首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.

Trace metal element contamination in mining areas is always a huge environmental challenge for the global mining industry. In this study, an abandoned sphalerite mine near the Yanshan Mountains was selected as subject to evaluate the soil and water contamination caused by small-scale mining. The results show that (1) Pearson correlation matrix and principal component analysis (PCA) results reveal that Zn, Cu, Cd, and Pb were greatly affected by the operation of mines, especially mineral tailings. The contents of trace metal elements decrease with the increase of the distance from the mining area. Zinc, Pb, and Cd were discovered in almost all soil samples, and Zn accounted for about 80% of pollution of the topsoil. (2) The trace element pollution levels in the topsoil of the three villages were ranked as follows: Cd?>?Cu?>?Pb~Zn. The potential ecological risk of farmland around the mine ranges from lower to higher, with Cd being the most harmful. (3) Human health risk assessment results show that trace elements in the mining area pose obvious non-carcinogenic health risks to children while the risks to adults are not equally obvious. The carcinogenic risk of Cd and Cr is within a safe range and does not pose an obvious cancer risk to the population.

  相似文献   

2.

Papillary thyroid cancer (PTC) has inflicted huge threats to the health of mankind. Metal pollution could be a potential risk factor of PTC occurrence, but existing relevant epidemiological researches are limited. The current case-control study was designed to evaluate the relationships between exposure to multiple metals and the risk of PTC. A total of 262 histologically confirmed PTC cases were recruited. Age- and gender-matched controls were enrolled at the same time. Urine samples were used as biomarkers to reflect the levels of environmental exposure to 13 metals. Conditional logistic regression models were adopted to assess the potential association. Single-metal and multi-metal models were separately conducted to evaluate the impacts of single and co-exposure to 13 metals. The increased concentration of urinary Cd, Cu, Fe, and Pb quartiles was found significant correlated with PTC risk. We also found the decreased trends of urinary Se, Zn, and Mn quartiles with the ORs for PTC. These dose-response associations between Pb and PTC were observed in the single-metal model and remained significant in the multi-metal model (OR25-50th=1.39, OR50-75th=3.32, OR>75th=7.62, p for trend <0.001). Our study suggested that PTC was positively associated with urinary levels of Cd, Cu, Fe, Pb, and inversely associated with Se, Zn, and Mn. Targeted public health policies should be made to improve the environment and the recognition of potential risk factors. These findings need additional studies to confirm in other population.

  相似文献   

3.
Abstract

Contaminated soils can be a source for crop plants of such elements like As, Cd, Cr, Cu, Ni, Pb, and Zn. The excessive transfer of As, Cu, Ni, and Zn to the food chain is controlled by a “soil‐plant barrier”; however, for some elements, including Cd, the soil‐plant barrier fails. The level of Cd ingested by average person in USA is about 12 μg/day, which is relatively low comparing to Risk Reference Dose (70 μg Cd/day) established by USEPA. Food of plant origin is a main source of Cd intake by modern society. Fish and shellfish may be a dominant dietary sources of Hg for some human populations. About half of human Pb intake is through food, of which more than half originates from plants. Dietary intake of Cd and Pb may be increased by application of sludges on cropland with already high levels of these metals. Soils amended with sludges in the USA will be permitted (by USEPA‐503 regulations) to accumulate Cr, Cd, Cu, Pb, Hg, Ni, and Se, and Zn to levels from 10 to 100 times the present baseline concentrations. These levels are very permissive by international standards. Because of the limited supply of toxicity data obtained from metals applied in sewage sludge, predictions as to the new regulations will protect crop plants from metal toxicities, and food chain from contamination, are difficult to make.  相似文献   

