首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study was performed to investigate the concentration of PM10 and PM2.5 inside trains and platforms on subway lines 1, 2, 4 and 5 in Seoul, KOREA. PM10, PM2.5, carbon dioxide (CO2) and carbon monoxide (CO) were monitored using real-time monitoring instruments in the afternoons (between 13:00 and 16:00). The concentrations of PM10 and PM2.5 inside trains were significantly higher than those measured on platforms and in ambient air reported by the Korea Ministry of Environment (Korea MOE). This study found that PM10 levels inside subway lines 1, 2 and 4 exceeded the Korea indoor air quality (Korea IAQ) standard of 150 μg/m3. The average percentage that exceeded the PM10 standard was 83.3% on line 1, 37.9% on line 2 and 63.1% on line 4, respectively. PM2.5 concentration ranged from 77.7 μg/m3 to 158.2 μg/m3, which were found to be much higher than the ambient air PM2.5 standard promulgated by United States Environmental Protection Agency (US-EPA) (24 h arithmetic mean: 65 μg/m3). The reason for interior PM10 and PM2.5 being higher than those on platforms is due to subway trains in Korea not having mechanical ventilation systems to supply fresh air inside the train. This assumption was supported by the CO2 concentration results monitored in tube of subway that ranged from 1153 ppm to 3377 ppm. The percentage of PM2.5 in PM10 was 86.2% on platforms, 81.7% inside trains, 80.2% underground and 90.2% at ground track. These results indicated that fine particles (PM2.5) accounted for most of PM10 and polluted subway air. GLM statistical analysis indicated that two factors related to monitoring locations (underground and ground or inside trains and on platforms) significantly influence PM10 (p < 0.001, R2 = 0.230) and PM2.5 concentrations (p < 0.001, R2 = 0.172). Correlation analysis indicated that PM10, PM2.5, CO2 and CO were significantly correlated at p < 0.01 although correlation coefficients were different. The highest coefficient was 0.884 for the relationship between PM10 and PM2.5.  相似文献   

2.
This paper examines the issue of ancillary benefits by linking sulfur dioxide (SO2) emission to CO2 emission using a panel of 29 Chinese provinces over the period 1995–2007. In the presence of non-stationarity and cointegrating properties of these two data series, this paper applies the panel cointegration techniques to examine both the long-run and short-run elasticities of SO2 with respect to CO2. The major findings are that: (1) there exhibits a stable long-run equilibrium relationship between the SO2 and CO2 emission with the long-run elasticity being 2.15; (2) there exists a short-run relationship between these two emissions with the short-run elasticity being 0.04. In addition, following an exogenous shock that causes a deviation from the long-run equilibrium, it would take approximately 15 years for SO2 emission to revert toward the long-run equilibrium path with an average annual convergence rate of 6.5%; (3) the derived ancillary benefits that is generated from one metric ton of CO2 emission reduction, are 11.77 Yuan (approximately US1.7) in the short run and 196.16 Yuan (US 1.7) in the short run and 196.16 Yuan (US 30) in the long run. These findings are not only crucial from the econometric modeling perspective, but also have important policy implications.  相似文献   

3.
In order to explore soil profile CO2 transport and production, values of vertical soil profile CO2 concentration, moisture and temperature were measured continuously during whole cotton growing season in oasis cotton field of Aksu National Experimental Station of Oasis Farmland Ecosystem, central Asia. Simultaneously, soil CO2 efflux was measured by chamber system to assess the deducing result by Fick’s first law. In our experiment, soil CO2 effluxes were determined by two related intimately methods. Soil CO2 releasing at 0–20 cm depth was calculated by gas transport equation and was found to be closely related to soil CO2 efflux. However, mean values of soil CO2 production at 0–20 cm depth were less than those of soil CO2 efflux during the whole cotton growing season. Moreover, there were some negative values of CO2 production at 0–20 cm depth found during the experimental period.  相似文献   

