首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Effective management of invasive species requires that we understand the mechanisms determining community invasibility. Successful invaders must tolerate abiotic conditions and overcome resistance from native species in invaded habitats. Biotic resistance to invasions may reflect the diversity, abundance, or identity of species in a community. Few studies, however, have examined the relative importance of abiotic and biotic factors determining community invasibility. In a greenhouse experiment, we simulated the abiotic and biotic gradients typically found in vernal pools to better understand their impacts on invasibility. Specifically, we invaded plant communities differing in richness, identity, and abundance of native plants (the "plant neighborhood") and depth of inundation to measure their effects on growth, reproduction, and survival of five exotic plant species. Inundation reduced growth, reproduction, and survival of the five exotic species more than did plant neighborhood. Inundation reduced survival of three species and growth and reproduction of all five species. Neighboring plants reduced growth and reproduction of three species but generally did not affect survival. Brassica rapa, Centaurea solstitialis, and Vicia villosa all suffered high mortality due to inundation but were generally unaffected by neighboring plants. In contrast, Hordeum marinum and Lolium multiflorum, whose survival was unaffected by inundation, were more impacted by neighboring plants. However, the four measures describing plant neighborhood differed in their effects. Neighbor abundance impacted growth and reproduction more than did neighbor richness or identity, with growth and reproduction generally decreasing with increasing density and mass of neighbors. Collectively, these results suggest that abiotic constraints play the dominant role in determining invasibility along vernal pool and similar gradients. By reducing survival, abiotic constraints allow only species with the appropriate morphological and physiological traits to invade. In contrast, biotic resistance reduces invasibility only in more benign environments and is best predicted by the abundance, rather than diversity, of neighbors. These results suggest that stressful environments are not likely to be invaded by most exotic species. However, species, such as H. marinum, that are able to invade these habitats require careful management, especially since these environments often harbor rare species and communities.  相似文献   

2.
Abstract: Changes in historical disturbance regimes have been shown to facilitate non-native plant invasions, but reinstatement of disturbance can be successful only if native colonizers are able to outcompete colonizing invasives. Reintroduction of flooding in the southwestern United States is being promoted as a means of reestablishing Populus deltoides subsp. wislizenii , but flooding can also promote establishment of an introduced, invasive species, Tamarix ramosissima . We investigated competition between Populus and Tamarix at the seedling stage to aid in characterizing the process by which Tamarix may invade and to determine the potential ability of Populus to establish itself with competitive pressure from Tamarix . We planted seedlings of Tamarix and Populus in five ratios at three densities for a total of 15 treatments. The growth response of each species was measured in terms of height, above-ground biomass, and tissue concentrations of nitrogen and phosphorous. These measurements across treatments were modeled as three-dimensional response surfaces. For both species, Populus density was more important than Tamarix density for determining growth response. Both species were negatively affected by increasing numbers of Populus seedlings. Due to the larger size of the native Populus , we predict that its superior competitive ability can lead to its dominance when conditions allow native establishment. Our results suggest that even in the presence of an invader that positively responds to disturbance, reestablishment of historical flooding regimes and post-flood hydrology can restore this ecosystem by promoting its dominant plant species.  相似文献   

3.
Facilitation across stress gradients: the importance of local adaptation   总被引:2,自引:0,他引:2  
Espeland EK  Rice KJ 《Ecology》2007,88(9):2404-2409
While there is some information on genetic variation in response to competition in plants, we know nothing about intraspecific variation in facilitation. Previous studies suggest that facilitation should increase fitness in stressful environments. However, whether a plant experiences an environment as stressful may depend on prior adaptive responses to stressors at a site. Local adaptation to stress at a site may reduce the likelihood of facilitation. Seeds of Plantago erecta from stressful (serpentine soil) and non-stressful (non-serpentine soil) edaphic environments were reciprocally planted into these two soil types. Although competition did not differ significantly among seed sources, there was evidence for a local adaptation effect on facilitation. Non-serpentine seeds planted into serpentine soil exhibited greater individual plant biomass at higher densities. The interaction between population source and growth environment indicates a role for evolutionary processes such as local adaptation in the expression of facilitation in plants.  相似文献   

