首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 270 毫秒
1.
In some high-fertility, high-stocking-density grazing systems, nitrate (NO(3)) leaching can be great, and ground water NO(3)-N concentrations can exceed maximum contaminant levels. To reduce high N leaching losses and concentrations, alternative management practices need to be used. At the North Appalachian Experimental Watershed near Coshocton, OH, two management practices were studied with regard to reducing NO(3)-N concentrations in ground water. This was following a fertilized, rotational grazing management practice from which ground water NO(3)-N concentrations exceeded maximum contaminant levels. Using four small watersheds (each approximately 1 ha), rotational grazing of a grass forage without N fertilizer being applied and unfertilized grass forage removed as hay were used as alternative management practices to the previous fertilized pastures. Ground water was sampled at spring developments, which drained the watershed areas, over a 7-yr period. Peak ground water NO(3)-N concentrations before the 7-yr study period ranged from 13 to 25.5 mg L(-1). Ground water NO(3)-N concentrations progressively decreased under each watershed and both management practices. Following five years of the alternative management practices, ground water NO(3)-N concentrations ranged from 2.1 to 3.9 mg L(-1). Both grazing and haying, without N fertilizer being applied to the forage, were similarly effective in reducing the NO(3)-N levels in ground water. This research shows two management practices that can be effective in reducing high NO(3)-N concentrations resulting from high-fertility, high-stocking-density grazing systems, including an option to continue grazing.  相似文献   

2.
Changes in agricultural management can minimize NO3-N leaching, but then the time needed to improve ground water quality is uncertain. A study was conducted in two first-order watersheds (30 and 34 ha) in Iowa's Loess Hills. Both were managed in continuous corn (Zea mays L.) from 1964 through 1995 with similar N fertilizer applications (average 178 kg ha(-1) yr(-1)), except one received applications averaging 446 kg N ha(-1) yr(-1) between 1969 and 1974. This study determined if NO3-N from these large applications could persist in ground water and baseflow, and affect comparison between new crop rotations implemented in 1996. Piezometer nests were installed and deep cores collected in 1996, then ground water levels and NO3-N concentrations were monitored. Tritium and stable isotopes (2H, 18O) were determined on 33 water samples in 2001. Baseflow from the heavily N-fertilized watershed had larger average NO3-N concentrations, by 8 mg L(-1). Time-of-travel calculations and tritium data showed ground water resides in these watersheds for decades. "Bomb-peak" precipitation (1963-1980) most influenced tritium concentrations near lower slope positions, while deep ground water was dominantly pre-1953 precipitation. Near the stream, greater recharge and mixed-age ground water was suggested by stable isotope and tritium data, respectively. Using sediment-core data collected from the deep unsaturated zone between 1972 and 1996, the increasing depth of a NO3-N pulse was related to cumulative baseflow (r2 = 0.98), suggesting slow downward movement of NO3-N since the first experiment. Management changes implemented in 1996 will take years to fully influence ground water NO3-N. Determining ground water quality responses to new agricultural practices may take decades in some watersheds.  相似文献   

3.
Agriculture in the U.S. Midwest faces the formidable challenge of improving crop productivity while simultaneously mitigating the environmental consequences of intense management. This study examined the simultaneous response of nitrate nitrogen (NO3-N) leaching losses and maize (Zea mays L.) yield to varied fertilizer N management using field observations and the Integrated BIosphere Simulator (IBIS) model. The model was validated against six years of field observations in chisel-plowed maize plots receiving an optimal (180 kg N ha(-1)) fertilizer N application and in N-unfertilized plots on a silt loam soil near Arlington, Wisconsin. Predicted values of grain yield, harvest index, plant N uptake, residue C to N ratio, leaf area index (LAI), grain N, and drainage were within 20% of observations. However, simulated NO3-N leaching losses, NO3-N concentrations, and net N mineralization exhibited less interannual variability than observations, and had higher levels of error (20-65%). Potential effects of 30% higher (234 kg N ha(-1)) and 30% lower (126 kg N ha(-1)) fertilizer N use (from optimal) on NO3-N leaching loss and maize yield were simulated. A 30% increase in fertilizer N use increased annual NO3-N leaching by 56%, while yield increased by only 1%. The NO3-N concentration in the leachate solution at 1.4 m below the soil surface was 30.7 mg L(-1). When fertilizer N use was reduced by 30% (from optimal), annual NO3-N leaching losses declined by 42% after seven years, and annual average yield only decreased by 8%. However, NO3-N concentration in the leachate solution remained above 10 mg L(-1) (11.3 mg L(-1)). Clearly, nonlinear relationships existed between changes in fertilizer use and NO3-N leaching losses over time. Simulated changes in NO3-N leaching were greater in magnitude than fertilizer N use changes.  相似文献   

