首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
In northern Florida, year-round forage systems are used in dairy effluent sprayfields to reduce nitrate leaching. Our purpose was to quantify forage N removal and monitor nitrate N (NO3(-)-N) concentration below the rooting zone for two perennial, sod-based, triple-cropping systems over four 12-mo cycles (1996-2000). The soil is an excessively drained Kershaw sand (thermic, uncoated Typic Quartzip-samment). Effluent N rates were 500, 690, and 910 kg ha(-1) per cycle. Differences in N removal between a corn (Zea mays L.)-bermudagrass (Cynodon spp.)-rye (Secale cereale L.) system (CBR) and corn-perennial peanut (Arachis glabrata Benth.)-rye system (CPR) were primarily related to the performance of the perennial forages. Nitrogen removal of corn (125-170 kg ha(-1)) and rye (62-90 kg ha(-1)) was relatively stable between systems and among cycles. The greatest N removal was measured for CBR in the first cycle (408 kg ha(-1)), with the bermudagrass removing an average of 191 kg N ha(-1). In later cycles, N removal for bermudagrass declined because dry matter (DM) yield declined. Yield and N removal of perennial peanut increased over the four cycles. Nitrate N concentrations below the rooting zone were lower for CBR than CPR in the first two cycles, but differences were inconsistent in the latter two. The CBR system maintained low NO3(-)-N leaching in the first cycle when the bermudagrass was the most productive; however, it was not a sustainable system for long-term prevention of NO3(-)-N leaching due to declining bermudagrass yield in subsequent cycles. For CPR, effluent N rates > or = 500 kg ha(-1) yr(-1) have the potential to negatively affect ground water quality.  相似文献   

2.
In northern Florida, forages are grown in dairy effluent sprayfields to recover excess P. Our purpose was to evaluate five year-round forage systems for their capacity to remove P from a dairy sprayfield. The soil is a Kershaw sand (thermic, uncoated Typic Quartzipsamment). Systems included bermudagrass (Cynodon spp.)-rye (Secale cereale L.) (BR), perennial peanut (Arachis glabrata Benth.)-rye (PR), corn (Zea mays L.)-forage sorghum [Sorghum bicolor (L.) Moench]-rye (CSR), corn-bermudagrass-rye (CBR), and corn-perennial peanut-rye (CPR). Forages were grown for five 12-mo cycles. Effluent P rates were 80, 120, and 165 kg ha-1 cycle-1. The 5-cycle P removal was 67 kg ha-1 cycle-1 for BR, 54 kg ha-1 for CBR, 52 kg for CSR, 45 kg for PR, and 43 for CPR. Removal of P by winter rye was low. There were differences in system rankings among cycles primarily due to changes in the performance of perennial forages. In the first two cycles, BR had the greatest P removal (91 kg ha-1 cycle-1) due to high bermudagrass yield and P concentration. In the first cycle, P removal was lowest for PR (36 kg ha-1) because perennial peanut was slow to establish. In later cycles, P removal for BR declined because bermudagrass yield and P concentration declined. It increased for PR because peanut yield increased. The yield of corn in CBR, CPR, and CSR was consistently high but P concentration was modest (avg. 2.2 g kg-1). Sorghum produced moderate but stable yield and had low P levels (avg. 1.8 g kg-1). Effluent rate marginally affected the performance of most grasses. For P recovery in dairy sprayfields in northern Florida, the best warm-season forage would likely be a high yielding, persistent bermudagrass.  相似文献   