4.
Carey MP  Wahl DH 《Ecology》2010,91(10):2965-2974
Aquatic communities have been altered by invasive species, with impacts on native biodiversity and ecosystem function. At the same time, native biodiversity may mitigate the effects of an invader. Common carp (Cyprinus carpio) is a ubiquitous, invasive fish species that strongly influences community and ecosystem processes. We used common carp to test whether the potential effects of an invasive species are altered across a range of species diversity in native communities. In mesocosms, treatments of zero, one, three, and six native fish species were used to represent the nested subset patterns observed in fish communities of lakes in Illinois, USA. The effect of the invader was tested across fish richness treatments by adding common carp to the native community and substituting native biomass with common carp. Native species and intraspecific effects reduced invader growth. The invader reduced native fish growth; however, the negative effect was minimized with increasing native richness. The zooplankton grazer community was modified by a top-down effect from the invader that increased the amount of phytoplankton. Neither the invader nor richness treatments influenced total phosphorus or community metabolism. Overall, the invader reduced resources for native species; and the effect scaled with how the invader was incorporated into the community. Higher native diversity mitigated the impact of the invader, confirming the need to consider biodiversity when predicting the impacts of invasive species.  相似文献   

5.
Guo H  Pennings SC 《Ecology》2012,93(1):90-100
Understanding of how plant communities are organized and will respond to global changes requires an understanding of how plant species respond to multiple environmental gradients. We examined the mechanisms mediating the distribution patterns of tidal marsh plants along an estuarine gradient in Georgia (USA) using a combination of field transplant experiments and monitoring. Our results could not be fully explained by the "competition-to-stress hypothesis" (the current paradigm explaining plant distributions across estuarine landscapes). This hypothesis states that the upstream limits of plant distributions are determined by competition, and the downstream limits by abiotic stress. We found that competition was generally strong in freshwater and brackish marshes, and that conditions in brackish and salt marshes were stressful to freshwater marsh plants, results consistent with the competition-to-stress hypothesis. Four other aspects of our results, however, were not explained by the competition-to-stress hypothesis. First, several halophytes found the freshwater habitat stressful and performed best (in the absence of competition) in brackish or salt marshes. Second, the upstream distribution of one species was determined by the combination of both abiotic and biotic (competition) factors. Third, marsh productivity (estimated by standing biomass) was a better predictor of relative biotic interaction intensity (RII) than was salinity or flooding, suggesting that productivity is a better indicator of plant stress than salinity or flooding gradients. Fourth, facilitation played a role in mediating the distribution patterns of some plants. Our results illustrate that even apparently simple abiotic gradients can encompass surprisingly complex processes mediating plant distributions.  相似文献   

6.
Herbivory limits recruitment in an old-field seed addition experiment   总被引:2,自引:0,他引:2  
MacDougall AS  Wilson SD 《Ecology》2007,88(5):1105-1111
Environmental variability can promote coexistence by creating establishment sites for rare plants, but low diversity in anthropogenic grasslands suggests that this variability may be eliminated (homogenization hypothesis) or inaccessible (barrier hypothesis). We explore these alternatives on the northern Great Plains, where 11 million hectares have been transformed by multiple environmental changes, but the causes of species loss are unclear. In a degraded grassland, we increased environmental variability by manipulating competition and herbivory along gradients of fertility and disturbance, and we circumvented dispersal barriers by adding 1.2 million seeds of five functionally distinct species at varying densities. The experiment ended after 12 weeks due to the direct and indirect effects of unapparent small native herbivores, which were barriers to population establishment by the added species. The direct cause of recruitment failure was browsing. The indirect cause was associated with competition from invasive plants that appeared to be more tolerant or resistant to herbivory. Variability in fertility, disturbance, propagule pressure, and competition had relatively minor impacts on colonization by the added species because herbivores controlled recruitment in most environments. Recruitment outside the herbivore exclosures was mostly by unpalatable exotics, suggesting a possible link between invasion success and herbivore resistance for some introduced plants.  相似文献   