4.
For the first time, the moss biomonitoring technique and inductively coupled plasma–atomic emission spectrometric (ICP-AES) analytical technique were applied to study multi-element atmospheric deposition in Albania. Moss samples (Hypnum cupressiforme) were collected during the summer of 2011 and September–October 2010 from 62 sites, evenly distributed over the country. Sampling was performed in accordance with the LRTAP Convention–ICP Vegetation protocol and sampling strategy of the European Programme on Biomonitoring of Heavy Metal Atmospheric Deposition. ICP-AES analysis made it possible to determine concentrations of 19 elements including key toxic metals such as Pb, Cd, As, and Cu. Cluster and factor analysis with varimax rotation was applied to distinguish elements mainly of anthropogenic origin from those predominantly originating from natural sources. Geographical distribution maps of the elements over the sampled territory were constructed using GIS technology. The median values of the elements in moss samples of Albania were high for Al, Cr, Ni, Fe, and V and low for Cd, Cu, and Zn compared to other European countries, but generally were of a similar level as some of the neighboring countries such as Bulgaria, Croatia, Kosovo, Macedonia, and Romania. This study was conducted in the framework of ICP Vegetation in order to provide a reliable assessment of air quality throughout Albania and to produce information needed for better identification of contamination sources and improving the potential for assessing environmental and health risks in Albania, associated with toxic metals.  相似文献   

5.
Based on a three compartment microcosm-water column, natural sediment,Hexagenia rigida nymphs-an experimental study was set up to compare cadmium (Cd) and methylmercury (MeHg) bioaccumulation by a burrowing mayfly species, after exposure via the water column or the sediment as initial contamination sources. Results from a wide concentration range for each exposure condition revealed very marked differences between the two metals: MeHg was readily accumulated from the two contamination sources, leading to important metal concentrations in the nymphs after the 2 weeks’ exposure; Cd bioaccumulation, on the other hand, was negligible when the metal was added to the water compartment, even though significant transfers were observed from the sediment source. The average Cd concentrations in the nymphs were proportional to the sediment contamination levels. Turbidity measurements in the water column, reflecting the bioturbation activity of the nymphs, revealed that the effect of Cd was significant, but only when the metal was initially added to the sediment. The results are discussed according to the uptake routes and the structural and functional properties of the biological barriers involved (gills and gut).  相似文献   

6.
More than 25 studies have employed land use regression (LUR) models to estimate nitrogen oxides and to a lesser extent particulate matter indicators, but these methods have been less commonly applied to ambient concentrations of volatile organic compounds (VOCs). Some VOCs have high plausibility as sources of health effects and others are specific indicators of motor vehicle exhaust. We used LUR models to estimate spatial variability of VOCs in Toronto, Canada. Benzene, n-hexane and total hydrocarbons (THC) were measured from July 25 to August 9, 2006 at 50 locations using the TraceAir organic vapor monitors. Nitrogen dioxide (NO2) was also sampled to assess its spatial pattern agreement with VOC exposures. Buffers for land use, population density, traffic density, physical geography, and remote sensing measures of greenness and surface brightness were also tested. The remote sensing measures have the highest correlations with VOCs and NO2 levels (i.e., explains >36% of the variance). Our regression models explain 66–68% of the variance in the spatial distribution of VOCs, compared to 81% for the NO2 model. The ranks of agreement between various VOCs range from 48 to 63% and increases substantially – up to 75% – for the top and bottom quartile groups. Agreements between NO2 and VOCs are much smaller with an average rank of 36%. Future epidemiologic studies may therefore benefit from using VOCs as potential toxic agents for traffic-related pollutants.  相似文献   

