首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 193 毫秒
1.
Metal immobilization in soils using synthetic zeolites   总被引:6,自引:0,他引:6  
In situ immobilization of heavy metals in contaminated soils is a technique to improve soil quality. Synthetic zeolites are potentially useful additives to bind heavy metals. This study selected the most effective zeolite in cadmium and zinc binding out of six synthetic zeolites (mordenite-type, faujasite-type, zeolite X, zeolite P, and two zeolites A) and one natural zeolite (clinoptilolite). Zeolite A appeared to have the highest binding capacity between pH 5 and 6.5 and was stable above pH 5.5. The second objective of this study was to investigate the effects of zeolite addition on the dissolved organic matter (DOM) concentration. Since zeolites increase soil pH and bind Ca, their application might lead to dispersion of organic matter. In a batch experiment, the DOM concentration increased by a factor of 5 when the pH increased from 6 to 8 as a result of zeolite A addition. A strong increase in DOM was also found in the leachate of soil columns, particularly in the beginning of the experiment. This resulted in higher metal leaching caused by metal-DOM complexes. In contrast, the free ionic concentration of Cd and Zn strongly decreased after the addition of zeolites, which might explain the reduction in metal uptake observed in plant growth experiments. Pretreatment of zeolites with acid (to prevent a pH increase) or Ca (to coagulate organic matter) suppressed the dispersion of organic matter, but also decreased the metal binding capacity of the zeolites due to competition of protons or Ca.  相似文献   

2.
Pulverized refuse fines (PRF) are the residual fine screenings from refuse-derived fuel plants after the removal of metals and oversize material from domestic refuse, and the extraction of the light fraction as fuel. It appears to be a potential soil amendment, but currently it is disposed of by landfilling. The glasshouse experiment described in this paper therefore evaluated its effectiveness as a soil amendment or soil material for plant growth.PRF had a slightly alkaline pH and was high in organic carbon and soluble salts. Unamended PRF supported significantly higher yields of ryegrass than PRF mixed with a sandy soil at 2 and 10% (w/w), and was comparable to that of sewage sludge and sludge-amended PRF. On the other hand, PRF supplemented with inorganic nitrogen or phosphorus resulted in better yields than PRF alone. Despite the high C/N ratio of PRF, nitrogen recovery in ryegrass suggested that mineralization was sufficiently high to allow adequate plant uptake and sustained plant growth, although there was initial inhibition. Tissue contents of zinc, copper and cadmium from pure PRF treatment were not excessive and were lower than those from sewage sludge.High rate applications of PRF, which are desirable from the viewpoint of disposal, should not cause environmental degradation. PRF is not as good as commercial fertilizers or potting media, but it can be an excellent soil substitute in horticulture and land reclamation.  相似文献   

3.
Organic acids released from plant roots can form complexes with cadmium (Cd) in the soil solution and influence metal bioavailability not only due to the nature and concentration of the complexes but also due to their lability. The lability of a complex influences its ability to buffer changes in the concentration of free ions (Cd); it depends on the association (, m mol s) and dissociation (, s) rate constants. A resin exchange method was used to estimate and (m mol s), which is the conditional estimate of depending on the calcium (Ca) concentration in solution. The constants were estimated for oxalate, citrate, and malate, three low-molecular-weight organic acids commonly exuded by plant roots and expected to strongly influence Cd uptake by plants. For all three organic acids, the and estimates were around 2.5 10 m mol s and 1.3 × 10 s, respectively. Based on the literature, these values indicate that the Cd- low-molecular-weight organic acids complexes formed between Cd and low-molecular-weight organic acids may be less labile than complexes formed with soil soluble organic matter but more labile than those formed with aminopolycarboxylic chelates.  相似文献   