4.
Controlling nitrate leaching in irrigated agriculture   总被引:3,自引:0,他引:3  
The impact of improved irrigation and nutrient practices on ground water quality was assessed at the Nebraska Management System Evaluation Area using ground water quality data collected from 16 depths at 31 strategically located multilevel samplers three times annually from 1991 to 1996. The site was sectioned into four 13.4-ha management fields: (i) a conventional furrow-irrigated corn (Zea mays L.) field; (ii) a surge-irrigated corn field, which received 60% less water and 31% less N fertilizer than the conventional field; (iii) a center pivot-irrigated corn field, which received 66% less water and 37% less N fertilizer than the conventional field; and (iv) a center pivot-irrigated alfalfa (Medicago sativa L.) field. Dating (3H/3He) indicated that the uppermost ground water was <1 to 2 yr old and that the aquifer water was stratified with the deepest water approximately 20 yr old. Recharge during the wet growing season in 1993 reduced the average NO3-N concentration in the top 3 m 20 mg L(-1), effectively diluting and replacing the NO3-contaminated water. Nitrate concentrations in the shallow zone of the aquifer increased with depth to water. Beneath the conventional and surge-irrigated fields, shallow ground water concentrations returned to the initial 30 mg NO3-N L(-1) level by fall 1995; however, beneath the center pivot-irrigated corn field, concentrations remained at approximately 13 mg NO3-N L(-1) until fall 1996. A combination of sprinkler irrigation and N fertigation significantly reduced N leaching with only minor reductions (6%) in crop yield.  相似文献   

5.
Understanding water and nutrient transport through the soil profile is important for efficient irrigation and nutrient management to minimize excess nutrient leaching below the rootzone. We applied four rates of N (28, 56, 84, and 112 kg N ha(-1); equivalent to one-fourth of annual N rates being evaluated in this study for bearing citrus trees), and 80 kg Br- ha(-1) to a sandy Entisol with >25-yr-old citrus trees to (i) determine the temporal changes in NO3-N and Br- distribution down the soil profile (2.4 m), and (ii) evaluate the measured concentrations of NO3-N and Br- at various depths with those predicted by the Leaching Estimation and Chemistry Model (LEACHM). Nitrate N and Br concentrations approached the background levels by 42 and 214 d, respectively. Model-predicted volumetric water content and concentrations of NO3-N and Br- at various depths within the entire soil profile were very close to measured values. The LEACHM data showed that 21 to 36% of applied fertilizer N leached below the root zone, while tree uptake accounted for 40 to 53%. Results of this study enhance our understanding of N dynamics in these sandy soils, and provide better evaluation of N and irrigation management to improve uptake efficiency, reduce N losses, and minimize the risk of ground water nitrate contamination from soils highly vulnerable to nutrient leaching.  相似文献   

6.
Land application of animal manures, such as pig slurry (PS), is a common practice in intensive-farming agriculture. However, this practice has a pitfall consisting of the loss of nutrients, in particular nitrate, toward water courses. The objective of this study was to evaluate nitrate leaching for three application rates of pig slurry (50, 100, and 200 Mg ha(-1)) and a control treatment of mineral fertilizer (275 kg N ha(-1)) applied to corn grown in 10 drainage lysimeters. The effects of two irrigation regimes (low vs. high irrigation efficiency) were also analyzed. In the first two irrigation events, drainage NO(3)-N concentrations as high as 145 and 69 mg L(-1) were measured in the high and moderate PS rate treatments, respectively, in the low irrigation efficiency treatments. This indicates the fast transformation of the PS ammonium into nitrate and the subsequent leaching of the transformed nitrate. Drainage NO(3)-N concentration and load increased linearly by 0.69 mg NO(3)-N L(-1) and 4.6 kg NO(3)-N ha(-1), respectively, for each 10 kg N ha(-1) applied over the minimum of 275 kg N ha(-1). An increase in irrigation efficiency did not induce a significant increase of leachate concentration and the amount of nitrate leached decreased about 65%. Application of low PS doses before sowing complemented with sidedressing N application and a good irrigation management are the key factors to reduce nitrate contamination of water courses.  相似文献   