7.
Concentrations of some metals (Cd, Cu, As, Hg, Pb) and polychlorinated biphenyls (PCBs) were investigated in edible marine organisms from different trophic levels and feeding behaviour like bivalve molluscs (Mytilus galloprovincialis and Chlamys glabra), gastropod molluscs (Hexaplex trunculus) and some commercial species of fish (Trachurus trachurus, Boops boops, Sarpa salpa and Gobius niger). These species were collected in the first inlet of the Mar Piccolo of Taranto (Ionian Sea, Southern Italy), classified as ‘Site of National Interest’ established by National Law 426 (1998) and included in the ‘National Environmental Remediation and Restoration Projects’. The aim of this work was to investigate contamination levels and public health risks, associated with consuming seafood harvested from these areas. Moreover, in this study, was also estimated the weekly intake in children and adults, both for metals and PCBs. In comparison with the permissible limits set by EC Regulations, Cd and Pb levels were over the limit in the H. trunculus (in all sampling stations) and in the fish T. trachurus respectively. PCBs were over the legal limit in all sampled species with the exception of M. galloprovincialis (station 1), C. glabra and the herbivorous fish S. salpa. In the fish T. trachurus, for example, the concentration of six target PCBs was about five times higher than the EC limit. The estimated intakes of those trace elements included in this study through seafood consumption by the population exceed the provisional tolerable weekly intake recommended by the Joint FAO/WHO Expert Committee on Food Additives for Cd and Hg in the H. trunculus and T. trachurus, especially in children. Moreover, hazard quotience (HQ) for Hg and Cd was >1 in the children for T. trachurus and H. trunculus consumption. As regard non-dioxin-like PCB (NDL-PCB), the estimated intake were always above the ‘provisional guidance value’ (70 ng/kg body weight) Arnich et al. (Regul Toxicol Pharm 54: 287–2, 2009) for all sampled organism. Thus, health risks due to the dietary Hg, Cd and PCBs intake, especially for children, cannot be excluded. Therefore, an extended remediation programme is necessary to safeguard marine ecosystem, human health and, not less important, the economic activities, in the Taranto marine area.  相似文献   

8.

Background

Although breastfeeding is the ideal way of nurturing infants, it can be a source of exposure to toxicants. This study reports the concentration of Hg, Pb and Cd in breast milk from a sample of women drawn from the general population of the Madrid Region, and explores the association between metal levels and socio-demographic factors, lifestyle habits, diet and environmental exposures, including tobacco smoke, exposure at home and occupational exposures.

Methods

Breast milk was obtained from 100 women (20 mL) at around the third week postpartum. Pb, Cd and Hg levels were determined using Atomic Absorption Spectrometry. Metal levels were log-transformed due to non-normal distribution. Their association with the variables collected by questionnaire was assessed using linear regression models. Separate models were fitted for Hg, Pb and Cd, using univariate linear regression in a first step. Secondly, multivariate linear regression models were adjusted introducing potential confounders specific for each metal. Finally, a test for trend was performed in order to evaluate possible dose-response relationships between metal levels and changes in variables categories.

Results

Geometric mean Hg, Pb and Cd content in milk were 0.53 μg L−1, 15.56 μg L−1, and 1.31 μg L−1, respectively. Decreases in Hg levels in older women and in those with a previous history of pregnancies and lactations suggested clearance of this metal over lifetime, though differences were not statistically significant, probably due to limited sample size. Lead concentrations increased with greater exposure to motor vehicle traffic and higher potato consumption. Increased Cd levels were associated with type of lactation and tended to increase with tobacco smoking.

Conclusions

Surveillance for the presence of heavy metals in human milk is needed. Smoking and dietary habits are the main factors linked to heavy metal levels in breast milk. Our results reinforce the need to strengthen national food safety programs and to further promote avoidance of unhealthy behaviors such as smoking during pregnancy.  相似文献   