4.
Oily sludge landfarmed in Kuwait soil contains higher concentrations of certain elements than that of the untreated of, soil, e.g. S, Cu, Cr, Zn, Pb, Ni, Mo and V. The growth and elemental content of three different plants grown on a sandy soil previously treated with different concentrations of oily sludge were studied. Tested plants differed in their response to landfarmed oily sludge; ryegrass was the least affected followed by oats, then barley. Uptake of elements differed both qualitatively and quantitatively between test plants. In barley, Zn increased in plants cultivated in soil treated with oily sludge, whereas other metal concentrations were reduced or not affected, namely, Cu, Pb, Ni, V. The uptake of P was greater in plants grown on treated soil compared with those on untreated soil, whereas Na, Ca, K, were either reduced or unaffected. In oats, Zn, Ni, Cu, Pb, V, were not significantly changed. Uptakes of K, Ca, P, and Na in plants from treated soil were higher than that of the control. In ryegrass, heavy metal concentrations were either reduced or remained the same as that of the control. In all cases, concentrations of essential heavy metals and other true elements under investigation were still lower than the levels considered to be sufficient for micronutrients. Thus, the oily sludge was a source of certain micro-nutrients which were deficient in the sandy soil. Further, it appears that uptake and distribution of elements in plant tissues were both highly variable according to the plant, species, and the soil characteristics.  相似文献   

5.
To predict the availability of metals to plants, it is important to understand both solution- and solid-phase processes in the soil, including the kinetics of metal release from its binding agent (ligand and/or particle). The present study examined the speciation and availability of Zn, Cd, Pb, and Cu in a range of well-equilibrated metal-contaminated soils from diverse sources using several techniques as a basis for predicting metal uptake by plants. Wheat (Triticum aestivum L.) was grown in 13 metal-contaminated soils and metal tissue concentrations (Zn, Cd, Pb, and Cu) in plant shoots were compared with total soil metal concentrations, total soluble metal, and free metal activities (pM2+) in soil pore waters, 0.01 M CaCl2-extractable metal concentrations, E values measured by isotope dilution, and effective metal concentrations, C(E), measured by diffusive gradients in thin films (DGT). In the DGT technique, ions are dynamically removed by their diffusion through a gel to a binding resin, while E values represent the isotopically exchangeable (labile) metal pools. Free metal activities (Zn2+, Cd2+, and Pb2+) in soil pore waters were determined using a Donnan dialysis technique. Plant Zn and Cd concentrations were highly related to C(E), while relationships for Zn and Cd with respect to the other measures of metals in the soils were generally lower, except for CaCl2-extractable Cd. These results suggest that the kinetically labile solid-phase pool of metal, which is included in the DGT measurement, played an important role in Zn and Cd uptake by wheat along with the labile metal in soil solution. Plant Pb concentrations were highly related to both soil pore water concentrations and C(E), indicating that supply from the solid phase may not be so important for Pb. Predictions of Cu uptake by wheat from these soils by the various measures of Cu were generally poor, except surprisingly for total Cu.  相似文献   

6.
Increasing chloride (Cl) concentration in soil solution has been shown to increase cadmium (Cd) concentration in soil solution and Cd uptake by plants, when grown in phosphate fertilizer- or biosolid-amended soils. However, previous experiments did not distinguish between the effect of Cl on biosolid-borne Cd compared with soil-borne Cd inherited from previous fertilizer history. A factorial pot experiment was conducted with biosolid application rates of 0, 20, 40, and 80 g biosolids kg(-1) and Cl concentration in soil solution ranging from 1 to 160 mM Cl. The Cd uptake of wheat (Triticum aestivum L. cv. Halberd) was measured and major cations and anions in soil solution were determined. Cadmium speciation in soil solution was calculated using GEOCHEM-PC. The Cd concentration in plant shoots and soil solution increased with biosolid application rates up to 40 g kg(-1), but decreased slightly in the 80 g kg(-1) biosolid treatment. Across biosolid application rates, the Cd concentration in soil solution and plant shoots was positively correlated with the Cl concentration in soil solution. This suggests that biosolid-borne Cd is also mobilized by chloride ligands in soil solution. The soil solution CdCl+ activity correlated best with the Cd uptake of plants, although little of the variation in plant Cd concentrations was explained by activity of CdCl+ in higher sludge treatments. It was concluded that chlorocomplexation of Cd increased the phytoavailability of biosolid-borne Cd to a similar degree as soil (fertilizer) Cd. There was a nonlinear increase in plant uptake and solubility of Cd in biosolid-amended soils, with highest plant Cd found at the 40 g kg(-1) rate of biosolid application, and higher rates (80 g kg(-1)) producing lower plant Cd uptake and lower Cd solubility in soil. This is postulated to be a result of Cd retention by CaCO3 formed as a result of the high alkalinity induced by biosolid application.  相似文献   