3.
Leaching of nitrogen (N) after forest fertilization has the potential to pollute ground and surface water. The purpose of this study was to quantify N leaching through the primary rooting zone of N-limited Douglas-fir [Pseudotsuga menziesii (Mirb.) Franco] forests the year after fertilization (224 kg N ha(-1) as urea) and to calculate changes in the N pools of the overstory trees, understory vegetation, and soil. At six sites on production forests in the Hood Canal watershed, Washington, tension lysimeters and estimates of the soil water flux were used to quantify the mobilization and leaching of NO(3)-N, NH(4)-N, and dissolved organic nitrogen below the observed rooting depth. Soil and vegetation samples were collected before fertilization and 1 and 6 mo after fertilization. In the year after fertilization, the total leaching beyond the primary rooting zone in excess of control plots was 4.2 kg N ha(-1) (p = 0.03), which was equal to 2% of the total N applied. The peak NO(3)-N concentration that leached beyond the rooting zone of fertilized plots was 0.2 mg NO(3)-N L(-1). Six months after fertilization, 26% of the applied N was accounted for in the overstory, and 27% was accounted for in the O+A horizon of the soil. The results of this study indicate that forest fertilization can lead to small N leaching fluxes out of the primary rooting zone during the first year after urea application.  相似文献   

4.
Residual soil nitrate after potato harvest   总被引:1,自引:0,他引:1  
Nitrogen loss by leaching is a major problem, particularly with crops requiring large amounts of N fertilizer. We evaluated the effect of N fertilization and irrigation on residual soil nitrate following potato (Solanum tuberosum L.) harvests in the upper St-John River valley of New Brunswick, Canada. Soil nitrate contents were measured to a 0.90-m depth in three treatments of N fertilization (0, 100, and 250 kg N ha(-1)) at two on-farm sites in 1995, and in four treatments of N fertilization (0, 50, 100, and 250 kg N ha(-1)) at four sites for each of two years (1996 and 1997) with and without supplemental irrigation. Residual soil NO3-N content increased from 33 kg NO3-N ha(-1) in the unfertilized check plots to 160 kg NO3-N ha(-1) when 250 kg N ha(-1) was applied. Across N treatments, residual soil NO3-N contents ranged from 30 to 105 kg NO3-N ha(-1) with irrigation and from 30 to 202 kg NO3-N ha(-1) without irrigation. Residual soil NO3-N content within the surface 0.30 m was related (R2 = 0.94) to the NO3-N content to a 0.90-m depth. Estimates of residual soil NO3-N content at the economically optimum nitrogen fertilizer application (Nop) ranged from 46 to 99 kg NO3-N ha(-1) under irrigated conditions and from 62 to 260 kg NO3-N ha(-1) under nonirrigated conditions, and were lower than the soil NO3-N content measured with 250 kg N ha(-1). We conclude that residual soil NO3-N after harvest can be maintained at a reasonable level (<70 kg NO3-N ha(-1)) when N fertilization is based on the economically optimum N application.  相似文献   

5.
Agriculture in the U.S. Midwest faces the formidable challenge of improving crop productivity while simultaneously mitigating the environmental consequences of intense management. This study examined the simultaneous response of nitrate nitrogen (NO3-N) leaching losses and maize (Zea mays L.) yield to varied fertilizer N management using field observations and the Integrated BIosphere Simulator (IBIS) model. The model was validated against six years of field observations in chisel-plowed maize plots receiving an optimal (180 kg N ha(-1)) fertilizer N application and in N-unfertilized plots on a silt loam soil near Arlington, Wisconsin. Predicted values of grain yield, harvest index, plant N uptake, residue C to N ratio, leaf area index (LAI), grain N, and drainage were within 20% of observations. However, simulated NO3-N leaching losses, NO3-N concentrations, and net N mineralization exhibited less interannual variability than observations, and had higher levels of error (20-65%). Potential effects of 30% higher (234 kg N ha(-1)) and 30% lower (126 kg N ha(-1)) fertilizer N use (from optimal) on NO3-N leaching loss and maize yield were simulated. A 30% increase in fertilizer N use increased annual NO3-N leaching by 56%, while yield increased by only 1%. The NO3-N concentration in the leachate solution at 1.4 m below the soil surface was 30.7 mg L(-1). When fertilizer N use was reduced by 30% (from optimal), annual NO3-N leaching losses declined by 42% after seven years, and annual average yield only decreased by 8%. However, NO3-N concentration in the leachate solution remained above 10 mg L(-1) (11.3 mg L(-1)). Clearly, nonlinear relationships existed between changes in fertilizer use and NO3-N leaching losses over time. Simulated changes in NO3-N leaching were greater in magnitude than fertilizer N use changes.  相似文献   