7.
Brandt AJ  Seabloom EW 《Ecology》2012,93(6):1451-1462
The effects of exotic species invasions on biodiversity vary with spatial scale, and documentation of local-scale changes in biodiversity following invasion is generally lacking. Coupling long-term observations of local community dynamics with experiments to determine the role played by exotic species in recruitment limitation of native species would inform both our understanding of exotic impacts on natives at local scales and regional-scale management efforts to promote native persistence. We used field experimentation to quantify propagule and establishment limitation in a suite of native annual forbs in a California reserve, and compared these findings to species abundance trends within the same sites over the past 48 years. Observations at 11 paired sites (inside and outside the reserve) indicated that exotic annual plants have continued to increase in abundance over the past 48 years. This trend suggests the system has not reached equilibrium > 250 years after exotic species began to spread, and 70 years after livestock grazing ceased within the reserve. Long-term monitoring observations also indicated that six native annual forb species went extinct from more local populations than were colonized. To determine the potential role of exotic species in these native plant declines, we added seed of these species into plots adjacent to monitoring sites where plant litter and live grass competition were removed. Experimental results suggest both propagule and establishment limitation have contributed to local declines observed for these native forbs. Recruitment was highest at sites that had current or historical occurrences of the seeded species, and in plots where litter was removed. Grazing history (i.e., location within or outside the reserve) interacted with exotic competition removal, such that removal of live grass competition increased recruitment in more recently grazed sites. Abundance of forbs was positively related to recruitment, while abundance of exotic forbs was negatively related. Thus, exotic competition is likely only one factor contributing to local declines of native species in invaded ecosystems, with a combination of propagule limitation, site quality, and land use history also playing important and interactive roles in native plant recruitment.  相似文献   

8.
Veblen KE 《Ecology》2008,89(6):1532-1540
Empirical and theoretical evidence suggests that facilitation between plants, when it occurs, is more likely during periods of abiotic stress, while competition predominates under more moderate conditions. Therefore, one might expect the relative importance of competition vs. facilitation to vary seasonally in ecosystems characterized by pronounced dry (abiotically stressful) and wet (benign) seasons. Herbivory also varies seasonally and can affect the net outcome of plant-plant interactions, but the interactive effects of seasonality and herbivory on the competition-facilitation balance are not known. I experimentally manipulated neighboring plants and herbivory during wet and dry periods for two species of grass: Cynodon plectostachyus and Pennisetum stramineum, in the semiarid Laikipia District of Kenya. These experiments indicate that Pennisetum was competitively dominant during the wet season and that it responded negatively to grazing, especially during the dry season. Cynodon showed more complex season- and herbivore-dependent responses. Cynodon experienced facilitation that was simultaneously dependent on presence of herbivores and on dry season. During the wet season Cynodon experienced net competition. These results illustrate how herbivory and seasonality can interact in complex ways to shift species-species competition-facilitation balance. Additionally, because Cynodon and Pennisetum are key players in a local successional process, these results indicate that herbivory can affect the direction and pace of succession.  相似文献   

9.
Some invasive plant species appear to strongly suppress neighbors in their nonnative ranges but much less so in their native range. We found that in the field in its native range in Mexico, the presence of Ageratina adenophora, an aggressive Neotropical invader, was correlated with higher plant species richness than found in surrounding plant communities where this species was absent, suggesting facilitation. However, in two nonnative ranges, China and India, A. adenophora canopies were correlated with much lower species richness than the surrounding communities, suggesting inhibition. Volatile organic compound (VOC) signals may contribute to this striking biogeographical difference and the invasive success of A. adenophora. In controlled experiments volatiles from A. adenophora litter caused higher mortality of species native to India and China, but not of species native to Mexico. The effects of A. adenophora VOCs on seedling germination and growth did not differ between species from the native range and species from the nonnative ranges of the invader. Litter from A. adenophora plants from nonnative populations also produced VOCs that differed quantitatively in the concentrations of some chemicals than litter from native populations, but there were no chemicals unique to one region. Biogeographic differences in the concentrations of some volatile compounds between ranges suggest that A. adenophora may be experiencing selection on biochemical composition in its nonnative ranges.  相似文献   