4.
Based on the China high resolution emission gridded data (1 km spatial resolution), this article is aimed to create a Chinese city carbon dioxide (CO2) emission data set using consolidated data sources as well as normalized and standardized data processing methods. Standard methods were used to calculate city CO2 emissions, including scope 1 and scope 2. Cities with higher CO2 emissions are mostly in north, northeast, and eastern coastal areas. Cities with lower CO2 emissions are in the western region. Cites with higher CO2 emissions are clustered in the Jing-Jin-Ji Region (such as Beijing, Tianjin, and Tangshan), and the Yangtze River Delta region (such as Shanghai and Suzhou). The city per capita CO2 emission is larger in the north than the south. There are obvious aggregations of cities with high per capita CO2 emission in the north. Four cities among the top 10 per capita emissions (Erdos, Wuhai, Shizuishan, and Yinchuan) cluster in the main coal production areas of northern China. This indicates the significant impact of coal resources endowment on city industry and CO2 emissions. The majority (77%) of cities have annual CO2 emissions below 50 million tons. The mean annual emission, among all cities, is 37 million tons. Emissions from service-based cities, which include the smallest number of cities, are the highest. Industrial cities are the largest category and the emission distribution from these cities is close to the normal distribution. Emissions and degree of dispersion, in the other cities (excluding industrial cities and service-based cities), are in the lowest level. Per capita CO2 emissions in these cities are generally below 20 t/person (89%) with a mean value of 11 t/person. The distribution interval of per capita CO2 emission within industrial cities is the largest among the three city categories. This indicates greater differences among per capita CO2 emissions of industrial cities. The distribution interval of per capita CO2 emission of other cities is the lowest, indicating smaller differences of per capita CO2 emissions among this city category. Three policy suggestions are proposed: first, city CO2 emission inventory data in China should be increased, especially for prefecture level cities. Second, city responsibility for emission reduction, and partitioning the national goal should be established, using a bottom-up approach based on specific CO2 emission levels and potential for emission reductions in each city. Third, comparative and benchmarking research on city CO2 emissions should be conducted, and a Top Runner system of city CO2 emission reduction should be established.  相似文献   

5.
Upon arrival on Earth, the reduced carbon pool split into a series of compartments: core, mantle, crust, hydrosphere, atmosphere, biosphere.This distribution pattern is caused by the ability of carbon to adjust structurally to a wide range of pressure and temperature, and to form simple and complex molecules with oxygen, hydrogen and nitrogen. Transformation also involved oxidation of carbon to CO2 which is mediated at depth by minerals, such as magnetite, and by water vapor above critical temperature. Guided by mineral-organic interactions, simple carbon compounds evolved in near surface environments towards physiologically interesting biochemicals. Life, as an autocatalytic system, is considered an outgrowth of such a development.This article discusses environmental parameters that control the CO2 system, past and present. Mantle and crustal evolution is the dynamo recharging the CO2 in sea and air; the present rate of CO2 release from the magma is 0.05 × 1015 g C per year. Due to the enormous buffer capacity of the chemical system ocean, such rates are too small to seriously effect the level of CO2 in our atmosphere. In the light of geological field data and stable isotope work, it is concluded that the CO2 content in the atmosphere has remained fairly uniform since early Precambrian time; CO2 should thus have had little impact on paleoclimate. In contrast, the massive discharge of man-made CO2 into our atmosphere may have serious consequences for climate, environment and society in the years to come.  相似文献   

