sludge-derived fuel during combustion by a thermogravimetric method. The combustion profiles obtained showed four obvious weight loss regions. The results of dynamics analysis showed that first-order reactions together with Arrhenius’ law explained reasonably well the different stages of weight loss in the samples. Three temperature regions (162–327 °C, 367–445 °C, and 559–653 °C for sawdust and 162–286 °C, 343–532 °C, and 609–653 °C for coal) in each derivative thermogravimetry (DTG) curve corresponded well with the Arrhenius equation. The reactivity of sludge was lower than that of samples containing sawdust, but higher than that of coal-containing samples. These data demonstrate that sludge-derived fuel has better combustion characteristics than sludge, sawdust, or coal.  相似文献   

16.
Potato peel waste (PPW) as zero value byproduct generated from food processing plant contains a large quantity of starch, non-starch polysaccharide, lignin, protein, and lipid. PPW as one promising carbon source can be managed and utilized to value added bioproducts through a simple fermentation process using undefined mixed cultures inoculated from wastewater treatment plant sludge. A series of non-pH controlled batch fermentations under different conditions such as pretreatment process, enzymatic hydrolysis, temperature, and solids loading were studied. Lactic acid (LA) was the major product, followed by acetic acid (AA) and ethanol under fermentation conditions without the presence of added hydrolytic enzymes. The maximum yields of LA, AA, and ethanol were respectively, 0.22 g g?1, 0.06 g g?1, and 0.05 g g?1. The highest LA concentration of 14.7 g L?1 was obtained from a bioreactor with initial solids loading of 60 g L?1 at 35 °C.  相似文献   

17.
By thermogravimetric analysis (TGA) study, the characteristics of oxygen-enriched air combustion of paper mill sludge were investigated. Experiments on oxidative of paper mill sludge were performed under different atmospheres at 20 °C/min. There are two distinct decomposition processes were observed from the obtained thermogravimetric curves. One of them centered on 320–350 °C with a weight loss of 50%, the second centered on 780–795 °C with a weight of loss 30%. Shift of oxygen concentration have some influences on decomposition processes, and then the processes of paper mill sludge combustion in oxygen-enriched air can be divided into three stages. The kinetic parameters observed by direct non-linear regressions. At the fixed carbon combustion stage, when oxygen concentration from 20 to 80 vol.%, the apparent activation energy is increased from 52.30 to 123.16 kJ/mol, the reaction order of all runs are around 1.  相似文献   

18.
This paper investigates the potential of converting sewage sludge into a useful product, namely carboxylic acids. To potentially enhance acid yields, the effect of pretreatment using 0.3 g lime/g dry biomass and water at 100 °C for 10–240 min was studied. The pretreated sludges were anaerobically fermented to mixed-acids using a mixed culture of microorganisms; methanogens were suppressed using iodoform. Batch fermentations were performed at 55 °C using ammonium bicarbonate buffer. The first batch experiments compared treated and untreated sludge as the only substrate. The second batch experiments used a mixture of sludge plus lime-treated bagasse (20:80 by weight). Analysis of liquor shows that the pretreatment were effective in solubilizing constituent compounds of sewage sludge. Nitrogen content and carboxylic acids increased with increasing pretreatment time. However, the soluble sugars peaked at 60 min, and then decreased with longer pretreatment time, showing that the solubilised sugars were undergoing intermolecular reactions, such as Maillard reactions. Fermentation experiments were a good indicator of the biodegradability of the pretreated sludges. Results clearly showed that lime-treating sludge, using even the minimum pretreatment time (10 min), negatively impacted acid production. The likely causes of this observation are attributed to the production of recalcitrant complexes and toxic compounds. Batch fermentation of untreated sludge yielded 0.34 g total acids/g VS fed, whereas sludge with 240-min lime pretreatment yielded only 0.20 g total acids/g VS fed. Co-fermentation of untreated sludge with pretreated bagasse gave a yield of 0.23 g total acids/g VS fed.  相似文献   

19.
Time domain reflectometry (TDR) is a prospective measurement technology for moisture content of sewage sludge composting material; however, a significant dependence upon temperature has been observed. The objective of this study was to assess the impacts of temperature upon moisture content measurement and determine if TDR could be used to monitor moisture content in sewage sludge compost across a range of temperatures. We also investigated the combined effects of temperature and conductivity on moisture content measurement. The results revealed that the moisture content of composting material could be determined by TDR using coated probes, even when the measured material had a moisture content of 0.581 cm3 cm?3, temperature of 70 °C and conductivity of 4.32 mS cm?1. TDR probes were calibrated as a function of dielectric properties that included temperature effects. When the bulk temperature varied from 20 °C to 70 °C, composting material with 0.10–0.70 cm3 cm?3 moisture content could be measured by TDR using coated probes, and calibrations based on different temperatures minimized the errors.  相似文献   

20.
This study investigated the recovery of oil from waste grease through the process of thermal degradation in an aqueous solution of potassium hydroxide (KOH) followed by solvent extraction. Waste high temperature metal bearing grease was dissolved in a 15 w/w% KOH solution at 80 °C while being agitated at 2000 rpm using a shear action agitator for a period of 15 min. Two distinct layers were observed after 8 min of settling time. The top layer being of dark brown oil and the bottom layer was a heterogeneous mixture. The two layers were separated by decantation. The bottom layer was cooled down to 45 °C followed by slow addition of toluene (C7H8) while agitating at 1200 rpm for 15 min to prevent solids settling and minimise rapid volatilisation of the organic compounds in the mixture. Two distinct layers were also formed, the top homogeneous mixture of light brown oil–toluene mixture and the bottom sludge layer. The solvent was recovered from the oil for re-use by fractional distillation of the homogenous mixture. It was observed that 15 w/w% potassium hydroxide solution can chemically degrade the soap matrix in the grease and extract up to 49 w/w% of the fuel oil when subjected to high shear stress at a temperature of 80 °C. The 26 w/w% extraction of oil in the remaining sludge was obtained by solvent extraction process with mass ratios of sludge to solvent of 2:1. Solvent recovery of 88% by mass was obtained via fractional distillation method. The combined extraction processes brought an overall oil yield of 75 w/w% from the waste grease. The fuel oil obtained from this process has similar properties to paraffin oil and can be blended with other oils as an alternative energy source.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号