9.
A pot experiment was conducted to investigate the effects of selenium (Se) and hydrated lime (Lime), applied alone or simultaneously (Se+Lime), on growth and cadmium (Cd) uptake and translocation in rice seedlings grown in an acid soil with three levels of Cd (slight, mild, and moderate contamination). In the soil with 0.41 mg kg?1 Cd (slight Cd contamination), Se addition alone significantly decreased Cd accumulation in the root and shoot by 35.3 and 40.1%, respectively, but this tendency weakened when Cd level in the soil increased. However, Se+Lime treatment effectively reduced Cd accumulation in rice seedlings in the soil with higher Cd levels. The results also showed that Se application alone strongly increased Cd concentration in the iron plaque under slight Cd contamination, which was suggested as the main reason underlying the inhibition of Cd accumulation in rice seedlings. Se+Lime treatment also increased the ability of the iron plaques to restrict Cd uptake by rice seedlings across all Cd levels and dramatically decreased the available Cd concentration in the soil. These results suggest that Se application alone would be useful in the soil with low levels of Cd, and the effect would be enhanced when Se application is combined with hydrated lime at higher Cd levels.  相似文献   

10.

Trace element pollution in rivers by anthropogenic activities is an increasing problem worldwide. In this study, the contamination and ecological risk by several trace elements were evaluated along a 100-km stretch of the San Jorge River in Colombia, impacted by different mining activities. The increase of average concentration levels and range of trace elements in sediments (in μg/g) was as follows: Cu 6656 (454–69,702) > Cd 1159 (0.061–16,227) > Zn 1064 (102–13,483) > Ni 105 (31–686) > Pb 7.2 (5.1–11.7) > As 1.8 (1.0–3.2) > Hg 0.31 (0.12–1.37). Results showed that surface sediments could be classified as very high ecological risk index (RI > 600), associated with high contamination of Hg, Cd, and Cu, in stations close mining activities. Values for pollution load index indicate an environmental deterioration (PLI > 1), and sediment quality guidelines (SQGs) suggested that Cu, Ni, Zn, and Hg caused adverse biological effects. We further used pollution indices such as contamination factor (CF), enrichment factor (EF), and geoaccumulation index (Igeo) to assess the extent of contamination. According to these indices, discharges of hazardous chemicals over many years have resulted in a high degree of pollution for Cu, Pb, and Cd, with critical values in stations receiving wastes from mining activities. Multivariate statistical analysis suggested that Hg, Cd, Cu, and Zn derived from gold and coal mining, Ni and As were related from the mining of ferronickel and coal, respectively, whereas the high Pb load was attributed to diffuse source of pollution. In sum, our study provided the first detailed database on metal concentration and ecological risks to organisms in sediments of the San Jorge River Basin, and the current results also suggested future research for public health action.

  相似文献   

11.
The aim of this study was to determine the trace elements, Pb, Cd, and Cr in honey samples from eight different regions from the state of Paraná (Brazil), using slurry sampling graphite furnace atomic absorption spectrometry. Chemometric analysis (principal component analysis (PCA)) was applied to classify honey samples according to their levels of the trace elements Pb, Cd, and Cr, which is also related to the geographical origin of honey samples. The mean concentration for the elements followed the order Pb?>?Cr >?>?Cd. The mean values were 200?±?76, 88?±?14, and 4.1?±?4 ng g?1 for Pb, Cr, and Cd, respectively. It could be verified that honey samples are geographically separated, especially with regard to Pb and Cd contents. Thus, honey can be considered a bioindicator of environmental contamination, suggesting possible contamination in soil, water, and air. This contamination can be related to natural or anthropogenic sources present in the study regions.  相似文献   

12.

The levels of metals in sediments of urban river ecosystems are crucial for aquatic environmental health and pollution assessment. Yet little is known about the interaction of nutrients with metals for environmental risks under contamination accumulation. Here, we combined hierarchical cluster, correlation, and principal component analysis with structural equation model (SEM) to investigate the pollution level, source, toxicity risk, and interaction associated with metals and nutrients in the sediments of a river network in a city area of East China. The results showed that the pollution associated with metals in sediments was rated as moderate degree of contamination load and medium-high toxicity risk in the middle and downstream of urban rivers based on contamination factor, pollution load index, and environmental toxicity quotient. The concentration of mercury (Hg) and zinc (Zn) showed a significant correlation with toxic risks, which had more contribution to toxicity than other metals in the study area. Organic nitrogen and organic pollution index showed heavily polluted sediments in south of the study area. Though correlation analysis indicated that nutrients and metals had different input zones from anthropogenic sources in the urban river network, SEM suggested that nutrient accumulation indirectly intensified toxicity risk of metals by 13.6% in sediments. Therefore, we suggested the combined consideration of metal toxicity risk with nutrient accumulation, which may provide a comprehensive understanding to identify sediment pollution.