10.
Freestone AL 《Ecology》2006,87(11):2728-2735
The importance of facilitation to local community dynamics is becoming increasingly recognized. However, the predictability of positive interactions in stressful environments, the balance of competition and facilitation along environmental gradients, and the scaling of local positive interactions to regional distributions are aspects of facilitation that remain unresolved. I explored these questions in a habitat specialist, Delphinium uliginosum, and a moss, Didymodon tophaceus, both found in small serpentine wetlands. I tested three hypotheses: (1) moss facilitates germination, growth, and/or fecundity of D. uliginosum; (2) facilitation is stronger at the harsher ends of gradients in soil moisture, toxicity, and/or biomass; and (3) facilitation is reflected in positive associations at the levels of local abundance and regional occurrence. Although considerable competitive interactions occurred in later life stages, moss strongly facilitated D. uliginosum seedling emergence. There was no evidence that this facilitative effect weakened, or switched to competition, in benign environments. D. uliginosum was more locally abundant and more frequently present, across a large portion of its range, with than without moss, indicating a net facilitative effect in the face of competitive influences. Facilitated recruitment, possibly by seed retention, was found to be an important control on abundance and distribution in this rare species.  相似文献   

11.
Graff P  Aguiar MR  Chaneton EJ 《Ecology》2007,88(1):188-199
Isolating the single effects and net balance of negative and positive species effects in complex interaction networks is a necessary step for understanding community dynamics. Facilitation and competition have both been found to operate in harsh environments, but their relative strength may be predicted to change along gradients of herbivory. Moreover, facilitation effects through habitat amelioration and protection from herbivory may act together determining the outcome of neighborhood plant-plant interactions. We tested the hypothesis that grazing pressure alters the balance of positive and negative interactions between palatable and unpalatable species by increasing the strength of positive indirect effects mediated by associational resistance to herbivory. We conducted a two-year factorial experiment in which distance (i.e., spatial association) from the nearest unpalatable neighbor (Stipa speciosa) and root competition were manipulated for two palatable grasses (Poa ligularis and Bromus pictus), at three levels of sheep grazing (none, moderate, and high) in a Patagonian steppe community. We found that grazing shifted the effect of Stipa on both palatable grasses, from negative (competition) in the absence of grazing to positive (facilitation) under increasing herbivore pressure. In ungrazed sites, belowground competition was the dominant interaction, as shown by a significant reduction in performance of palatable grasses transplanted near to Stipa tussocks. In grazed sites, biomass of palatable plants was greater near than far from Stipa regardless of competition treatment. Proximity to Stipa reduced the amount of herbivory suffered by palatable grasses, an indirect effect that was stronger under moderate than under intense grazing. Our results demonstrate that facilitation, resulting mainly from protection against herbivory, is the overriding effect produced by unpalatable neighbors on palatable grasses in this rangeland community. This finding challenges the common view that abiotic stress amelioration should be the predominant type of facilitation in arid environments and highlights the role of herbivory in modulating complex neighborhood plant interactions in grazing systems.  相似文献   