7.
Nitrate (NO3-) leaching to ground water poses water quality concerns in some settings. Riparian buffers have been advocated to reduce excess ground water NO3- concentrations. We characterized inorganic N in soil solution and shallow ground water for 16 paired cropland-riparian plots from 2003 to 2005. The sites were located at two private dairy farms in Central New York on silt and gravelly silt loam soils (Aeric Endoaqualfs, Fluvaquentic Endoaquepts, Fluvaquentic Eutrudepts, Glossaquic Hapludalfs, and Glossic Hapludalfs). It was hypothesized that cropland N inputs and soil-landscape variability would jointly affect NO3- leaching and transformations in ground water. Results showed that well and moderately well drained fields had consistently higher ground water NO3- compared to more imperfectly drained fields receiving comparable N inputs. Average 50-cm depth soil solution NO3- and ground water dissolved oxygen (DO) explained 64% of average cropland ground water NO3- variability. Cropland ground water with an average DO of <3 mg L(-1) tended to have <4 mg L(-1) of NO3- with a water table depth (WTD) of 相似文献   

8.
To determine whether sludge applications to soil would lead in the short term to toxicity to plants and trace metal leaching to ground water, we studied the fate of some trace and major elements in a brown soil-meadow system just after repeated sewage sludge applications. The main pathways were quantified over a 37-mo period with undisturbed monolith lysimeters including two controls, four lysimeters treated with 3 x 100 m3 ha-1, and four with 3 x 400 m3 ha-1 of sewage sludge. In drainage waters the effect was limited in time and, in the case of NO3-N and Cl, delayed by 1 to 4 mo and lasted several months before returning to background conditions. Nickel and Cu concentrations in solution increased also after sludge application and had not return to background conditions after 20 mo. Trace metal concentrations did not reach toxic levels in herbage and N, Cu, Cd, and Zn concentrations were correlated with the first sludge input only. Calculated over a 37-mo period, total element output was significantly increased for Ca, NO3-N, and Ni only, because of the time-dependent response to sludge application and high variability between replicates. Output was maximal for Cd, with 1.5% of total input for the 100 m3 ha-1 treatment. Particulate matter in drainage water accounted for an average of 20% of trace metal leaching. The main long-term risk was the rapid increase in trace metal concentrations in the topsoil, which may eventually lead to toxic levels in herbage.  相似文献   

9.
Nitrate N fluxes from tile-drained watersheds have been implicated in water quality studies of the Mississippi River basin, but actual NO3-N loads from small watersheds during long periods are poorly documented. We evaluated discharge and NO3-N fluxes passing the outlet of an Iowa watershed (5134 ha) and two of its tile-drained subbasins (493 and 863 ha) from mid-1992 through 2000. The cumulative NO3-N load from the catchment was 168 kg ha(-1), and 176 and 229 kg ha(-1) from the subbasins. The outlet had greater total discharge (1831 mm) and smaller flow-weighted mean NO3-N concentration (9.2 mg L(-1)) than the subbasins, while the larger subbasin had greater discharge (1712 vs. 1559 mm) and mean NO3-N concentration (13.4 vs. 11.3 mg L(-1)) than the smaller subbasin. Concentrations exceeding 10 mg L(-1) were common, but least frequent at the outlet. Nitrate N was generally not diluted by large flows, except during 1993 flooding. The outlet showed smaller NO3-N concentrations at low flows. Relationships between discharge and NO3-N flux showed log-log slopes near 1.0 for the subbasins, and 1.2 for the outlet, considering autocorrelation and measurement-error effects. We estimated denitrification of subbasin NO3-N fluxes in a hypothetical wetland using published data. Assuming that temperature and NO3-N supply could limit denitrification, then about 20% of the NO3-N would have been denitrified by a wetland constructed to meet USDA-approved criteria. The low efficiency results from the seasonal timing and NO3-N content of large flows. Therefore, agricultural and wetland best management practices (BMPs) are needed to achieve water quality goals in tile-drained watersheds.  相似文献   