6.
We report on the comparative bioaccumulation, biotransformation and/or biomagnification from East Greenland ringed seal (Pusa hispida) blubber to polar bear (Ursus maritimus) tissues (adipose, liver and brain) of various classes and congeners of persistent chlorinated and brominated contaminants and metabolic by-products: polychlorinated biphenyls (PCBs), chlordanes (CHLs), hydroxyl (OH-) and methylsulfonyl (MeSO2-) PCBs, polybrominated biphenyls (PBBs), OH-PBBs, polybrominated diphenyl ether (PBDE) and hexabromocyclododecane (HBCD) flame retardants and OH- and methoxyl (MeO-) PBDEs, 2,2-dichloro-bis(4-chlorophenyl)ethene (p,p′-DDE), 3-MeSO2-p,p′-DDE, pentachlorophenol (PCP) and 4-OH-heptachlorostyrene (4-OH-HpCS). We detected all of the investigated contaminants in ringed seal blubber with high frequency, the main diet of East Greenland bears, with the exception of OH-PCBs and 4-OH-HpCS, which indicated that these phenolic contaminants were likely of metabolic origin and formed in the bears from accumulated PCBs and octachlorostyrene (OCS), respectively, rather than being bioaccumulated from a seal blubber diet. For all of the detectable sum of classes or individual organohalogens, in general, the ringed seal to polar bear mean BMFs for ΣPCBs, p,p′-DDE, ΣCHLs, ΣMeSO2-PCBs, 3-MeSO2-p,p′-DDE, PCP, ΣPBDEs, total-(α)-HBCD, ΣOH-PBDEs, ΣMeO-PBDEs and ΣOH-PBBs indicated that these organohalogens bioaccumulate, and in some cases there was tissue-specific biomagnification, e.g., BMFs for bear adipose and liver ranged from 2 to 570. The blood-brain barrier appeared to be effective in minimizing brain accumulation as BMFs were ≤ 1 in the brain, with the exception of ΣOH-PBBs (mean BMF = 93 ± 54). Unlike OH-PCB metabolites, OH-PBDEs in the bear tissues appeared to be mainly accumulated from the seal blubber rather than being metabolic formed from PBDEs in the bears. In vitro PBDE depletion assays using polar bear hepatic microsomes, wherein the rate of oxidative metabolism of PBDE congeners was very slow, supported the probability that accumulation from seals is the main source of OH-PBDEs in the bear tissues. Our findings demonstrated from ringed seal to polar bears that organohalogen biotransformation, bioaccumulation and/or biomagnification varied widely and depended on the contaminant in question. Our results show the increasing complexity of bioaccumulated and in some cases biomagnified, chlorinated and brominated contaminants and/or metabolites from the diet may be a contributing stress factor in the health of East Greenland polar bears.  相似文献   

7.
ABSTRACT

The biogas constituting majorly CH4 and CO2 has been produced by Ca(OH)2 pre-treated wheat straw with pre-digested cow dung. Some of the key thermodynamic parameters like specific heat capacity, density and heating capacity of the biogas produced have also been calculated per day as well as throughout the hydraulic retention time. The governing equations of biogas with appropriate phase and interfacial conditions describing the physics of the biogas have been derived. The control volume approach has been used to predict the total volume (ml) of biogas, CH4 and CO2 throughout the experiment and on the daily basis. The effects of feedstock, temperature and pressure on the production of biogas, CH4 and CO2 in anaerobic digestion have also been studied. The average number of molar fraction and conversion ratio of CH4 and CO2 are correlated with number of carbon atoms available in feedstock. Numerical calculations by using developed model and Modified Gompertz model have shown proficient agreement with the experimental observations.  相似文献   

8.
This study analyzed the impact of urbanization and the level of economic development on CO2 emissions using the STIRPAT model and provincial panel data for China. This study classified the 29 provinces of China into three groups (eastern, central, and western regions) and examined regional differences in the environmental impacts of urbanization and economic development levels. The results demonstrated that there was an inverted U-shaped relationship between urbanization and CO2 emissions in the central and western regions of China. However, we did not confirm the environmental Kuznets curve relationship between urbanization and CO2 emissions in eastern China, where CO2 emissions increase monotonically with urbanization. This study showed that the impacts of urbanization differ considerably. There was a U-shaped relationship between economic growth and CO2 emissions. However, the point of inflexion was very low, which indicates that economic growth will promote CO2 emissions in China. The share of the industry output value had a marginal incremental effect on CO2 emissions. There was a decreasing effect of population scale on CO2 emissions. Energy efficiency is the main factor that restrains CO2 emissions, and the effect was higher in regions with low energy efficiency.  相似文献   