7.
The plants Salix viminalis L. (common osier) and Thlaspi caerulescens J. Presl & C. Presl have been studied often because of their high potential to extract heavy metals from soils. The soil properties favoring this phytoextraction are not yet fully known. In this study we compared three frequently used single-extracting agents (NaNO3, diethylenetriaminepentaacetic acid [DTPA], and ethylenediaminetetra-acetic acid [EDTA]) with a sequential extraction procedure to describe changes in the different Cd, Cu, and Zn pools in the rhizosphere of S. viminalis and T. caerulescens grown on calcareous and acidic Swiss soils in a pot experiment. The sequential extraction was used to assess the chemical affinities of these heavy metals (HM) in the soil whereas the single extractants were used for estimating the bioavailable HM pools in the soils. Cadmium depletion in several pools was most apparent in the acidic soil, with a significant decrease observed in the NaNO3-, DTPA-, and EDTA-extractable fractions following T. caerulescens growth compared with control pots. The sequential extraction showed that most Cd extracted by the plant from the acidic soil originated from the organic pool, which implies that heavy metals bound to organic matter may constitute a significant part of the bioavailable Cd pool in soils. In the calcareous soil only a small amount of Cd was taken up by T. caerulescens, and this came mainly from the carbonate-bound fraction. This study shows that T. caerulescens, and to a lesser extent S. viminalis, can alter the heavy metal distribution in different soil pools within 90 d.  相似文献   

8.
Vegetation that develops spontaneously on metal-contaminated soils presents an opportunity to evaluate both metal bioavailability and the risks posed to biota. The behavior of Cd and Zn in the species of a spontaneously developed woodland, colonizing a canal embankment, has been investigated. Nitric-acid-extractable metal concentrations in the sediment-derived substrate ranged between 5.0 to 376 mg kg(-1)dry wt. Cd and 83.0 to 784 mg kg(-1)dry wt. Zn. The woodland is dominated by Willow (Salix) species. Salix caprea selectively accumulated Cd in all stem tissues, in contrast to S. viminalis, which regulated tissue Cd content. Both species showed an effective regulation of tissue Zn. Cadmium uptake by S. caprea was correlated with differences in soil pH, while Zn uptake was not. There was no relationship between tissue metal concentrations and soil metal nitric acid-extractable concentrations. Other aspects of ecosystem function appeared unaffected by the elevated Cd flux in S. caprea; leaf litter organisms present represented all major groups and there was no accumulation of organic matter. The woodland represents a potentially sustainable option for remediating a low value site with difficult access that does not involve removal of the contaminated material to a landfill or making a permanent inert cover.  相似文献   