10.
Field experiments often assume that Br-, 14NO3(-)-N, and 15NO3(-)-N have similar leaching kinetics. This study tested this assumption. Twenty-four undisturbed soil columns (15-cm diameter) were collected from summit-shoulder, backslope, and footslope positions of a no-tillage field with a corn (Zea mays L.)-soybean [Glycine max (L.) Merr.] rotation. Each of the landscape positions had a different soil series. After conditioning the columns with 4 L of 0.01 M CaCl2 (2 pore volumes), 15N-labeled Ca(NO3)2 and KBr were applied to the soil surface and leached with 4 L of 0.01 M CaCl2. Leachate was collected, weighed, and analyzed for NO3(-)-N, NH4(+)-N, 15N, 14N, and Br-. The total amount of 15NO3(-)-N and 14NO3(-)-N collected in 1000, 2000, and 3000 mL of leachate was similar. These data suggest that 15N discrimination during leaching did not occur. Bromide leached faster through the columns than NO3(-)-N. The more rapid transport of Br- than NO3(-)-N was attributed to lower Br- (0.002 +/- 0.036 mg kg(-1)) than NO3(-)-N (0.17 +/- 0.03 mg kg(-1)) sorption. Results from this study suggest that (i) if Br- is used to estimate NO3(-)-N leaching loss, then NO3(-)-N leaching losses may be overestimated by 25%; (ii) the potential exists for landscape position to influence anion retention and movement in soil; and (iii) 15N discrimination was not detected during the leaching process.  相似文献   

11.
Leaching of nitrogen (N) after forest fertilization has the potential to pollute ground and surface water. The purpose of this study was to quantify N leaching through the primary rooting zone of N-limited Douglas-fir [Pseudotsuga menziesii (Mirb.) Franco] forests the year after fertilization (224 kg N ha(-1) as urea) and to calculate changes in the N pools of the overstory trees, understory vegetation, and soil. At six sites on production forests in the Hood Canal watershed, Washington, tension lysimeters and estimates of the soil water flux were used to quantify the mobilization and leaching of NO(3)-N, NH(4)-N, and dissolved organic nitrogen below the observed rooting depth. Soil and vegetation samples were collected before fertilization and 1 and 6 mo after fertilization. In the year after fertilization, the total leaching beyond the primary rooting zone in excess of control plots was 4.2 kg N ha(-1) (p = 0.03), which was equal to 2% of the total N applied. The peak NO(3)-N concentration that leached beyond the rooting zone of fertilized plots was 0.2 mg NO(3)-N L(-1). Six months after fertilization, 26% of the applied N was accounted for in the overstory, and 27% was accounted for in the O+A horizon of the soil. The results of this study indicate that forest fertilization can lead to small N leaching fluxes out of the primary rooting zone during the first year after urea application.  相似文献   

12.
Excessive nitrogen rates for potato production in northeast Florida have been declared as a potential source of nitrate pollution in the St. Johns River watershed. This 3-yr study examined the effect of N rates (0, 168, and 280 kg ha(-1)) split between planting and 40 d after planting on the NO(3)-N concentration in the perched ground water under potato (Solanum tuberosum cv. Atlantic) in rotation with sorghum sudan grass hybrid (Sorghum vulgare x Sorghum vulgare var. sudanese, cv. SX17), cowpea (Vigna unguiculata cv. Iron Clay), and greenbean (Phaseolus vulgare cv. Espada). Soil solution from the root zone and water from the perched ground water under potato were sampled periodically using lysimeters and wells, respectively. Fertilization at planting increased the NO(3)-N concentration in the perched ground water, but no effect of the legumes in rotation with potatoes on nitrate leaching was detected. Fertilization of green bean increased NO(3)-N concentration in the perched ground water under potato planted in the following season. The NO(3)-N concentration in the soil solution within the potato root zone followed a similar pattern to that of the perched ground water but with higher initial values. The NO(3)-N concentration in the perched ground water was proportional to the rainfall magnitude after potato planting. A significant increase in NO(3)-N concentration in the perched ground water under cowpea planted in summer after potato was detected for the side-dressing of 168 kg ha(-1) N applied to potato 40 d after planting but not at the 56 kg ha(-1) N side-dress. Elevation in NO(3)-N concentration in the perched ground water under sorghum was not significant, supporting its use as an effective N catch crop.  相似文献   

