首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cellulose/polyethylene (CPE) mixture 3:1, w/w with and without three clay catalysts (K10 – montmorillonite K10, KSF – montmorillonite KSF, B – Bentonite) addition were subjected to pyrolysis at temperatures 400, 450 and 500 °C with heating rate of 100 °C/s to produce bio-oil with high yield. The pyrolytic oil yield was in the range of 41.3–79.5 wt% depending on the temperature, the type and the amount of catalyst. The non-catalytic fast pyrolysis at 500 °C gives the highest yield of bio-oil (79.5 wt%). The higher temperature of catalytic pyrolysis of cellulose/polyethylene mixture the higher yield of bio-oil is. Contrarily, increasing amount of montmorillonite results in significant, almost linear decrease in bio-oil yield followed by a significant increase of gas yield. The addition of clay catalysts to CPE mixture has a various influence on the distribution of bio-oil components. The addition of montmorillonite K10 to cellulose/polyethylene mixture promotes the deepest conversion of polyethylene and cellulose. Additionally, more saturated than unsaturated hydrocarbons are present in resultant bio-oils. The proportion of liquid hydrocarbons is the highest when a montmorillonite K10 is acting as a catalyst.  相似文献   

2.
Poultry litter from broilers and turkeys are a mixture of manure, feathers, feed and wood shavings, thus pyrolysis oils produced from this material are influenced by the individual components. In order to determine the influence of wood shavings that are used as bedding material, we investigated the pyrolysis of pine wood shavings and poultry manure. Because manure from layer chickens are usually not contaminated with wood shavings, we made mixtures of layer manure and pine wood shavings in the following manure to wood ratios, 100:0, 75:25, 50:50, 25:75, and 0:100 w/w and pyrolyzed them in a fluidized bed reactor at 450 °C. The total liquid yield ranged from 43.3 to 62.7 wt.%. The layer manure oil had a HHV of 29.7 MJ/kg and pH of 5.89 compared to pine wood oil which had HHV of 25.6 MJ/kg and pH of 3.04. The addition of wood shavings to manure clearly influenced the physical properties of the oil, resulting in a decrease in pH and HHV and an increase in density. The oils had relatively high nitrogen content ranging from 1.36 to 5.88 wt.%. The ash (<0.07 wt.%) and sulfur (<0.28 wt.%) contents were very low. FTIR, 13C NMR and 1H NMR spectrometric analysis of the oils showed that manure oil was rich in hydrocarbons and nitrogenous compounds such as primary, secondary amides, aromatic amines and N-heterocyclic. The properties of the oils were strongly influenced by the amount of wood in the mixture.  相似文献   

3.
Paper sludge is a waste product from the paper and pulp manufacturing industry that is generally disposed of in landfills. Pyrolysis of paper sludge can potentially provide an option for managing this waste by thermal conversion to higher calorific value fuels, bio-gas, bio-oils and charcoal. This work investigates the properties of paper sludge during pyrolysis and energy required to perform thermal conversion. The products of paper sludge pyrolysis were also investigated to determine their properties and potential energy value. The dominant volatile species of paper sludge pyrolysis at 10 °C/min were found to be CO and CO2, contributing to almost 25% of the paper sludge dry weight loss at 500 °C. The hydrocarbons (CH4, C2H4, C2H6) and hydrogen contributed to only 1% of the total weight loss. The bio-oils collected at 500 °C were primarily comprised of organic acids with the major contribution being linoleic acid, 2,4-decadienal acid and oleic acid. The high acidic content indicates that in order to convert the paper sludge bio-oil to bio-diesel or petrochemicals, further upgrading would be necessary. The charcoal produced at 500 °C had a calorific value of 13.3 MJ/kg.  相似文献   