9.
For buildings in which the emissions from people is the main source of pollution, the number of people is the limiting factor for air ventilation. When such buildings are not used at full capacity, the ventilation, and consequently the energy consumption, is unnecessarily high. A great deal of the energy could be saved if the ventilation system could be developed to adjust the air flow to the actual requirements. One possible system would allow the amount of CO2 in the exhaust air to control the ventilation rate. To study if this principle is practicable and economic, a CO2 indicator has been installed in an office building in Helsinki. The mixture of exterior air and recirculated air is adjusted so that the amount of CO2 during working hours is kept on ca 700 ppm (μL/L). The equipment was used during winter 1981-82, and the variation of CO2 and the exterior air flow has been registered. The proportion of CO2 has also been measured locally in order to study occasional variations that may occur. The proportion of other pollutants in the room air has been studied simultaneously with a gas chromatograph. Different types of CO2 indicators were used to study the efficiency of the control system. The successful results indicate that the system can be used in new constructions, as well as in existing buildings.  相似文献   

10.
Determined the contribution of root derived CO2 efflux to total CO2 efflux (including root and non-root derived CO2 efflux) is import to grope the mechanism of CO2 efflux, however, becaused of ‘rhizoshere priming effect’ (RPE), it is difficult to achieve in practice. In this study, we attempted to estimate the RPE via comparing basal soil respiration (Rb) achieved by two different methods namely, y-intercept regression and direct bare plot approach in an arid cotton field, central Asia. On the basis of the y-intercept of linear regressions between below-ground respiration (BGR) and root biomass, Rb was indirectly calculated. Comparing with the first approach, the second approach involved direct measurements of soil respiration from bare plots. Rb estimated by y-intercept method contained the component of RPE whereas direct bare plot did not. We found that RPE showed a phenological trend with highest value in flowering stage at 0.145 g CO2 m–2 h–1 and lowest at budding stage (0.007 g CO2 m–2 s–1), even after the data had been corrected for the influence of soil temperature. We concluded that RPE needed to be considered when Rb was estimated by y-intercept approach.  相似文献   

11.
With the economic development, China has become the largest CO2 emissions country. China’s power industry CO2 emissions accounted for about 50% of total CO2 emissions. Therefore, exploring major drivers of CO2 emissions is critical to mitigating its CO2 emissions in power industry. Many studies considered the time series model to analyze the national influences factors of CO2 emissions. But this paper focuses on regional differences in CO2 emissions and adopts panel data models to explore the major impact factors of CO2 emissions in the power industry at the regional and provincial perspectives. The results indicate economic growth level plays a dominant role in reducing CO2 emissions. The power-consuming efficiency on the demand side has large potential to mitigate CO2 emissions, but its influences are different in three regions. The impacts of the electric power structure on CO2 emissions decline from the eastern region to the central and western regions. The influence of urbanization and industrialization also has significant regional differences. Therefore, the governments should consider the influencing factors and regional differences and formulate appropriate policies to decrease CO2 emissions in the power industry.  相似文献   

12.
This study evaluates and compares the trends in CO2 emissions for the manufacturing industries of three countries: two developed countries (Germany and Sweden) that have applied several measures to promote a shift towards a low-carbon economy and one developing country (Colombia) that has shown substantial improvements in the reduction of CO2 emissions. This analysis is conducted using panel data cointegration techniques to infer causality between CO2 emissions, production factors and energy sources. The results indicate a trend of producing more output with less pollution. The trends for these countries’ CO2 emissions depend on investment levels, energy sources and economic factors. Furthermore, the trends in CO2 emissions indicate that there are emission level differences between the two developed countries and the developing country. Moreover, the study confirms that it is possible to achieve economic growth and sustainable development while reducing greenhouse gas emissions, as Germany and Sweden demonstrate. In the case of Colombia, it is important to encourage a reduction in CO2 emissions through policies that combine technical and economic instruments and incentivise the application of new technologies that promote clean and environmentally friendly processes.  相似文献   