13.
The impact of vegetative filter strips to reduce the delivery of nonpoint source pollutants from agricultural land to inland water systems is now recognized as an important element in overall agro-ecosystem management. A glasshouse experiment was undertaken to measure the effectiveness of tree (Eucalyptus camaldulensis Dehnh. and Casuarina cunninghamiana Mq.) and pasture filter strips to intercept lateral movement of NO(3)-N in soil water. Tree treatments retained significantly more NO(3)-N associated with shallow soil water movement (between the A and B soil horizons) than bare ground. Nitrate-N removal was not significantly different between trees and pasture, and among the tree treatments. However, uptake and accumulation of NO(3)-N by pastures was significantly (P < 0.001) greater than the trees. The average rates of N accumulation were 0.82 g m(-)(2) and 1.52 g m(-2) wk(-1) for the tree plots and the pasture plots, respectively. The experiment also showed that the efficiency of NO(3)-N removal from soil solutions by trees was greater when NO(3)-N concentrations were relatively higher in the soil (81.4% removal at 20 mg L(-1) compared to 68.1% at 10 mg L(-1)).  相似文献   

14.
Municipal biosolids are typically not used on the steepest of forested slopes in the U.S. Pacific Northwest. The primary concern in using biosolids on steep slopes is movement of biosolids particles and soluble nutrients to surface waters during runoff events. We examined the pattern and extent of P and N runoff from a perennial stream draining a small, forested 21.4-ha watershed in western Washington before and after biosolids application. In this study, we applied biosolids at a rate of 13.5 Mg ha(-1) (700 kg N ha(-1) and 500 kg P ha(-1)) to 40% of the watershed following nearly 1.5 years of pre-application water sampling and 1.5 years thereafter. There was no evidence of direct runoff of P or N from biosolids into surface water. Elevated surface water discharge did not change the concentration of PO4-P, biologically available phosphorus (BAP), bioavailable particulate phosphorus (BPP), or total P nor did it affect the concentration-discharge relationship. Some instances of total P concentrations exceeding the USEPA surface water standard of 0.1 mg L(-1) were observed following biosolids application. However, total P in 27 Creek was predominately in particulate form and not labile, suggesting that detritus moving into the main creek channel and ephemeral drainage courses may be the principal P source. Ammonium N concentrations in runoff water were consistent before and after biosolids application, ranging from below detection limits (0.01 mg L(-1)) to 0.1 mg L(-1); no concentration-discharge relationship existed. Biosolids application changed the 27 Creek concentration-discharge relationship for NO3(-)-N. Before application, no relationship existed. Beginning nine months after biosolids application, increases in discharge were positively related to increases in NO3(-)-N concentrations. Nitrate concentrations in runoff following biosolids application were approximately 10 times less than the USEPA drinking water standard of 10 mg L(-1).  相似文献   

15.
Florida dairies need year-round forage systems that prevent loss of N to ground water from waste effluent sprayfields. Our purpose was to quantify forage N removal and monitor nitrate N (NO3(-)-N) concentrations in soil water below the rooting zone for two forage systems during four 12-mo cycles (1996-2000). Soil in the sprayfield is an excessively drained Kershaw sand (thermic, uncoated Typic Quartzipsamment). Over four cycles, average loading rates of effluent N were 500, 690, and 910 kg ha(-1) per cycle. Nitrogen removed by the bermudagrass (Cynodon spp.)-rye (Secale cereale L.) system (BR) during the first three cycles was 465 kg ha(-1) per cycle for the low loading rate, 528 kg ha(-1) for the medium rate, and 585 kg ha(-1) for the high. For the corn (Zea mays L.)-forage sorghum [Sorghum bicolor (L.) Moench]-rye system (CSR), N removals were 320 kg ha(-1) per cycle for the low rate, 327 kg ha(-1) for the medium, and 378 kg ha(-1) for the high. The higher N removals for BR were attributed to higher N concentration in bermudagrass (18.1-24.2 g kg(-1)) than in corn and forage sorghum (10.3-14.7 g kg(-1)). Dry matter yield declined in the fourth cycle for bermudagrass but N removal continued to be higher for BR than CSR. The BR system was much more effective at preventing NO3(-)-N leaching. For CSR, NO3(-)-N levels in soil water (1.5 m below surface) increased steeply during the period between the harvest of one forage and canopy dosure of the next. Overall, the BR system was better than CSR at removing N from the soil and maintaining low NO3(-)-N concentrations below the rooting zone.  相似文献   