4.
In this research a gas–liquid fluidized bed reactor was developed for removing chlorine (Cl) from polyvinyl chloride (PVC) to favor its pyrolysis treatment. In order to efficiently remove Cl within a limited time before extensive generation of hydrocarbon products, the gas–liquid fluidized bed reactor was running at 280–320 °C, where hot N2 was used as fluidizing gas to fluidize the molten polymer, letting the molten polymer contact well with N2 to release Cl in form of HCl. Experimental results showed that dechlorination efficiency is mainly temperature dependent and 300 °C is a proper reaction temperature for efficient dechlorination within a limited time duration and for prevention of extensive pyrolysis; under this temperature 99.5% of Cl removal efficiency can be obtained within reaction time around 1 min after melting is completed as the flow rate of N2 gas was set around 0.47–0.85 Nm3 kg?1 for the molten PVC. Larger N2 flow rate and additives in PVC would enhance HCl release but did not change the final dechlorination efficiency; and excessive N2 flow rate should be avoided for prevention of polymer entrainment. HCl is emitted from PVC granules or scraps at the mean time they started to melt and the melting stage should be taken into consideration when design the gas–liquid fluidized bed reactor for dechlorination.  相似文献   

5.
Several animal (lamb, poultry and swine) fatty wastes were pyrolyzed under nitrogen, in a laboratory scale fixed-bed reactor and the main products (liquid bio-oil, solid bio-char and syngas) were obtained. The purpose of this study is to produce and characterize bio-oil and bio-char obtained from pyrolysis of animal fatty wastes. The maximum production of bio-oil was achieved at a pyrolysis temperature of 500 °C and a heating rate of 5 °C/min. The chemical (GC–MS analyses) and spectroscopic analyses (FTIR analyses) of bio-oil showed that it is a complex mixture consisting of different classes of organic compounds, i.e., hydrocarbons (alkanes, alkenes, cyclic compounds…etc.), carboxylic acids, aldehydes, ketones, esters,…etc. According to fuel properties, produced bio-oils showed good properties, suitable for its use as an engine fuel or as a potential source for synthetic fuels and chemical feedstock. Obtained bio-chars had low carbon content and high ash content which make them unattractive for as renewable source energy.  相似文献   

6.
The compositions of three WEEE plastic batches of different origin were investigated using infrared spectroscopy, and the metal content was determined with inductively coupled plasma. The composition analysis of the plastics was based mainly on 14 samples collected from a real waste stream, and showed that the major constituents were high impact polystyrene (42 wt%), acrylonitrile–butadiene–styrene copolymer (38 wt%) and polypropylene (10 wt%). Their respective standard deviations were 21.4%, 16.5% and 60.7%, indicating a considerable variation even within a single batch. The level of metal particle contamination was found to be low in all samples, whereas wood contamination and rubber contamination were found to be about 1 wt% each in most samples. In the metal content analysis, iron was detected at levels up to 700 ppm in the recyclable waste plastics fraction, which is of concern due to its potential to catalyse redox reactions during melt processing and thus accelerate the degradation of plastics during recycling. Toxic metals were found only at very low concentrations, with the exception of lead and cadmium which could be detected at 200 ppm and 70 ppm levels, respectively, but these values are below the current threshold limits of 1000 ppm and 100 ppm set by the Restriction of Hazardous Substances directive.  相似文献   

7.
This work was aimed at improving the pyrolysis oil quality of waste rubber by adding larch sawdust. Using a 1 kg/h stainless pyrolysis reactor, the contents of sawdust in rubber were gradually increased from 0%, 50%, 100% and 200% (wt%) during the pyrolysis process. Using a thermo-gravimetric (TG) analyzer coupled with Fourier transform infrared (FTIR) analysis of evolving products (TG–FTIR), the weight loss characteristics of the heat under different mixtures of sawdust/rubber were observed. Using the pyrolysis–gas chromatography (GC)–mass spectrometry (Py–GC/MS), the vapors from the pyrolysis processes were collected and the compositions of the vapors were examined. During the pyrolysis process, the recovery of the pyrolysis gas and its composition were measured in-situ at a reaction temperature of 450 °C and a retaining time of 1.2 s. The results indicated that the efficiency of pyrolysis was increased and the residual carbon was reduced as the percentage of sawdust increased. The adding of sawdust significantly improved the pyrolysis oil quality by reducing the polycyclic aromatic hydrocarbons (PAHs) and nitrogen and sulfur compounds contents, resulting in an improvement in the combustion efficiency of the pyrolysis oil.  相似文献   