6.
Large and repeated manure applications can exceed the P sorption capacity of soil and increase P leaching and losses through subsurface drainage. The objective of this study was to evaluate the fate of P applied with increasing N rates in dairy wastewater or poultry litter on grassland during a 4-yr period. In addition to P recovery in forage, soil-test phosphorus (STP) was monitored at depths to 180 cm in a Darco loamy sand (loamy, siliceous, semiactive, thermic Grossarenic Paleudults) twice annually. A split-plot arrangement of a randomized complete block design comprised four annual N rates (0, 250, 500, and 1000 kg ha(-1)) for each nutrient source on coastal bermudagrass [Cynodon dactylon (L.) Pers.] over-seeded with ryegrass (Lolium multiflorum L. cv. TAM90). Increasing annual rates of N and P in wastewater and poultry litter increased P removal in forage (P = 0.001). At the highest N rate of each nutrient source, less than 13% of applied P was recovered in forage. The highest N rates delivered 8 times more P in wastewater or 15 times more P in poultry litter than was removed in forage harvests during an average year. Compared with controls, annual P rates up to 188 kg ha(-1) in dairy wastewater did not increase STP concentrations at depths below 30 cm. In contrast, the highest annual P rate (590 kg ha(-1)) in poultry litter increased STP above that of controls at depth intervals to 120 cm during the first year of sampling. Increases in STP at depths below 30 cm in the Darco soil were indicative of excessive P rates that could contribute to nonpoint-source pollution in outflows from subsoil through subsurface drainage.  相似文献   

7.
Excessive nitrogen rates for potato production in northeast Florida have been declared as a potential source of nitrate pollution in the St. Johns River watershed. This 3-yr study examined the effect of N rates (0, 168, and 280 kg ha(-1)) split between planting and 40 d after planting on the NO(3)-N concentration in the perched ground water under potato (Solanum tuberosum cv. Atlantic) in rotation with sorghum sudan grass hybrid (Sorghum vulgare x Sorghum vulgare var. sudanese, cv. SX17), cowpea (Vigna unguiculata cv. Iron Clay), and greenbean (Phaseolus vulgare cv. Espada). Soil solution from the root zone and water from the perched ground water under potato were sampled periodically using lysimeters and wells, respectively. Fertilization at planting increased the NO(3)-N concentration in the perched ground water, but no effect of the legumes in rotation with potatoes on nitrate leaching was detected. Fertilization of green bean increased NO(3)-N concentration in the perched ground water under potato planted in the following season. The NO(3)-N concentration in the soil solution within the potato root zone followed a similar pattern to that of the perched ground water but with higher initial values. The NO(3)-N concentration in the perched ground water was proportional to the rainfall magnitude after potato planting. A significant increase in NO(3)-N concentration in the perched ground water under cowpea planted in summer after potato was detected for the side-dressing of 168 kg ha(-1) N applied to potato 40 d after planting but not at the 56 kg ha(-1) N side-dress. Elevation in NO(3)-N concentration in the perched ground water under sorghum was not significant, supporting its use as an effective N catch crop.  相似文献   