13.
The south east basin of France shelters deep CO2 reservoirs often studied with the aim of better constraining geological CO2 storage operations. Here we present new soil gas data, completing an existing dataset (CO2, 222Rn, 4He), together with mineralogical and physical characterisations of soil columns, in an attempt to better understand the spatial distribution of gas concentrations in the soils and to rule on the sealed character of the CO2 reservoir at present time.Anomalous gas concentrations were found but did not appear to be clearly related to geological structures that may drain deep gases up to the surface, implying a dominant influence of near surface processes as indicated by carbon isotope ratios. Coarse grained, quartz-rich soils favoured the existence of high CO2 concentrations. Fine grained clayey soils preferentially favoured the existence of 222Rn but not CO2. Soil formations did not act as barriers preventing gas migrations in soils, either due to water content or due to mineralogical composition. No abundant leakage from the Montmiral reservoir can be highlighted by the measurements, even near the exploitation well. As good correlation between CO2 and 222Rn concentrations still exist, it is suggested that 222Rn migration is also CO2 dependent in non-leaking areas - diffusion dominated systems.  相似文献   

14.
On account of the background of China’s “new normal” characterized by slower economic growth, this paper analyses the low-carbon economy status quo in the Beijing–Tianjin–Hebei region and empirically investigates the relationship between carbon dioxide (CO2) emissions and its various factors for China’s Beijing–Tianjin–Hebei region using panel data econometric technique. We find evidence of existence of Environmental Kuznets Curve. Results also show that economic scale, industrial structure, and urbanization rate are crucial factors to promote CO2 emissions. However, technological progress, especially the domestic independent research and development, plays a key role in CO2 emissions abatement. Next, we further analyze the correlation between each subregion and various factors according to Grey Relation Analysis. Thereby, our findings provide important implications for policymakers in air pollution control and CO2 emissions reduction for this region.  相似文献   

15.
Abstract

In this paper, using the input-output model, the author first calculated the CO2 emissions embodied in exports of China in 2002 and 2007. Then, the author empirically analyzed problems existing in the composition of exported products and analyzed its possible reasons. The research results of this paper are as follows: Since China’s entry into WTO, the CO2 emissions embodied in exports of China have been increasing rapidly; the value of exported products of high-carbon emissions industries accounts for a relatively higher proportion to China’s total exports value because China’s carbon intensive products have a certain competitive advantage. Additionally, this paper has put forward relevant suggestions based on these results.  相似文献   

16.
The Pechelbronn oilfield (Rhine Graben, France), where mining activity ended in the 1960s, has been used for waste disposal for twenty years. Since the wastes are varied, work is underway to identify the discharged materials and their derivatives, as well as to locate and quantify potential discharge sites. Two major goals were assigned to the present work. The first was to identify or refine the location of hidden structures that could facilitate gas emanation up to the surface, by studying soil gas concentrations (mainly 222Rn, CO2, CH4 and helium) and carbon isotope ratios in the CO2 phase. The second was devoted to examining, from a health and safety viewpoint, if the use of the oilfield as a waste disposal site might have led to enhanced or modified gas emanation throughout the area.It appeared that CO2 and 222Rn evolution in the whole area were similar, except near some of the faults and fractures that are known through surface mapping and underground observations. These 222Rn and CO2 anomalies made it possible to highlight more emissive zones that are either related to main faults or to secondary fractures acting as migration pathways. In that sense, the CO2 phase can be used to evaluate 222Rn activities distant from tectonic structures but can lead to erroneous evaluations near to gas migration pathways. Dumping of wastes, as well as oil residues, did not appear to have a strong influence on soil gaseous species and emanation. Similarly, enhanced gas migration due to underground galleries and exploitation wells has not been established. Carbon isotope ratios suggested a balance of biological phenomena, despite the high CO2 contents reached. Other monitored gaseous species (N2, Ar, H2 and alkanes), when detected, always showed amounts close to those found subsurface and/or in atmospheric gases.  相似文献   