Toxicity rate of metals in sediments from urban river network indirectly intensified by nutrients accumulation

  相似文献   

13.
Wuli River, Cishan River, and Lianshan River are three freshwater rivers flowing through Huludao City, in a region of northeast China strongly affected by industrialization. Contamination assessment has never been conducted in a comprehensive way. For the first time, the contamination of three rivers impacted by different sources in the same city was compared. This work investigated the distribution and sources of Hg, Pb, Cd, Zn and Cu in the surface sediments of Wuli River, Cishan River, and Lianshan River, and assessed heavy metal toxicity risk with the application of two different sets of Sediment Quality Guideline (SQG) indices (effect range low/effect range median values, ERL/ERM; and threshold effect level/probable effect level, TEL/PEL). Furthermore, this study used a toxic unit approach to compare and gauge the individual and combined metal contamination for Hg, Pb, Cd, Zn and Cu. Results showed that Hg contamination in the sediments of Wuli River originated from previous sediment contamination of the chlor-alkali producing industry, and Pb, Cd, Zn and Cu contamination was mainly derived from atmospheric deposition and unknown small pollution sources. Heavy metal contamination to Cishan River sediments was mainly derived from Huludao Zinc Plant, while atmospheric deposition, sewage wastewater and unknown small pollution were the primary sources for Lianshan River. The potential acute toxicity in sediment of Wuli River may be primarily due to Hg contamination. Hg is the major toxicity contributor, accounting for 53.3-93.2%, 7.9-54.9% to total toxicity in Wuli River and Lianshan River, respectively, followed by Cd. In Cishan River, Cd is the major sediment toxicity contributor, however, accounting for 63.2-66.9% of total toxicity.  相似文献   

14.

We performed a systematic and meta-analysis study to find the association between cadmium (Cd) exposure and blood pressure (BP)/hypertension (HTN) in exposed general populations. We searched main databases for literature published between year 2000 and April 15, 2021. Quality assessment was performed with the Joanna Briggs Institute (JBI) critical appraisal tools. Heterogeneity between studies was determined by I-squared (I2) statistic. The random effects model was used to determine the association between blood and urine Cd levels with hypertension. The overall standard differences in mean for Cd level in hypertensive and control groups were 3.34, 1.79, and 8.09 based on samples from blood, urine, and hair, respectively. The overall standard differences in mean for Cd level in the low and high exposure groups were???0.795 and???1.036 based on blood and urinary samples, respectively. Our findings indicate a positive relationship between blood and hair Cd levels and hypertension. We also found that hair is the optimal biological sample to find the relationship between Cd exposure and hypertension for both genders. However, more studies are needed to confirm these findings.

  相似文献   

15.
Thirty six element signatures were compared in historical Parmelia sulcata samples from the Natural History Museum herbarium collected over the period 1797–1967 with those recorded in the same species and tree bark sampled in 2000 from Burnham Beeches, lying 40 km west of London. Nineteen elements reached highest concentrations in herbarium samples, consistent with a pollution legacy and dust contamination in the herbarium. Healthy Parmelia sampled east and down-wind of London at a farm during peak SO2 emissions in 1967 contained highest V, Ni, Zn, Cd, Se, Ge contents, supporting derivation from fuel combustion; the same sample was previously determined as having a low δ34S and high S and N contents. Lowest V, Co, Ni, Cu, Zn, Sn, Ba, Pb, Mo, Sb, Li, B, Cs, U, Th, Ga contents were recorded in a sample with a high δ34S and low S content collected in 1887 from a remote region from Ross-shire, Scotland. Se and Cd enrichment, never-the-less suggest a transboundary pollution influence. Lichen Pb concentrations from Burnham Beeches were amongst the lowest recorded in spite of lichens being collected close to roads. Herbarium samples help interpret changes in element deposition where few data exist, in spite of dust contamination.  相似文献   