12.
酸雨对外来植物入侵的影响   总被引:2,自引:0,他引:2  
廖周瑜  彭少麟 《生态环境》2007,16(2):639-643
酸雨和外来种入侵都是全球关注的问题。结合外来入侵植物的生态适应特性以及酸雨的危害特征,系统分析了酸雨对外来植物入侵产生的影响。酸雨对外来植物入侵的影响是复杂多样的。酸雨导致群落冠层稀疏,群落透光率增加,加之氮沉降后土壤、水体氮素的增加,有利于生长力强的外来喜阳植物入侵;酸雨加速土壤酸化,促使基本离子淋失以及A1毒等危害植物的生长发育,植物的内源激素以及化感作用发生改变,适应力和耐受力强的外来植物在与本地植物竞争中处于相对优势而成为入侵种;酸雨以及外来植物入侵改变了土壤微生物群落结构,影响本地植物的生长而促使外来植物的入侵。  相似文献   

13.
Capers RS  Selsky R  Bugbee GJ  White JC 《Ecology》2007,88(12):3135-3143
Invasive species richness often is negatively correlated with native species richness at the small spatial scale of sampling plots, but positively correlated in larger areas. The pattern at small scales has been interpreted as evidence that native plants can competitively exclude invasive species. Large-scale patterns have been understood to result from environmental heterogeneity, among other causes. We investigated species richness patterns among submerged and floating-leaved aquatic plants (87 native species and eight invasives) in 103 temperate lakes in Connecticut (northeastern USA) and found neither a consistently negative relationship at small (3-m2) scales, nor a positive relationship at large scales. Native species richness at sampling locations was uncorrelated with invasive species richness in 37 of the 60 lakes where invasive plants occurred; richness was negatively correlated in 16 lakes and positively correlated in seven. No correlation between native and invasive species richness was found at larger spatial scales (whole lakes and counties). Increases in richness with area were uncorrelated with abiotic heterogeneity. Logistic regression showed that the probability of occurrence of five invasive species increased in sampling locations (3 m2, n = 2980 samples) where native plants occurred, indicating that native plant species richness provided no resistance against invasion. However, the probability of three invasive species' occurrence declined as native plant density increased, indicating that density, if not species richness, provided some resistance with these species. Density had no effect on occurrence of three other invasive species. Based on these results, native species may resist invasion at small spatial scales only in communities where density is high (i.e., in communities where competition among individuals contributes to community structure). Most hydrophyte communities, however, appear to be maintained in a nonequilibrial condition by stress and/or disturbance. Therefore, most aquatic plant communities in temperate lakes are likely to be vulnerable to invasion.  相似文献   

14.
Invasive species impacts on native species and communities have been widely recognised for decades and may involve important economical losses. In this study, we examined two marine muricid gastropods: an invader, Ocinebrellus inornatus, and a resident, Ocenebra erinacea. Both species co-occur on French Atlantic coasts and probably have economical impacts on oyster farming areas of the Charente-Maritime region of France. In previous studies, we investigated the introduction source and the expansion patterns of O. inornatus, using molecular markers. However, these studies are not sufficient to fully understand the expansion dynamics of the exotics. The present framework is devoted to comparing life-history traits between the introduced and resident species. Our results first showed that O. inornatus has more favourable traits, such as a better mean growth rate and a higher reproductive effort, in comparison with O. erinacea. These traits may explain the invader establishment and, partly, its spread along the coast of France. Secondly, the resident species drilled a higher rate of oysters than the invader. Finally, the establishment of O. inornatus in France does not seem to be at the expense of O. erinacea because: (1) resources are not limiting in oyster farming areas and (2) there does not appear to be competition by interference between the species.Communicated by O. Kinne, Oldendorf/Luhe  相似文献   