8.
Pyrolysis and steam gasification of woody biomass chip (WBC) obtained from construction and demolition wastes, refuse-derived fuel (RDF), and refuse paper and plastic fuel (RPF) were performed at various temperatures using a lab-scale instrument. The gas, liquid, and solid products were examined to determine their generation amounts, properties, and the carbon balance between raw material and products.The amount of product gas and its hydrogen concentration showed a considerable difference depending on pyrolysis and steam gasification at higher temperature. The reaction of steam and solid product, char, contributed to an increase in gas amount and hydrogen concentration. The amount of liquid products generated greatly depended on temperature rather than pyrolysis or steam gasification. The compositions of liquid product varied relying on raw materials used at 500 °C but the polycyclic aromatic hydrocarbons became the major compounds at 900 °C irrespective of the raw materials used. Almost fixed carbon (FC) of raw materials remained as solid products under pyrolysis condition whereas FC started to decompose at 700 °C under steam gasification condition.For WBC, both char utilization by pyrolysis at low temperature (500 °C) and syngas recovery by steam gasification at higher temperature (900 °C) might be practical options. From the results of carbon balance of RDF and RPF, it was confirmed that the carbon conversion to liquid products conspicuously increased as the amount of plastic increased in the raw material. To recover feedstock from RPF, pyrolysis for oil recovery at low temperature (500 °C) might be one of viable options. Steam gasification at 900 °C could be an option but the method of tar reforming (e.g. catalyst utilization) should be considered.  相似文献   

9.
The safe and economical disposal of poultry litter is becoming a major problem for the USA poultry industry. Current disposal methods such as land application and feeding to cattle are now under pressure because of pollution of water resources due to leaching, runoffs and concern for mad cow disease contamination of the food chain. Incineration or combustion is potentially applicable to large scale operations, but for small scale growers and EPA non-attainment areas, this is not a suitable option because of the high cost of operation. Thus, there is a need for developing appropriate technologies to dispose poultry litter.Poultry litters from broiler chicken and turkey houses, as well as bedding material were converted into biocrude oil in a fast pyrolysis fluidized bed reactor. The biocrude oil yields were relatively low ranging from 36 wt% to 50 wt% depending on the age and bedding material content of the litter. The bedding material (which was mostly hardwood shavings) biocrude oil yield was 63 wt%. The higher heating value (HHV) of the poultry litter biocrude oils ranged from 26 MJ/kg to 29 MJ/kg while that of the bedding material was 24 MJ/kg. The oils had relatively high nitrogen content ranging from 4 wt% to 8 wt%, very low sulfur (<1 wt%) content and high viscosity. The viscosities of the oils appeared to be a function of both the source of litter and the pyrolysis temperature. The biochar yield ranged from 27 wt% to 40 wt% depending on the source, age and composition of the poultry litter. The biochar ash content ranged from 24 wt% to 54 wt% and was very rich in inorganic components such as potassium and phosphorous.  相似文献   

10.
The objective of this work is the study of pyrolysis as a feedstock recycling process, for valorizing the rejected streams that come from industrial plants, where packing and packaging wastes are classified and separated for their subsequent mechanical recycling. Four real samples collected from an industrial plant at four different times of the year, have been pyrolysed under nitrogen in a 3.5 dm3 autoclave at 500 °C for 30 min. Pyrolysis liquids are a complex mixture of organic compounds containing valuable chemicals as styrene, ethyl-benzene, toluene, etc. Pyrolysis solids are composed of the inorganic material contained in the raw materials, as well as of some char formed in the pyrolysis process, and pyrolysis gases are mainly composed of hydrocarbons together with some CO and CO2, and have very high gross calorific values (GCV).It has been proved by the authors that the composition of the raw material (paper, film, and metals contents) plays a significant role in the characteristics of pyrolysis products. High paper content yields water in the pyrolysis liquids, and CO and CO2 in the gases, high PE film content gives rise to high viscosity liquids, and high metals content yields more aromatics in the liquid products, which may be attributed to the metals catalytic effect.  相似文献   