9.
Risk of cadmium (Cd) in the human food chain in Cd-contaminated areas is often limited by phytotoxicity from zinc (Zn) that is associated with the Cd contamination. A semiarid area, 60 km downstream of a tin mine in Bolivia, was surveyed where irrigation with Cd-contaminated river water (65-240 microg Cd L(-1)) has increased median soil Cd to 20 mg kg(-1) while median soil Zn was only about 260 mg kg(-1). Cadmium concentrations in potato tubers increased from background values (0.05 mg kg(-1) dry wt.) in soils irrigated with spring water to a median value of 1.2 mg kg(-1) dry wt. in the affected area. Median concentration of Cd in soil solutions was 27 microg L(-1) and exceeded the corresponding value of Zn almost twofold. Soil-extractable chloride ranged from 40 to 1600 mg Cl(-) kg(-1) and was positively correlated with soil total Cd. Increasing soil solution Cl(-) decreased the solid-liquid distribution coefficient of Cd in soil. Soil total Cd explained 64% of the variation of tuber Cd concentration while only 3% of the variation was explained by soil extractable Cl(-) (n = 49). The estimated dietary Cd intake from potato consumption by the local population is about 100 microg d(-1) which exceeds the WHO recommended total daily intake. It is concluded that the food chain risk of Cd in the irrigation water of the semiarid area is aggravated by the association with Cl(-) and, potentially, by the relatively large Cd/Zn ratio.  相似文献   

10.
Chemical immobilization, an in situ remediation method where inexpensive chemicals are used to reduce contaminant solubility in contaminated soil, has gained attention. We investigated the effectiveness of lime-stabilized biosolid (LSB), N-Viro Soil (NV), rock phosphate (RP), and anaerobic biosolid (AB) to reduce extractability and plant and gastrointestinal (GI) bioavailability in three Cd-, Pb-, and Zn-contaminated soils from smelter sites. Treated (100 g kg(-1) soil) and control soils were incubated at 27 degrees C and -0.033 MPa (0.33 bar) water content for 90 d. The effect of soil treatment on metal extractability was evaluated by sequential extraction, on phytoavailability by a lettuce bioassay (Lactuca sativa L.), on human GI availability of Pb from soil ingestion by the Physiologically Based Extraction Test. The largest reductions in metal extractability and phytoavailability were from alkaline organic treatments (LSB and NV). Phytotoxic Zn [1188 mg Zn kg(-1) extracted with 0.5 M Ca(NO3)2] in Blackwell soil (disturbed soil) was reduced by LSB, NV, and RP to 166, 25, and 784 mg Zn kg(-1), respectively. Rock phosphate was the only treatment that reduced GI-available Pb in both gastric and intestinal solutions, 23 and 92%, respectively. Alkaline organic treatments (LSB, NV) decreases Cd transmission through the food chain pathway, whereas rock phosphate decreases risk from exposure to Pb via the soil ingestion pathway. Alkaline organic treatments can reduce human exposure to Cd and Pb by reducing Zn phytotoxicity and revegetation of contaminated sites.  相似文献   

11.
Debate exists over the biosolid phase (organic or inorganic) responsible for the reduction in phytoavailable Cd in soils amended with biosolids as compared with soils amended with inorganic salts. To test the importance of these two phases, adsorption isotherms were developed for soil samples (nine biosolids-amended soils and their five companion controls) and two biosolids samples from five experimental sites with documented histories of biosolids application. Subsamples were treated with 0.7 M NaClO to remove organic carbon. Cadmium nitrate was added to both moist soil samples and their soil inorganic fractions (SIF) in a 0.01 M Ca(NO3)2 solution at three pH levels (6.5, 5.5, and 4.5), and equilibrated at 22 +/- 1 degrees C for at least 48 h. Isotherms of Cd adsorption for biosolids-amended soil were intermediate to the control soil and biosolids. Decreasing pH did not remove the difference between these isotherms, although adsorption of Cd decreased with decreasing pH level. Organic matter removal reduced Cd adsorption on all soils but had little influence on the observed difference between biosolids-amended and control soils. Thus, increased adsorption associated with biosolids application was not limited to the organic matter addition from biosolids; rather, the biosolids application also altered the adsorptive properties of the SIF. The greater affinity of the inorganic fraction of biosolids-amended soils to adsorb Cd suggests that the increased retention of Cd on biosolids-amended soils is independent of the added organic matter and of a persistent nature.  相似文献   