15.
Canopy-forming plants and algae commonly contribute to spatial variation in habitat complexity for associated organisms and thereby create a biotic patchiness of communities. In this study, we tested for interaction effects between biotic habitat complexity and resource availability on net biomass production and species diversity of understory macroalgae by factorial field manipulations of light, nutrients, and algal canopy cover in a subtidal rocky-shore community. Presence of algal canopy cover and/or artificial shadings limited net biomass production and facilitated species diversity. Artificial shadings reduced light to levels similar to those under canopy cover, and net biomass production was significantly and positively correlated to light availability. Considering the comparable and dependent experimental effects from shadings and canopy cover, the results strongly suggest that canopy cover controlled net biomass production and species diversity by limiting light and thereby limiting resource availability for community production. Canopy cover also controlled experimental nutrient effects by preventing a significant increase in net biomass production from nutrient enrichment recorded in ambient light (no shading). Changes in species diversity were mediated by changes in species dominance patterns and species evenness, where canopy cover and shadings facilitated slow-growing crust-forming species and suppressed spatial dominance by Fucus vesiculosus, which was the main contributor to net production of algal biomass. The demonstrated impacts of biotic habitat complexity on biomass production and local diversity contribute significantly to understanding the importance of functionally important species and biodiversity for ecosystem processes. In particular, this study demonstrates how loss of a dominant species and decreased habitat complexity change the response of the remaining assembly to resource loading. This is of potential significance for marine conservation since resource loading often promotes low habitat complexity and canopy species are among the first groups lost in degraded aquatic systems.  相似文献   

16.
According to theory, variation in plant secondary metabolism against herbivores is driven by variation in biotic and abiotic conditions interacting with plants genotype to determine the expression of resistance traits. Particularly, it has been long postulated that plants growing along latitudinal gradients experience changes in biotic and abiotic interactions, specifically leading to a decrease of plant toxicity towards the poles. We tested this hypothesis using the asteraceous species Smallanthus macroscyphus. Smallanthus species are known to contain sesquiterpene lactones (STLs), bitter compounds with a broad spectrum of biological activities, including deterrence to herbivores. S. macroscyphus showed a decrease in chemical diversity of STLs when investigating populations growing from the tropical regions to less tropical ones. Populations from lower latitudes were found to be more chemically diverse with enhydrin, uvedalin and fluctuanin as main components, while populations southward were chemically fairly uniform, with polymatin A as the main and largely dominant STL. The STL chemistry of S. macroscyphus is in agreement with the hypothesis that plants of tropical forests have a greater diversity of secondary metabolites when compared to their temperate counterparts.  相似文献   

17.
Abstract:  Wetland habitats are besieged by biotic and abiotic disturbances such as invasive species, hurricanes, habitat fragmentation, and salinization. Predicting how these factors will alter local population dynamics and community structure is a monumental challenge. By examining ecologically similar congeners, such as Iris hexagona and I. pseudacorus (which reproduce clonally and sexually and tolerate a wide range of environmental conditions), one can identify life-history traits that are most influential to population growth and viability. We combined empirical data and stage-structured matrix models to investigate the demographic responses of native ( I. hexagona ) and invasive ( I. pseudacorus ) plant populations to hurricanes and salinity stress in freshwater and brackish wetlands. In our models I. hexagona and I. pseudacorus responded differently to salinity stress, and species coexistence was rare. In 82% of computer simulations of freshwater marsh, invasive iris populations excluded the native species within 50 years, whereas native populations excluded the invasive species in 99% of the simulations in brackish marsh. The occurrence of hurricanes allowed the species to coexist, and species persistence was determined by the length of time it took the ecosystem to recover. Rapid recovery (2 years) favored the invasive species, whereas gradual recovery (30 years) favored the native species. Little is known about the effects of hurricanes on competitive interactions between native and invasive plant species in marsh ecosystems. Our models contribute new insight into the relationship between environmental disturbance and invasion and demonstrate how influential abiotic factors such as climate change will be in determining interspecific interactions.  相似文献   