8.
Nitrate (NO3-) pollution of surface and subsurface waters has become a major problem in agricultural ecosystems. Field trials were conducted from 1996 to 1998 at St-Emmanuel, Quebec, Canada, to investigate the combined effects of water table management (WTM) and nitrogen (N) fertilization on soil NO3- level, denitrification rate, and corn (Zea mays L.) grain yield. Treatments consisted of a combination of two water table treatments: free drainage (FD) with open drains at a 1.0-m depth from the soil surface and subirrigation (SI) with a design water table of 0.6 m below the soil surface, and two N fertilizer (ammonium nitrate) rates: 120 kg N ha(-1) (N120) and 200 kg N ha(-1) (N200). Compared with FD, SI reduced NO3(-)-N concentrations in the soil profile by 37% in spring 1997 and 2% in spring 1998; and by 45% in fall 1997 and 19% in fall 1998 (1 mg NO3(-)-N L(-1) equals approximately 4.43 mg NO3- L(-1)). The higher rate of N fertilization resulted in greater levels of NO3(-)-N in the soil solution. Denitrification rates were higher in SI than in FD plots, but were unaffected by N rate. The N200 rate produced higher yields than N120 in 1996 and 1997, but not 1998. Corn yields in SI plots were 7% higher than FD plots in 1996 and 3% higher in 1997, but 25% lower in 1998 because the SI system was unable to drain the unusually heavy June rains, resulting in waterlogging. These findings suggest that SI can be used as an economical means of reducing NO3- pollution without compromising crop yields during normal growing seasons.  相似文献   

9.
Some of the most fertile agricultural land in Atlantic Canada includes dykelands, which were developed from rich salt marshes along the Bay of Fundy through the construction of dykes. A 2-yr field experiment was conducted on dykeland soil to evaluate the effect of fertility treatments: source-separated municipal solid waste (SS-MSW) compost, solid manure, commercial fertilizer, and gypsum on (1) timothy/red clover forage productivity, (2) N, S, and other nutrients uptake, and (3) residual NO(3)-N and NH(4)-N in the soil profile. All fertility treatments increased dry matter yields from the two cuts each year relative to the control. Residual soil NO(3)-N and NH(4)-N concentrations in the fall of the second year decreased with depth, and beyond 20-cm depth were lower than 1 mg kg(-1). Gypsum application equivalent to 40 kg S ha(-1) increased dry matter yields and N uptake by forage, and increased soil Mehlich 3-extractable S, tissue S, and uptake of S, Ca, P, Cu, Fe, and Mn relative to the control. High rates of compost can provide sufficient N, S, and perhaps other nutrients to a perennial forage system under the cool wet climate of Atlantic Canada with no heavy metal enrichment of forage. However, the chemical N provided greater total N uptake than organic sources, except the high rate of compost, suggesting that the N availability from organic sources was not well synchronized with forage N demand. Municipal solid waste compost may also increase soil and forage tissue Na, which might be of concern.  相似文献   

10.
Groundwater pollution and associated effects on drinking water have increased with the expansion of irrigated agriculture in north-central U.S. sand plains. Controlling this pollution requires an ability to measure and predict pollutant loading by specific agricultural systems. We measured NO3 and Cl loading to groundwater beneath a Wisconsin central sand plain irrigated vegetable field using both a budget method and a new monitoring-based method. By relying on frequent monitoring of shallow groundwater, the new method overcomes some limitations of other methods. Monitoring-based and budget methods agreed well, and indicated that loading to groundwater was 165 kg ha(-1) NO3-N and 111 kg ha(-1) Cl for sweet corn (Zea mays L.) in 1992, and 228 kg ha(-1) NO3-N and 366 kg ha(-1) Cl for potato (Solanum tuberosum L.) in 1993. Nitrate N loading was 56 to 60% of available N, or 66 to 70% of fertilizer N. Sweet corn NO3 loading was about typical for this region, but potato NO3 loading was probably 50% greater than typical because heavy rains provoked extra fertilizer application. Our results imply that typical NO3-N loading would be 119 kg ha(-1) for sweet corn and 203 kg ha(-1) for potato, even with strict adherence to University Extension fertilizer recommendations. To keep average groundwater NO3-N within the 10 mg L(-1) U.S. drinking water standard, each irrigated vegetable field would need to be offset by five to eight times as much land supplying NO3-free groundwater recharge.  相似文献   