12.
Using a soil column experiment, we compared the effect of a single dose and weekly additions of ethylenediaminetetraacetic acid (EDTA) and ethylenediaminedissuccinate (EDDS) on the uptake of Pb, Zn, and Cd by Chinese cabbage [Brassica rapa L. subsp. pekinensis (Lour.) Hanelt], and on the leaching of heavy metals through the soil profile. The analysis of plant material revealed that both chelates increased the concentrations of Pb and, to a lesser extent, also of Zn and Cd in the leaves of the test plant. The most effective applications were single doses of 10 mmol EDTA and EDDS kg(-1) soil, which caused the concentrations of Pb in the shoots to increase 94.2- and 102.3-fold, respectively, relative to the control. The same dose of EDTA increased the concentration of Zn and Cd in the leaves 4.3- and 3.8-fold and of EDDS 4.7- and 3.5-fold, respectively. In treatments with weekly additions and lower concentrations of both chelates, EDTA was more effective than EDDS in increasing the plant uptake of Pb. In soil columns treated with weekly additions of 10 mmol kg(-1) EDTA, on average 22.7, 7.0, and 39.8% of initial total Pb, Zn, and Cd in the soil were leached through the soil profile. The same amount of EDDS caused much lower leaching of Pb and Cd--only 0.8 and 1.5% of initial total concentrations. Leaching of Zn, 6.2% of the total concentration, was comparable with the EDTA treatment. A biotest with red clover (Trifolium pratense L.) indicated a greater phytotoxic effect of EDTA than EDDS addition. EDDS was also less toxic to soil fungi, as determined by phospholipid fatty acid (PLFA) analysis, and caused less stress to soil microorganisms, as indicated by the trans to cis PLFA ratio. Chelate addition did not prevent the development of arbuscular mycorrhiza on red clover.  相似文献   

13.
Shi J  Yu X  Zhang M  Lu S  Wu W  Wu J  Xu J 《Journal of environmental quality》2011,40(6):1695-1704
Heavy metal (copper [Cu], zinc [Zn], and cadmium [Cd]) pollution of soils from pig manures in soil-rice ( L.) systems under intensive farming was investigated, taking Nanhu, China, as the case study area. Two hundred pig manures and 154 rice straws, brown rice samples, and corresponding surface soil (0-15 cm) samples were collected in paddy fields from 150 farms in 16 major villages within the study area. The mean Cu and Zn concentrations in pig manures consistently exceeded the related standard. About 44 and 60% of soil samples exceed the Chinese Soil Cu and Cd Environmental Quality Standards, respectively. The concentration of Cu, Zn, and Cd in brown rice did not exceed the Chinese Food Hygiene Standard. There was a significant positive correlation between total Cu and Zn contents in soil and application rate of pig manures. Strong correlation was observed between the extractable Cu, Zn, and Cd in soil and the Cu, Zn, and Cd contents in the brown rice. The spatial distribution maps of Cu and Zn concentrations in brown rice, straw, and extractable soil Cu and Zn concentration also showed similar geographical trends. Further analyses on heavy metals loading flux and accumulation rates from pig manure applied suggested that Cu and Cd contents in soil currently have already exceeded the maximum permissible limit, and Zn, if still at current manure application rates, will reach the ceiling concentration limits in 9 yr. This study assists in understanding the risk of heavy metals accumulating from pig manure applications to agricultural soils.  相似文献   

14.
Cadmium solubility and sorption in an arable clay loam soil that had received sewage sludge for 41 years were compared to an unsludged control in batch studies. Soil pH dominated Cd sorption, explaining >92% of the variation in Kd values in both treatments. At any pH, Cd sorption was apparently slightly but significantly (p < 0.05) smaller in the sludge-amended soil compared to the control, even though the organic carbon content was 70% larger and the ammonium oxalate-extractable iron content was roughly doubled. Correction for dissolved organic carbon (DOC) complexation with the speciation model WHAM reduced the difference in sorption between treatments, but the sludged soil still had significantly smaller Kd values (p < 0.01). Batch equilibrations without addition of Cd showed that there was no significant difference in the solubility of "native" cadmium (defined as EDTA-extractable Cd) in sludged and control soils. The reason for the lack of increase in Cd sorption in the sludge-amended soil has not been established, but it may be due to competition for sorption sites on humic compounds with sludge-derived Fe and trace metals such as zinc. The fact that the pyrophosphate-extractable (i.e., organically associated) iron content was seven times larger in the sludged soil provides some supporting evidence for this hypothesis.  相似文献   