17.
Reaction of CO2 with LiOH requires the presence of water in an amount sufficient to produce monohydrate thium hydroxide (LiOH · H2O) prior to or simultaneously with the CO2 reaction. For a given CO2 content in the air stream at any given temperature, there is a corresponding humidity of the feed stream which results in maximum CO2 absorption efficiency. Two commercially available LiOH granules with different porosities and water contents were studied. The combined effects of temperature and humidity on CO2 absorption patterns and CO2 absorption capacities were observed. Results showed that temperature and water content of the air stream did change the CO2 absorption pattern and the CO2 absorption capacity for LiOH absorbent.When the relative humidity in the air stream is below 14%, anhydrous LiOH has a higher CO2 absorption capacity at higher temperatures. However, above 40% relative, lower temperatures are favored. Partially hydrated LiOH granules have a higher CO2 absorptions capacity at lower temperatures at all relative humidities in the air stream except 14%.  相似文献   

18.
The increase in the concentration of CO2 in the atmosphere is closely related to man's activities. There is much concern that this increase might be a major factor contributing to global climatic change. This review analyses the potential climatic impact of these increasing CO2 concentrations, discusses the potential consequences of the resulting climatic changes, and presents possible solutions to the CO2 problem.  相似文献   

19.
Abstract

This paper proposes to use DEA models with undesirable outputs to construct the Malmquist index that can be use to investigate the dynamic changes of CO2 emission performance. With the index, the authors have measured the CO2 emission performance of 28 provinces and autonomous regions in China from 1996 to 2007; with the convergence theory and panel data regression model, the authors analyze the regional differences and the influencing factors. It is found that the performance of CO2 emissions in China has been continuously improved mainly due to the technological progress, and the average improvement rate is 3.25%, with a cumulative improvement rate of 40.86%. In addition, the CO2 emission performance varies across four regions. As a whole, the performance score of eastern China is the highest. The northeastern and central China has relatively lower performance scores, and the western China is relatively backward. The regional differences are decreasing, and the performance of CO2 emissions is convergent. The influence of some factors on the performance of CO2 emissions is significant, such as the level of economic development, the level of industrial structure, energy intensity, and ownership structure. The influence of some factors, such as opening-up to the outside world, on the performance of CO2 emissions is not significant.  相似文献   

20.
Greenhouse gases (GHG) emissions from agricultural farming practice contribute significantly to European GHG inventories. For example, CO2 is emitted when grassland is converted to cropland or when peatlands are drained and cultivated. N2O emissions result from fertilization. Enabling farmers to reduce their GHG emissions requires sufficient information about its pressure–impact relations as well as incentives, such as regulations and funding, that support climate-friendly agricultural management. This paper discusses potentials to improve the supply of information on: farm-specific climate services or impacts, present policy incentives in Germany and England that support climate-friendly farm management and related adaptation requirements. Tools which have been developed for a farm environmental management software (to be added after review because of potential identification) are presented. These tools assess CO2 emissions from grassland conversion to cropland and peatland cultivation, as well as N2O emissions from nitrogen fertilization. As input data, the CO2 tool requires a classification of soil types according to soil organic carbon storage. The input data based on soil profile samples was compared with reference data from the literature. The N2O tool relies on farm data concerning fertilization. These tools were tested on three farms in order to determine their viability with respect to the availability of required data and the differentiation of results, which determines how well site-specific conservation measures can be identified. Assessing CO2 retention function of grassland conservation to cropland on the test farms leads to spatially differentiated results (~100 to ~900 potentially mitigated t CO2 ha?1). Assessed N2O emissions varied from 0.41 to 1.1 t CO2eq. ha?1 a?1. The proposed methods support policies that promote a more differentiated funding of climate conservation measures. Conservation measures and areas can be selected so that they will have the greatest mitigation effects. However, even though present policy instruments in Germany and England, such as Cross Compliance and agri-environmental measures, have the potential to reduce agricultural GHG, they do not appear to guide measures effectively or site-specifically. In order to close this gap, agri-environmental measures with the potential to support climate protection should be spatially optimized. Additionally, the wetland restoration measures which are most effective in reducing GHG emissions should be included in funding schemes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号