11.
Manure use on cropland has raised concern about nutrient contamination of surface and ground waters. Warm-season perennial grasses may be useful in filter strips to trap manure nutrients and as biomass feedstock for nutrient removal. We explored the use of 'Alamo' switchgrass (Panicum virgatum L.) in a biomass production-filter strip system treated with dairy manure. We measured changes in extractable P in the soil, NO3 -N in soil water, and changes in total reactive P and chemical oxygen demand (COD) of runoff water before and after a switchgrass filter strip. Five rates of dairy manure (target rates of 0, 50, 100, 150, and 200 kg N ha(-1) from solid manure in 1995; 0, 75, 150, 300, and 600 kg N ha(-1) from lagoon effluent in 1996 and 1997) were surface-applied to field plots of switchgrass (5.2 by 16.4 m) with a 5.2- by 16.4-m switchgrass filter strip below the manured area. Yield of switchgrass from the manured area increased linearly with increasing manure rate in each year. Soil water samples collected at 46 or 91 cm below the soil surface on 30 dates indicated < 3 mg L(-1) of NO3-N in all plots. Concentrations of total reactive P in surface runoff water were reduced an average of 47% for the 150 kg N rate and 76% for the 600 kg N rate in 1996 and 1997 after passing through the strip. Manure could effectively substitute for inorganic fertilizer in switchgrass biomass production with dual use of the switchgrass as a vegetative filter strip.  相似文献   

12.
Maximizing utilization of effluent nutrients by forage grasses requires a better understanding of irrigation rate and timing effects. This study was conducted in 1998 and 1999 on a Vaiden silty clay (very-fine, smectitic, thermic Aquic Dystrudert) soil to determine the effects of swine lagoon effluent irrigation rate and timing on bermudagrass [Cynodon dactylon (L.) Pers.] growth, nitrogen (N) and phosphorus (P) recovery, and postseason soil profile NO3(-)-N. Treatments consisted of swine effluent irrigation at the rates of 0, 5, 10, 15, and 20 ha-cm. Two additional treatments included 2.5 ha-cm applied on 1 September and 1 October in addition to a base summer rate of 10 ha-cm. In both years for early to mid-season irrigation, bermudagrass dry matter yield quadratically increased with increasing swine effluent irrigation rates. Averaged across years, effluent irrigation in October resulted in 30% less dry matter than in September. For late-season irrigation, apparent N recovery averaged 59% less and P recovery averaged 46% less with a delay in irrigation from 1 September to 1 October. The greatest quantity of soil NO3(-)-N was associated with both the greatest effluent rate and October irrigation treatments. Minimal yield benefit was obtained when effluent was applied at rates greater than 10 ha-cm during the summer months. Late-season irrigation, especially after 1 October for areas with similar climatic conditions, should be avoided to maximize synchronization of nutrient availability with maximum growth rates to minimize potential offsite movement of residual soil N and P.  相似文献   

13.
With current agricultural practices the amounts of fertilizer N applied are frequently more than the amounts removed by the crop. Excessive N application may result in short-term accumulation of nitrate nitrogen (NO3-N) in soil, which can easily be leached from the root zone and into the ground water. A management practice suggested for conserving accumulated NO3-N is the application of oily food waste (FOG; fat + oil + greases) to agricultural soils. A two-year field study (1995-1996 and 1996-1997) was conducted at Elora Research Center (43 degrees 38' N, 80 degrees W; 346 m above mean sea level), University of Guelph, Ontario, Canada to determine the effect of FOG application in fall and spring on soil NO3-N contents and apparent N immobilization-mineralization of soil N in the 0- to 60-cm soil layer. The experiment was planned under a randomized complete block design with four replications. An unamended control and a reference treatment [winter wheat (Triticum aestivum L.) cover crop] were included in the experiment to compare the effects of fall and spring treatment of oily food waste on soil NO3-N contents and apparent N immobilization-mineralization. Oily food waste application at 10 Mg ha(-1) in the fall decreased soil NO3-N by immobilization and conserved 47 to 56 kg NO3-N ha(-1), which would otherwise be subject to leaching. Nitrogen immobilized due to FOG application in the fall was subsequently remineralized by the time of fertilizer N sidedress, whereas no net mineralization was observed in spring-amended plots at the same time.  相似文献   