15.
The objective of this study was to determine the levels of major phytotoxic metals―including cadmium (Cd), copper (Cu), nickel (Ni), and zinc (Zn)―in agricultural soils of Western Macedonia, Greece. We also wanted to determine the possible relationships among elements and between soil properties and elemental concentrations. Surface soil samples, n = 570, were collected and analyzed. The results of the elemental analysis showed that the mean metal concentrations were consistent with reported typical concentrations found in Greek agricultural soils in the cases of Zn and Cu. Cd exhibited lower and Ni higher mean concentrations than the typical levels reported in the literature. Metal concentrations in the majority of the examined samples (>69%) were found to be higher than the respective critical plant-deficiency levels. However, only 0.4% and 0.2% of the analyzed soil samples, respectively, exhibited Cd and Ni concentrations higher than the levels that cause plant toxicity, as referenced by other investigators. These results suggest that the soils studied can be considered as unpolluted with respect to the examined food-chain metal contaminants. However, the levels of the metal concentrations in some of the soil samples, and the low correlation of the metals with soil properties, suggest an anthropogenic rather that lithogenic origin.  相似文献   

16.
Recent field experiments have shown that high chloride (Cl) in irrigation waters can increase soil cadmium (Cd) uptake by crops because of the formation of soluble ion-pair complexes of Cd with Cl in soil solution. The present study was aimed at testing a hypothesis that KCl in granulated PK fertilizers may enhance Cd uptake by crops from Cd-containing P fertilizers because of close contact between Cd and Cl in the same granules. Less effect would be expected if the same granular PK fertilizers were bulk-blended because of separation of Cd and Cl in different granules. A single superphosphate (SSP) containing 32 mg Cd kg(-1) was granulated by the compaction process with KCl at a P to K ratio = 1:1. Granular KCl was also bulk-blended with granular SSP or Cd-free monocalcium phosphate (MCP) at the same P to K ratio. An acid Ultisol (pH 5.2) was treated with PK fertilizers at 400 mg kg(-1) each for P and K. Upland rice (Oryza sativa L.) and soybean [Glycine max (L.) Merr.] were grown to maturity, and signalgrass (Brachiaria decumbens Stapf.) was cut four times during the study. The results showed that the agronomic effectiveness in increasing crop yield was the same with SSP and MCP whether granulated or bulk-blended with KCl. Concentrations of Cd in plant tissue samples of all crops were much lower for MCP than for SSP. In all the plant tissue samples, except grain samples of upland rice, Cd concentrations obtained with granulated (SSP + KCl) were significantly higher than that with bulk-blended (SSP) + (KCl).  相似文献   

17.
Concerns over the possible increase in phytoavailability of biosolids-applied trace metals to plants have been raised based on the assumption that decomposition of applied organic matter would increase phytoavailability. The objectives of this study were to assess the effect of time on chemical extractability and concentration of Cd, Cu, Ni, and Zn in plants on plots established by a single application of biosolids with high trace metals content in 1984. Biosolids were applied to 1.5 by 2.3 m confined plots of a Davidson clay loam (clayey, kaolinitic, thermic Rhodic Kandiudults) at 0, 42, 84, 126, 168, and 210 Mg ha(-1). The highest biosolids application supplied 4.5, 760, 43, and 620 kg ha(-1) of Cd, Cu, Ni, and Zn, respectively. Radish (Raphanus sativus L.), romaine lettuce (Lactuca sativa L. var. longifolia), and barley (Hordeum vulgare L.) were planted at the site for 3 consecutive years, 17 to 19 yr after biosolids application. Extractable Cd, Cu, Ni, and Zn (as measured by DTPA, CaCl(2,) and Mehlich-1) were determined on 15-cm depth samples from each plot. The DTPA-extractable Cu and Zn decreased by 58 and 42%, respectively, 17 yr after application despite a significant reduction in organic matter content. Biosolids treatments had no significant effect on crop yield. Plant tissue metal concentrations increased with biosolids rate but were within the normal range of these crops. Trace metal concentrations in plants generally correlated well with the concentrations extracted from soil with DTPA, CaCl(2), and Mehlich-1. Metal concentrations in plant tissue exhibited a plateau response in most cases. The uptake coefficient values generated for the different crops were in agreement with the values set by the Part 503 Rule.  相似文献   