16.
The phenomenon of mass occurrence of the lichen Cladonia rei in extremely contaminated post-smelting slag dumps was studied in relation to metal accumulation capacity of this lichen. The research was aimed to evaluate the relationships between element contents in the thalli and in the corresponding substrate. The study was conducted in terms of a wide spectrum of Zn, Cd, Pb and As contents. The concentrations of these elements in the lichen thalli and substrate samples were measured. Various regression models were considered to find the best fitted one that greatly reflects the dependencies. Various Cladonia species and the hyperaccumulator Diploschistes muscorum were also included in the study for comparison purposes. Specific non-linear regression models described by a power function reflected relationships between Zn and Cd contents in C. rei thalli and in the host substrate in the most reliable way. The relationship for As was also noted, but none significant model was found. Contrarily, Pb concentrations in the thalli varied independently of the metal levels in the substrate. Nevertheless, the concentrations of all measured heavy metals in C. rei thalli are relatively low considering the frequently enormous substrate contamination. Different Cladonia species demonstrated a generally similar accumulation capacity and could be considered as weak accumulators. The restrained accumulation pattern may be one of the important attributes of C. rei which facilitates its colonisation of extremely contaminated dumps. This finding highlights ecological importance of this species as stable and resistant pioneer in such affected sites.  相似文献   

17.

Exposure to a single metal has been reported to damage renal function in humans. However, information regarding the association between multiple-metal exposure and markers for early renal impairment in different sexes among the young adult Taiwanese population is scarce. We assessed the association between exposure to arsenic (As), cadmium (Cd), and lead (Pb), and early renal impairment markers using urinary microalbumin (MA), β2-microglobulin (β2MG), and N-acetyl-beta-D-glucosaminidase (NAG) by analyzing 157 young adults aged 20?29 years, in Taiwan. Inductively coupled plasma mass spectrometry was used to determine urinary As, Cd, and Pb levels. Regression models were applied to different sex groups. The results showed that after adjusting for potential confounding factors and each metal, urinary Cd levels were significantly positively associated with urinary MA (β?=?0.523, 95% CI: 0.147–0.899) and β2MG (β?=?1.502, 95% CI: 0.635–2.370) in males. However, the urinary Cd level was significantly positively associated with only urinary NAG (β?=?0.161, 95% CI: 0.027–0.296) in females. This study thus indicates that the effect of exposure to metals (especially Cd) on early renal impairment among young adults in Taiwan is sex-specific. Our study results could contribute toward developing early intervention programs for decreasing the incidence of renal dysfunction. Further studies are warranted to confirm our findings and clarify the potential mechanisms involved.

  相似文献   

18.
Biogas slurry is a product of anaerobic digestion of manure that has been widely used as a soil fertilizer. Although the use for soil fertilizer is a cost-effective solution, it has been found that repeated use of biogas slurry that contains high heavy metal contents can cause pollution to the soil-plant system and risk to human health. The objective of this study was to investigate effects of biogas slurry on the soil-plant system and the human health. We analyzed the heavy metal concentrations (including As, Pb, Cu, Zn, Cr and Cd) in 106 soil samples and 58 plant samples in a farmland amended with biogas slurry in Taihu basin, China. Based on the test results, we assessed the potential human health risk when biogas slurry containing heavy metals was used as a soil fertilizer. The test results indicated that the Cd and Pb concentrations in soils exceeded the contamination limits and Cd exhibited the highest soil-to-root migration potential. Among the 11 plants analyzed, Kalimeris indica had the highest heavy metal absorption capacity. The leafy vegetables showed higher uptake of heavy metals than non-leafy vegetables. The non-carcinogenic risks mainly resulted from As, Pb, Cd, Cu and Zn through plant ingestion exposure. The integrated carcinogenic risks were associated with Cr, As and Cd in which Cr showed the highest risk while Cd showed the lowest risk. Among all the heavy metals analyzed, As and Cd appeared to have a lifetime health threat, which thus should be attenuated during production of biogas slurry to mitigate the heavy metal contamination.  相似文献   