18.
Macdougall AS  Wilson SD 《Ecology》2011,92(3):657-664
Root dynamics are among the largest knowledge gaps in determining how terrestrial carbon (C) cycles will respond to environmental change. Increases in productivity accompanying plant invasions and introductions could increase ecosystem C storage, but belowground changes are unknown, even though roots may account for 50-90% of production in temperate ecosystems. We examined whether the introduction of a widespread invasive grass with relatively high shoot production also increased belowground productivity and soil C storage, using a multiyear rhizotron study in 50-year-old stands dominated either by the invasive C3 grass Agropyron cristatum or by largely C4 native grasses. Relative to native vegetation, stands dominated by the invader had doubled root productivity. Soil carbon isotope values showed that the invader had made detectable contributions to soil C. Soil C content, however, was not significantly different between invader-dominated stands (0.42 mg C/g soil) and native vegetation (0.45 mg C/g soil). The discrepancy between enhanced production and lack of soil C changes was attributable to differences in root traits between invader-dominated stands and native vegetation. Relative to native vegetation, roots beneath the invader had 59% more young white tissue, with 80% higher mortality and 19% lower C:N ratios (all P < 0.05). Such patterns have previously been reported for aboveground tissues of invaders, and we show that they are also found belowground. If these root traits occur in other invasive species, then the global phenomenon of increased productivity following biological invasion may not increase soil C storage.  相似文献   

19.
Kittelson P  Maron J  Marler M 《Ecology》2008,89(5):1344-1351
Little is known about how exotics influence the ecophysiology of co-occurring native plants or how invader impact on plant physiology may be mediated by community diversity or resource levels. We measured the effect of the widespread invasive forb spotted knapweed (Centaurea maculosa) on leaf traits (leaf dry matter content, specific leaf area, leaf nitrogen percentage, leaf C:N ratios, and delta13C as a proxy for water use efficiency) of two co-occurring native perennial grassland species, Monarda fistulosa (bee balm) and Koeleria macrantha (Junegrass). The impact of spotted knapweed was assessed across plots that varied in functional diversity and that either experienced ambient rainfall or received supplemental water. Impact was determined by comparing leaf traits between identical knapweed-invaded and noninvaded assemblages. Virtually all M. fistulosa leaf traits were affected by spotted knapweed. Knapweed impact, however, did not scale with its abundance; the impact of knapweed on M. fistulosa was similar across heavily invaded low-diversity assemblages and lightly invaded high-diversity assemblages. In uninvaded assemblages, M. fistulosa delta13C, leaf nitrogen, and C:N ratios were unaffected by native functional group richness, whereas leaf dry matter content significantly increased and specific leaf area significantly decreased across the diversity gradient. The effects of spotted knapweed on K. macrantha were weak; instead native functional group richness strongly affected K. macrantha leaf C:N ratio, delta13C, and specific leaf area, but not leaf dry matter content. Leaf traits for both species changed in response to spotted knapweed or functional richness, and in a manner that may promote slower biomass accumulation and efficient conservation of resources. Taken together, our results show that an invader can alter native plant physiology, but that these effects are not a simple function of how many invaders exist in the community.  相似文献   

20.
Although the establishment of nonnative plants is recognized as a threat to native ecosystems, there are few documented examples of an invasive species directly influencing a rare native plant. The Eurasian biennial Dipsacus sylvestris (teasel) is invading the central New Mexico habitat of Cirsium vinaceum , an endemic thistle that is federally listed as threatened. We documented changes in teasel distribution and abundance between 1989 and 1993 that suggest the potential for direct interactions with the native thistle. We then compared habitat characteristics, germination behavior, and performance in greenhouse and field competition trials to evaluate the potential outcome of interference between these two species. There were no significant differences in measured habitat characteristics between sites supporting C. vinaceum and those with D. sylvestris. Dipsacus was better able to germinate in low light than the thistle, suggesting that D. sylvestris might invade C. vinaceum populations but that thistle recruitment would be unlikely in dense stands of the nonnative plants. In the greenhouse growth of C. vinaceum rosettes was significantly reduced by the presence of Dipsacus , but the invader was unaffected by the thistle; results of a short-term field experiment were equivocal but suggestive of interference between the two. We suggest criteria for managers to use in determining whether invading species pose problems for specific rare native taxa, and we discuss the constraints on experimental work where protected taxa are involved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号