14.
Understanding water and nutrient transport through the soil profile is important for efficient irrigation and nutrient management to minimize excess nutrient leaching below the rootzone. We applied four rates of N (28, 56, 84, and 112 kg N ha(-1); equivalent to one-fourth of annual N rates being evaluated in this study for bearing citrus trees), and 80 kg Br- ha(-1) to a sandy Entisol with >25-yr-old citrus trees to (i) determine the temporal changes in NO3-N and Br- distribution down the soil profile (2.4 m), and (ii) evaluate the measured concentrations of NO3-N and Br- at various depths with those predicted by the Leaching Estimation and Chemistry Model (LEACHM). Nitrate N and Br concentrations approached the background levels by 42 and 214 d, respectively. Model-predicted volumetric water content and concentrations of NO3-N and Br- at various depths within the entire soil profile were very close to measured values. The LEACHM data showed that 21 to 36% of applied fertilizer N leached below the root zone, while tree uptake accounted for 40 to 53%. Results of this study enhance our understanding of N dynamics in these sandy soils, and provide better evaluation of N and irrigation management to improve uptake efficiency, reduce N losses, and minimize the risk of ground water nitrate contamination from soils highly vulnerable to nutrient leaching.  相似文献   

15.
Cover crops are a management option to reduce NO3 leaching under cereal grain production. A 2-yr field lysimeter study was established in Uppsala, Sweden, to evaluate the effect of a perennial ryegrass (Lolium perenne L.) cover crop interseeded in barley (Hordeum vulgare L.) on NO3-N leaching and availability of N to the main crop. Barley and ryegrass or barley alone were seeded in mid-May 1992, in lysimeters (03-m diam. x 1.2-m depth) of an undisturbed, well-drained, sandy loam soil. Fertilizer N was applied at the same time as labeled l5NH415NO3 (10 atom % 15N) at a rate of 100 kg N ha(-1). In 1993, barley was reseeded in May in the lysimeters but with nonlabeled NH4NO3 and no cover crop (previous year's cover crop incorporated just prior to seeding). Barley yields and total and fertilizer N uptake in Year 1 (1992) were unaffected by cover crop. Total aboveground N uptake by the ryegrass was 28 kg ha(-1) at the time of incorporation the following spring. Recovery of fertilizer-derived N in May 1993 was about 100%; 53% in soil, 46% in barley, <2% in ryegrass, and negligible amounts in leachate. In May 1994, the corresponding figures were: 32% in soil, <3% in barley, and, again, negligible amounts in leachate. The cover crop reduced concentrations of NO3-N in the leachate considerably (<5 mg L(-1), compared with 10 to 18 mg L(-1) without cover crop) at most sampling times from November 1992 to April 1994, and reduced the total amount of NO3-N leached (22 compared with 8 kg ha(-1)).  相似文献   