11.
Extremely hot thermal plasma was used for the gasification of biomass (spruce sawdust, wood pellets) and waste (waste plastics, pyrolysis oil). The plasma was produced by a plasma torch with DC electric arc using unique hybrid stabilization. The torch input power of 100–110 kW and the mass flow rate of the gasified materials of tens kg/h was set up during experiments. Produced synthetic gas featured very high content of hydrogen and carbon monoxide (together approximately 90%) that is in a good agreement with theory. High quality of the produced gas is given by extreme parameters of used plasma – composition, very high temperature and low mass flow rate.  相似文献   

12.
The feasibility of the anaerobic treatment of an industrial polymer synthesis plant effluent was evaluated. The composition of the wastewater includes acrylates, styrene, detergents, a minor amount of silicates and a significant amount of ferric chloride. The average chemical oxygen demand (COD) corresponding is about 2000 mg/l. The anaerobic biodegradability of the effluent is shown and the toxicity effect on the populations of anaerobic bacteria is evaluated. The results of the anaerobic biodegradation assays show that 62% of the wastewater compounds, measured as COD, could be consumed. An upflow anaerobic sludge blanket (UASB) reactor was used in the evaluation, it has a diameter–height ratio of 1:7, and 4-liter volume. The inoculum was obtained from a UASB pilot plant that treats brewery wastewaters. At the beginning of the operation, the biomass showed an anaerobic activity of 0.58 gCOD/(gVSS×d), it decreased only 2.5% in the subsequent 4 months. After 35 days of continuous operation, the reactor was operated at different steady states for 140 days. The COD was maintained at 2200 mg/l in the feed. The results were: organic loading rate (OLR): 4.3 kg COD/(m3×d), hydraulic retention time: 12 h, superficial velocity: 1 m/h, average biogas productivity: 290 L CH4/kg COD fed, biogas composition: 70–75% methane and a COD removal percentage >75%. ©  相似文献   

13.
Compost sustainability requires a better control of its gaseous emissions responsible for several impacts including odours. Indeed, composting odours have stopped the operation of many platforms and prevented the installation of others. Accordingly, present technologies collecting and treating gases emitted from composting are not satisfactory and alternative solutions must be found. Thus, the aim of this paper was to study the influence of composting process conditions on gaseous emissions. Pig slaughterhouse sludge mixed with wood chips was composted under forced aeration in 300 L laboratory reactors. The process conditions studied were: aeration rate of 1.68, 4.03, 6.22, 9.80 and 13.44 L/h/kg of wet sludge; incorporation ratio of 0.55, 0.83 and 1.1 (kg of wet wood chips/kg of wet sludge), and; bulking agent particles size of <10, 10 < 20 and 20 < 30 mm. Out-going gases were sampled every 2 days and their composition was analysed using gas chromatography coupled with mass spectrometry (GC–MS). Fifty-nine compounds were identified and quantified. Dividing the cumulated mass production over 30 days of composting, by odour threshold, 9 compounds were identified as main potential odour contributors: hydrogen sulphide, trimethylamine, ammonia, 2-pentanone, 1-propanol-2-methyl, dimethyl sulphide, dimethyl disulphide, dimethyl trisulphide and acetophenone. Five gaseous compounds were correlated with both aeration rate and bulking agent to waste ratio: hydrogen sulphide, trimethylamine, ammonia, 2-pentanone and 1-propanol-2-methyl. However, dropping the aeration rate and increasing the bulking agent to waste ratio reduced gaseous odour emissions by a factor of 5–10, when the required threshold dilution factor ranged from 105 to 106, to avoid nuisance at peak emission rates. Process influence on emissions of dimethyl sulphide, dimethyl disulphide, dimethyl trisulphide were poorly correlated with both aeration rate and bulking agent to waste ratio as a reaction with hydrogen sulphide was suspected. Acetophenone emissions originated from the wood chips. Olfactory measurements need to be correlated to gaseous emissions for a more accurate odour emission evaluation.  相似文献   