19.

Pollution of water bodies and sediments/soils by trace elements remains a global threat and a serious environmental hazard to biodiversity and human’s health. Globalization and industrialization resulted in the increase and availability of these substances in the environment posing unpredictable adverse effects to living organisms. To determine pollution status and risk contamination by trace elements, data available in the literature of the last 40 years on trace elements occurrence in three environmental matrices (water bodies, sediments/soils, and biota) from Continental Portugal were collected (about 90 studies). Data were compared to water and sediment quality guidelines to assess potential ecological risks. Most environmentally relevant hazardous elements include Zn, Cu, Cd, Pb, and As. Various studies found trace elements at levels higher than those considered safe by environmental guidelines. In surface waters, Al, Zn, Se, and Ag were found above aquatic life limits in about 60% of the reviewed papers, while Cu, Zn, and As exceed those values in more than 60% of mining waters. Hg and Cd in sediments from mining areas exceeded aquatic life limits and potential ecological risk showed extremely high risk for most of the elements. The data compiled in this review is very heterogenous, varying in terms of sampling schemes, trace elements analysed, and spatiotemporal settings. This heterogenicity leads to data differences that make meaningful comparisons difficult. Nevertheless, the compilation of scattered environmental spatial and temporal trace elements data, of either natural sources or human activity as well as the ultimate effect on biological systems, is of the upmost importance to broaden its knowledge, risk assessment, and implementation of mitigation measures.

  相似文献   

20.

Seasonal and regional distributions of 17 polycyclic aromatic hydrocarbons (PAHs) in surface waters from four different main water functional regions of the Baiyangdian Lake were analyzed through GC/MS/MS during spring and summer season. The aim was to identify their possible pollution sources and evaluate their health risk for human and ecotoxicological risk for aquatic organisms. Results showed that the range of total PAH concentration is 35.38–88.06 ng/L (average 46.57 ng/L) in spring and 25.64–301.41 ng/L (average 76.23 ng/L) in summer. PAH contamination was observed slightly lower in the summer season from the pollution characteristics of water bodies in most areas of the Baiyangdian Lake, and the levels of PAH pollution in the water body of urban residential regions and rural residential regions were relatively higher than those in tourist regions and low human disturbance regions. Source analysis based on diagnostic ratios confirmed that combustion sources and petroleum sources were two main sources for PAHs entering into the waters of the Baiyangdian Lake. Human health risk assessment showed that PAHs in surface waters from the Baiyangdian Lake will not cause a potential non-carcinogenic risk to local residents and the carcinogenic risk could mostly be accepted, but the potential lifetime carcinogenic risk for infants in rural residential regions should be concerned about. Urban residential regions and rural residential regions were subject to higher cumulative non-carcinogenic and carcinogenic risk when compared to the other functional regions. Ecotoxicological risk assessment found a moderate risk to aquatic organisms presented by individual PAH and a low risk by total PAHs, and PAHs in the water body of urban residential regions and rural residential regions also have relatively higher harm effects to aquatic organisms compared with the other two functional regions. This study revealed the pollution characteristics of PAHs and their possible sources in waters of the Baiyangdian Lake, clarified its correlation to regional anthropogenic activities, and provided corresponding risk management strategies for human and aquatic organisms.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号