16.
Few studies have examined the water quality impact of manure use in no-tillage systems. A lysimeter study in continuous corn (Zea mays L.) was performed on Maury silt loam (fine, mixed, semiactive, mesic Typic Paleudalf) to evaluate the effect(s) of tillage (no-till [NT] and chisel-disk [CD]), nitrogen fertilizer rate (0 and 168 kg N ha(-1)), and dairy manure application timing (none, spring, fall, or fall plus spring) on NO3-N, atrazine (2-chloro-4-ethylamino-6-isopropylamino-s-triazine), and alachlor [2-chloro-2'-6'-diethyl-N-(methoxymethyl)acetanilide] concentrations in leachate collected at a 90-cm depth. Herbicides were highest immediately after application, declining to less than 4 mug L(-1) in about two months. Manure and manure timing by tillage interactions had little effect on leachate herbicides; rather, the data suggest that macropores rapidly transmitted atrazine and alachlor through the soil. Tillage usually did not significantly affect leachate NO3-N, but no-tillage tended to cause higher NO(3)-N. Manuring caused higher NO3-N concentrations; spring manuring had more impact than fall, but fall manure contained about 78% of the N found in spring manure. Nitrate under spring "only fertilizer" treatment exceeded 10 mg L(-1) 38% of the time, compared with 15% for spring only manure treatment. After three years, manured soil leachate NO3-N exceeded that for soil receiving only N fertilizer. Soil profile (90 cm) NO3-N after corn harvest exceeding 22 kg N ha(-1) was associated with winter leachate NO3-N greater than 10 mg N L(-1). Manure can be used effectively in conservation tillage systems on this and similar soils. Accounting for all N inputs, including previous manure applications, will be important.  相似文献   

17.
Economically optimal nitrogen rate reduces soil residual nitrate   总被引:1,自引:0,他引:1  
Post-harvest residual soil NO(3)-N (RSN) is susceptible to transfer to water resources. Practices that minimize RSN levels can reduce N loss to the environment. Our objectives were (i) to determine if the RSN after corn (Zea mays L.) harvest can be reduced if N fertilizer is applied at the economically optimal N rate (EONR) as compared to current producer practices in the midwestern USA and (ii) to compare RSN levels for N fertilizer rates below, at, and above the EONR. Six experiments were conducted in producer fields in three major soil areas (Mississippi Delta alluvial, deep loess, claypan) in Missouri over 2 yr. Predominant soil great groups were Albaqualfs, Argiudolls, Haplaquolls, and Fluvaquents. At four transects in each field, six treatment N rates from 0 to 280 kg N ha(-1) were applied, the EONR was determined, and the RSN was measured to a 0.9-m depth from five treatment plots. The EONR at sampling sites varied from 49 to 228 kg N ha(-1) depending on site and year. Estimated average RSN at the EONR was 33 kg N ha(-1) in the 0.9-m profile. This was at least 12 kg N ha(-1) lower than RSN at the producers' N rates. The RSN increased with increasing Delta EONR (total N applied - EONR). This relationship was best modeled by a plateau-linear function, with a low RSN plateau at N rates well below the EONR. A linear increase in RSN began anywhere from 65 kg N ha(-1) below the EONR to 20 kg N ha(-1) above the EONR at the three sites with good data resolution near the EONR. Applying N rates in excess of the EONR produced elevated RSN values in all six experiments. Our results suggest that applying the EONR will produce environmental benefits in an economically sound manner, and that continued attempts to develop methods for accurately predicting EONR are justified.  相似文献   

18.
Timing of manure application affects N leaching. This 3-yr study quantified N losses from liquid manure application on two soils, a Muskellunge clay loam and a Stafford loamy sand, as affected by cropping system and timing of application. Dairy manure was applied at an annual rate of 93 800 L ha(-1) on replicated drained plots under continuous maize (Zea mays L.) in early fall, late fall, early spring, and as a split application in early and late spring. Variable rates of supplemental sidedress N fertilizer were applied as needed. Manure was applied on orchardgrass (Dactylis glomerata L.) in split applications in early fall and late spring, and early and late spring, with supplemental N fertilizer topdressed as NH4NO3 in early spring at 75 kg N ha(-1). Drain water was sampled at least weekly when lines were flowing. Three-year FWM (flow-weighted mean) NO3-N concentrations on loamy sand soil averaged 2.5 times higher (12.7 mg L(-1)) than those on clay loam plots (5.2 mg L(-1)), and those for fall applications on maize-cropped land averaged >10 mg L(-1) on the clay loam and >20 mg L(-1) on the loamy sand. Nitrate-N concentrations among application seasons followed the pattern early fall > late fall > early spring = early + late spring. For grass, average NO3-N concentrations from manure application remained well below 10 mg L(-1). Fall manure applications on maize show high NO3-N leaching risks, especially on sandy soils, and manure applications on grass pose minimal leaching concern.  相似文献   