16.
In northern Florida, year-round forage systems are used in dairy effluent sprayfields to reduce nitrate leaching. Our purpose was to quantify forage N removal and monitor nitrate N (NO3(-)-N) concentration below the rooting zone for two perennial, sod-based, triple-cropping systems over four 12-mo cycles (1996-2000). The soil is an excessively drained Kershaw sand (thermic, uncoated Typic Quartzip-samment). Effluent N rates were 500, 690, and 910 kg ha(-1) per cycle. Differences in N removal between a corn (Zea mays L.)-bermudagrass (Cynodon spp.)-rye (Secale cereale L.) system (CBR) and corn-perennial peanut (Arachis glabrata Benth.)-rye system (CPR) were primarily related to the performance of the perennial forages. Nitrogen removal of corn (125-170 kg ha(-1)) and rye (62-90 kg ha(-1)) was relatively stable between systems and among cycles. The greatest N removal was measured for CBR in the first cycle (408 kg ha(-1)), with the bermudagrass removing an average of 191 kg N ha(-1). In later cycles, N removal for bermudagrass declined because dry matter (DM) yield declined. Yield and N removal of perennial peanut increased over the four cycles. Nitrate N concentrations below the rooting zone were lower for CBR than CPR in the first two cycles, but differences were inconsistent in the latter two. The CBR system maintained low NO3(-)-N leaching in the first cycle when the bermudagrass was the most productive; however, it was not a sustainable system for long-term prevention of NO3(-)-N leaching due to declining bermudagrass yield in subsequent cycles. For CPR, effluent N rates > or = 500 kg ha(-1) yr(-1) have the potential to negatively affect ground water quality.  相似文献   

17.
Subsurface drainage, a water management practice used to remove excess water from poorly drained soils, can transport substantial amounts of NO3 from agricultural crop production systems to surface waters. A field study was conducted from the fall of 1986 through 1994 on a tile-drained Canisteo clay loam soil (fine-loamy, mixed, superactive, calcareous, mesic Typic Endoaquoll) to determine the influence of time of N application and use of nitrapyrin [NP; 2-chloro-6-(trichloromethyl) pyridine] on NO3 losses from a corn (Zea mays L.)-soybean [Glycine max (L.) Merr.] rotation. Four anhydrous ammonia treatments [fall N, fall N + NP, spring preplant N, and split N (40% preplant and 60% sidedress)] were replicated four times and applied at 150 kg N ha(-1) for corn on individual drainage plots. Sixty-two percent of the annual drainage and 69% of the annual NO3 loss occurred in April, May, and June. Flow-weighted NO3-N concentrations in the drainage water were two to three times greater in the two years following the three-year dry period compared with preceding and succeeding years. Nitrate N concentrations and losses in the drainage from corn were greatest for fall N with little difference among the other three N treatments. Nitrate losses from soybean were affected more by residual soil NO3 following corn than by the N treatments per se. Averaged across the four rotation cycles, flow-normalized NO3-N losses ranked in the order: fall N > split N > spring N = fall N + NP. Under these conditions NO3 losses from a corn-soybean rotation into subsurface drainage can be reduced by 13 to 18% by either applying N in the spring or using NP with late fall-applied ammonia.  相似文献   