18.
Plant uptake is one of the major pathways by which cadmium (Cd) in soils enters the human food chain. This study was conducted to investigate the uptake of Cd by crops from soils within the wastewater irrigation area (WIA) of Braunschweig (Germany) and to develop a simple process-oriented model that is suited to predict Cd uptake at the regional scale. The sandy soils within the WIA (4300 ha) have received considerable loads of heavy metals by irrigation using municipal wastewater for up to 40 years. In 1998 and 1999, we sampled soil and plant material at 40 potato (Solanum tuberosum L.), 40 sugar beet (Beta vulgaris L.), and 32 winter wheat (Triticum aestivum L.) fields. In both years and for all three crops, we found close linear relationships between the Cd content of plant material and the Cd concentration in soil solution. For all three crops, we observed a trend of relatively increased Cd uptake in the year with the higher saturation deficit of the atmosphere. We interpret this to indicate that transpiration plays an important role in the Cd uptake of crops under the conditions of the WIA. In modeling the uptake of Cd by crops, we assume that uptake is proportional to mass flow, that is, the product of water transpired, Cd concentration in soil solution, and a plant-specific empirical parameter. The simulations agreed well with the observed Cd contents in crops. Our model explained between 66 and 87% of the observed variance.  相似文献   

19.
Sesbania rostrata in pure and amended Pb/Zn tailings. About 90% of seeds of S. rostrata germinated in pure Pb/Zn tailings, which contained high concentrations of Pb, Zn, Cu, and Cd. Although seedling growth suffered from the adverse environment of Pb/Zn tailings, they became established on tailings stands, in the greenhouse, as well as on the actual tailings dam, and completed their life cycle in 4 months. Dry matter production and nitrogen accumulation was 3200 kg/ha and 69.4 kg/ha, respectively in the actual tailings dam. Applying inorganic fertilizer to Pb/Zn tailings led to no obvious improvement in growth and nodulation of S. rostrata, while tailings amended by river sediment or domestic refuse rich in organic matter improved the growth and nodulation of the species. Azorhizobium caulinodans survived and formed N-fixing stem and root nodules in S. rostrata grown in pure Pb/Zn tailings with a nodule biomass exceeding 300 mg fresh matter per plant.  相似文献   

20.
用CdCl2将盆栽土壤Cd浓度处理为1mg/kg、5mg/kg、10mg/kg、20mg,/kg、30mg/kg种植棉花,研究棉花对镉的吸收及镉在棉花体内的分布规律。结果表明,当土壤镉浓度小于30mg/kg时,镉在棉花体内的分布呈现不同的规律。当土壤镉浓度小于5mg/kg时,镉主要分布在棉花的地上部;当土壤镉浓度大于20mg/kg时,镉主要分布在棉花的叶片、根、茎中,其中叶片的镉含量最高,棉絮镉含量最低。不同镉污染水平下,棉花的镉富集系数均小于1。当土壤镉污染浓度为5mg/kg时,棉花叶片的镉富集系数为0.76。在同一镉污染水平下,棉花叶片的镉转运系数最高。当土壤镉含量小于20mg/kg时,棉花茎、叶、棉絮的转运系数平均为4.63。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号