19.
Pasture management practices can affect forage quality and production, animal health and production, and surface and groundwater quality. In a 5-yr study conducted at the North Appalachian Experimental Watershed near Coshocton, Ohio, we compared the effects of two contrasting grazing methods on surface and subsurface water quantity and quality. Four pastures, each including a small, instrumented watershed (0.51-1.09 ha) for surface runoff measurements and a developed spring for subsurface flow collection, received 112 kg N ha(-1) yr(-1) and were grazed at similar stocking rates (1.8-1.9 cows ha(-1)). Two pastures were continuously stocked; two were subdivided so that they were grazed with frequent rotational stocking (5-6 times weekly). In the preceding 5 yr, these pastures received 112 kg N ha(-1) yr(-1) after several years of 0 N fertilizer and were grazed with weekly rotational stocking. Surface runoff losses of N were minimal. During these two periods, some years had precipitation up to 50% greater than the long-term average, which increased subsurface flow and NO(3)-N transport. Average annual NO(3)-N transported in subsurface flow from the four watersheds during the two 5-yr periods ranged from 11.3 to 22.7 kg N ha(-1), which was similar to or less than the mineral-N received in precipitation. Flow and transport variations were greater among seasons than among watersheds. Flow-weighted seasonal NO(3)-N concentrations in subsurface flow did not exceed 7 mg L(-1). Variations in NO(3)-N leached from pastures were primarily due to variable precipitation rather than the effects of continuous, weekly rotational, or frequent rotational stocking practices. This suggests that there was no difference among these grazing practices in terms of NO(3)-N leaching.  相似文献   

20.
Reducing ammonia (NH3) emissions through slurry incorporation or other soil management techniques may increase nitrate (NO3) leaching, so quantifying potential losses from these alternative pathways is essential to improving slurry N management. Slurry N losses, as NH3 or NO3 were evaluated over 4 yr in south-central Wisconsin. Slurry (i.e., dairy cow [Bos taurus] manure from a storage pit) was applied each spring at a single rate (-75 m3 ha(-1)) in one of three ways: surface broadcast (SURF), surface broadcast followed by partial incorporation using an aerator implement (AER-INC), and injection (INJ). Ammonia emissions were measured during the 120 h following slurry application using chambers, and NO3 leaching was monitored in drainage lysimeters. Yield and N3 uptake of oat (Avena sativa L.), corn (Zea mays L.), and winter rye (Secale cereale L.) were measured each year, and at trial's end soils were sampled in 15- to 30-cm increments to 90-cm depth. There were significant tradeoffs in slurry N loss among pathways: annual mean NH3-N emission across all treatments was 5.3, 38.3, 12.4, and 21.8 kg ha(-1) and annual mean NO3-N leaching across all treatments was 24.1, 0.9, 16.9, and 7.3 kg ha' during Years 1, 2, 3, and 4, respectively. Slurry N loss amounted to 27.1% of applied N from the SURF treatment (20.5% as NH3-N and 6.6% as NO,-N), 23.3% from AER-INC (12.0% as NH3-N and 11.3% as NO3-N), and 9.19% from INJ (4.4% as NH3-N and 4.7% as NO3-N). Although slurry incorporation decreased slurry N loss, the conserved slurry N did not significantly impact crop yield, crop N uptake or soil properties at trial's end.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号