14.
In this paper rejected streams coming from a waste packaging material recovery facility have been characterized and separated into families of products of similar nature in order to determine the influence of different types of ingredients in the products obtained in the pyrolysis process. The pyrolysis experiments have been carried out in a non-stirred batch 3.5 dm3 reactor, swept with 1 L min?1 N2, at 500 °C for 30 min. Pyrolysis liquids are composed of an organic phase and an aqueous phase. The aqueous phase is greater as higher is the cellulosic material content in the sample. The organic phase contains valuable chemicals as styrene, ethylbenzene and toluene, and has high heating value (HHV) (33–40 MJ kg?1). Therefore they could be used as alternative fuels for heat and power generation and as a source of valuable chemicals. Pyrolysis gases are mainly composed of hydrocarbons but contain high amounts of CO and CO2; their HHV is in the range of 18–46 MJ kg?1. The amount of COCO2 increases, and consequently HHV decreases as higher is the cellulosic content of the waste. Pyrolysis solids are mainly composed of inorganics and char formed in the process. The cellulosic materials lower the quality of the pyrolysis liquids and gases, and increase the production of char.  相似文献   

15.
Garden waste generation and composition were studied in Aarhus, Denmark. The amount of garden waste generated varied seasonally, from 2.5 kg person?1 month?1 in winter to 19.4 kg person?1 month?1 in summer. Seasonal fractional composition and chemical characterization of garden waste were determined by sorting and sampling garden waste eight times during 1 year. On a yearly basis, the major fraction of garden waste was “small stuff” (flowers, grass clippings, hedge cuttings and soil) making up more than 90% (wet waste distribution) during the summer. The woody fractions (branches, wood) are more significant during the winter. Seasonal trends in waste chemical composition were recorded and an average annual composition of garden waste was calculated, considering the varying monthly generation and material fraction composition: the wet garden waste contained 40% water, 30% organic matter (VS) and 30% ash. The ash content suggests that the garden waste contains a significant amount of soil. This is in particular the case during summer. Of nutrients, the garden waste contained in average on a dry matter basis 0.6% N, 0.1% P, and 1.0% K. However, the contents varied significantly among the fractions and during the year. The content of trace elements (Cd, Cr, Cu, Hg, Ni, Pb, and Zn) was low.  相似文献   

16.
A new method to simplify calculation the kinetics model is applied to sewage sludge pyrolysis based on the assumption that volatile run out as soon as it formed and during temperature arising process in this study. Difference method widely used to solve math problems is conducted to calculate kinetics parameters. Pyrolysis experiments are carried out at heating rates of 10, 15, 20, and 50 °C/min. All the TG curves are divided into three parts which are beginning decomposition temperature range, main decomposition temperature range, and final decomposition temperature range. The second one is employed to determine the parameters for more than 70% of the total mass loss occurs in this range. According to the developed method, the react order, reaction energy and pre-exponential factor are obtained, which are in the range of 3.9–4.1, 82.3–109.2 kJ/mol and 7.7 × 106–2.8 × 109/min, respectively, which are in the range of that reported previously. As a comparison experimental data with calculated data, the well fitting results indicate that this method is appropriate for simulating sludge pyrolysis kinetics.  相似文献   

17.
This work is focused on the recovery of yttrium and zinc from fluorescent powder of cathode ray tube (CRT). Metals are extracted by sulphuric acid in the presence of hydrogen peroxide. Leaching tests are carried out according to a 22 full factorial plan and the highest extraction yields for yttrium and zinc equal to 100% are observed under the following conditions: 3 M of sulphuric acid, 10% v/v of H2O2 concentrated solution at 30% v/v, 10% w/w pulp density, 70 °C and 3 h of reaction.Two series of precipitation tests for zinc are carried out: a 22 full factorial design and a completely randomized factorial design. In these series the factors investigated are pH of solution during the precipitation and the amount of sodium sulphide added to precipitate zinc sulphide. The data of these tests are used to describe two empirical mathematical models for zinc and yttrium precipitation yields by regression analysis. The highest precipitation yields for zinc are obtained under the following conditions: pH equal to 2–2.5% and 10–12% v/v of Na2S concentrated solution at 10% w/v. In these conditions the coprecipitation of yttrium is of 15–20%.Finally further yttrium precipitation experiments by oxalic acid on the residual solutions, after removing of zinc, show that yttrium could be recovered and calcined to obtain the final product as yttrium oxide. The achieved results allow to propose a CRT recycling process based on leaching of fluorescent powder from cathode ray tube and recovery of yttrium oxide after removing of zinc by precipitation. The final recovery of yttrium is 75–80%.  相似文献   