18.
By 19%, standard remediation techniques had significantly reduced the concentration of nitrate nitrogen (NO3- -N) in local ground water at the site of a 1989 anhydrous ammonia spill, but NO3- -N concentrations in portions of the site still exceeded the public drinking water standard. Our objective was to determine whether local soil and ground water quality could be improved with alfalfa (Medicago sativa L.). A 3-yr study was conducted in replicated plots (24 by 30 m) located hydrologically upgradient of the ground water under the spill site. Three alfalfa entries ['Agate', Ineffective Agate (a non-N2-fixing elite germplasm similar to Agate), and MWNC-4 (an experimental germplasm)] were seeded in the spring of 1996. Corn (Zea mays L.) or wheat (Triticum aestivum L.) was seeded adjacent to the alfalfa each year. Crops were irrigated with N-containing ground water to meet water demand. During the 3-yr period, about 540 kg of inorganic N was removed from the aquifer through irrigation of 4.9 million L water. Cumulative N removal from the site over 3 yr was 972 kg N ha(-1) in Ineffective Agate alfalfa hay, compared with 287 kg N ha(-1) for the annual cereal grain. Soil solution NO3- concentrations were reduced to low and stable levels by alfalfa, but were more variable under the annual crops. Ground water quality improved, as evidenced by irrigation water N concentration. We do not know how much N was removed by the N2-fixing alfalfas, but it appears that either fixing or non-N2-fixing alfalfa will effectively remove inorganic N from N-affected sites.  相似文献   

19.
Reducing ammonia (NH3) emissions through slurry incorporation or other soil management techniques may increase nitrate (NO3) leaching, so quantifying potential losses from these alternative pathways is essential to improving slurry N management. Slurry N losses, as NH3 or NO3 were evaluated over 4 yr in south-central Wisconsin. Slurry (i.e., dairy cow [Bos taurus] manure from a storage pit) was applied each spring at a single rate (-75 m3 ha(-1)) in one of three ways: surface broadcast (SURF), surface broadcast followed by partial incorporation using an aerator implement (AER-INC), and injection (INJ). Ammonia emissions were measured during the 120 h following slurry application using chambers, and NO3 leaching was monitored in drainage lysimeters. Yield and N3 uptake of oat (Avena sativa L.), corn (Zea mays L.), and winter rye (Secale cereale L.) were measured each year, and at trial's end soils were sampled in 15- to 30-cm increments to 90-cm depth. There were significant tradeoffs in slurry N loss among pathways: annual mean NH3-N emission across all treatments was 5.3, 38.3, 12.4, and 21.8 kg ha(-1) and annual mean NO3-N leaching across all treatments was 24.1, 0.9, 16.9, and 7.3 kg ha' during Years 1, 2, 3, and 4, respectively. Slurry N loss amounted to 27.1% of applied N from the SURF treatment (20.5% as NH3-N and 6.6% as NO,-N), 23.3% from AER-INC (12.0% as NH3-N and 11.3% as NO3-N), and 9.19% from INJ (4.4% as NH3-N and 4.7% as NO3-N). Although slurry incorporation decreased slurry N loss, the conserved slurry N did not significantly impact crop yield, crop N uptake or soil properties at trial's end.  相似文献   

20.
Various N fertilizer sources are available for lawn turf. Few field studies, however, have determined the losses of nitrate (NO(3)-N) from lawns receiving different formulations of N fertilizers. The objectives of this study were to determine the differences in NO(3)-N leaching losses among various N fertilizer sources and to ascertain when losses were most likely to occur. The field experiment was set out in a completely random design on a turf typical of the lawns in southern New England. Treatments consisted of four fertilizer sources with fast- and slow-release N formulations: (i) ammonium nitrate (AN), (ii) polymer-coated sulfur-coated urea (PCSCU), (iii) organic product, and (iv) a nonfertilized control. The experiment was conducted across three years and fertilized to supply a total of 147 kg N ha(-1) yr(-1). Percolate was collected with zero-tension lysimeters. Flow-weighted NO(3)-N concentrations were 4.6, 0.57, 0.31, and 0.18 mg L(-1) for AN, PCSCU, organic, and the control, respectively. After correcting for control losses, average annual NO(3)-N leaching losses as a percentage of N applied were 16.8% for AN, 1.7% for PCSCU, and 0.6% for organic. Results indicate that NO(3)-N leaching losses from lawn turf in southern New England occur primarily during the late fall through the early spring. To reduce the threat of NO(3)-N leaching losses, lawn turf fertilizers should be formulated with a larger percentage of slow-release N than soluble N.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号