18.
This paper presents the results of a study on the effect of natural weathering on volume stability of bottom ash (BA) from municipal solid waste (MSW) and wood waste incineration. BA samples were taken at different steps of treatment (fresh, 4 weeks and 12 weeks aged) and then characterised for their chemical and mineralogical composition and for volume stability by means of the mineralogical test method (M HMVA-StB), which is part of the German quality control system for using aggregates in road construction (TL Gestein-StB 04). Changes of mineralogical composition with the proceeding of the weathering treatment were also monitored by leaching tests. At the end of the 12 weeks of treatment, almost all the considered samples resulted to be usable without restrictions in road construction with reference to the test parameter volume stability.  相似文献   

19.
In a urine diversion dry toilet (UDDT), the urine and faeces are collected separately in order to recycle their nutrient content unmixed. In a UDDT, an additive e.g. lime, wood ash, dry soil or sawdust, depending on which one is easily accessed by the users, is usually sprinkled to the faeces after each defecation. The purpose of the additive is primarily to keep away the flies and odours and to contribute to primary treatment of the faeces. In this paper, ash and sawdust were applied separately to source-separated faeces during the collection phase, and then the die-off of indicators and pathogens in the mixtures was studied. The die-off of E. coli in the faeces/ash mixture was faster initially (first 7 days) compared to that achieved in the faeces/sawdust mixture even though the die-off achieved after 30–50 days was nearly similar for both mixtures. E. coli was not detected in faeces/ash after about 2 months, but was detected after 2 months in the faeces/sawdust mixture. Enterococcus spp. did not decrease below detection in faeces/ash or faeces/sawdust mixture but higher numbers (difference of about 2 logs) were detected at all times in faeces/sawdust than in faeces/ash mixture. The difference in the die-off in the mixtures of faeces/ash and faeces/sawdust was attributed to the differences in the characteristics of the additives, namely, high alkaline mineral content (giving high pH) and lower moisture content of ash compared to sawdust. It is recommended to increase use of ash as additive over sawdust in urine diversion dry toilets.  相似文献   

20.
In this research, a two-step process consisting of vacuum pyrolysis and vacuum centrifugal separation was employed to treat waste printed circuit boards (WPCBs). Firstly, WPCBs were pyrolysed under vacuum condition at 600 °C for 30 min in a lab-scale reactor. Then, the obtained pyrolysis residue was heated under vacuum until the solder was melted, and then the molten solder was separated from the pyrolysis residue by the centrifugal force. The results of vacuum pyrolysis showed that the type-A of WPCBs (the base plates of which was made from cellulose paper reinforced phenolic resin) pyrolysed to form an average of 67.97 wt.% residue, 27.73 wt.% oil, and 4.30 wt.% gas; and pyrolysis of the type-B of WPCBs (the base plates of which was made from glass fiber reinforced epoxy resin) led to an average mass balance of 72.20 wt.% residue, 21.45 wt.% oil, and 6.35 wt.% gas. The results of vacuum centrifugal separation showed that the separation of solder was complete when the pyrolysis residue was heated at 400 °C, and the rotating drum was rotated at 1200 rpm for 10 min. The pyrolysis oil and gas can be used as fuel or chemical feedstock after treatment. The pyrolysis residue after solder separation contained various metals, glass fibers and other inorganic materials, which could be recycled for further processing. The recovered solder can be reused directly and it can also be a good resource of lead and tin for refining.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号