首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Accurate measures of human effects on landscape processes require consideration of both the direct impacts from human activities and the indirect consequences of the interactions between humans and the landscape. This is particularly evident in systems experiencing regular natural disturbances such as in the mountainous areas of southwestern China, where the remaining population of giant pandas (Ailuropoda melanoleuca) is supported. Here the spatiotemporal patterns of human impacts, forests, and bamboo episodic die-offs combine to determine the distribution of panda habitat. To study the complex interactions of humans and landscapes, we developed an integrated spatiotemporally explicit model of household activities, natural vegetation dynamics, and their impacts on panda habitat. Using this model we examined the direct consequences of local fuelwood collection and household creation on areas of critical giant panda habitat and the indirect impacts when coupled with vegetation dynamics. Through simulations, we found that over the next 30 years household impacts would result in the loss of up to 30% of the habitat relied on by pandas during past bamboo die-offs. The accumulation and spatial distribution of household impacts would also have a considerable indirect influence on the spatial distribution of understory bamboo. While human impacts influence both bamboo die-off and regeneration, over 19% of pre-existing low-elevation bamboo habitat may be lost following an episodic die-off depending on the severity of the impacts and timing of the die-offs. Our study showed not only the importance of the spatial distribution of direct household impacts on habitat, but also the far-reaching effects of the indirect interactions between humans and the landscapes they are modifying.  相似文献   

2.
Abstract: To address the complex interactions between humans and wildlife habitat, we developed a conceptual framework that links human factors with forested landscapes and wildlife habitat. All the components in the framework are integrated into systems models that analyze the effects of human factors and project how wildlife habitat would change under different policy scenarios. As a case study, we applied this framework to the Wolong Nature Reserve in Sichuan Province (southwestern China), the largest home of the giant panda ( Ailuropoda melanoleuca ). We collected ecological and socioeconomic data with a combination of various methods ( field observations, aerial photographs, government documents and statistics, interviews, and household surveys) and employed geographic information systems and systems modeling to analyze and integrate the data sources. Human population size has increased by 66% and the number of households in the reserve has increased by 115% since 1975, when the reserve was established. During the same period, the quality and quantity of the giant panda habitat dramatically decreased because of increasing human activities such as fuelwood collection. Systems modeling predicted that under the status quo, human population in the reserve would continue to grow and cause more destruction of the remaining panda habitat, whereas reducing human birth rates and increasing human emigration rates would lower human population size and alleviate human impacts on the panda habitat. Furthermore, our simulations and surveys suggested that policies encouraging the emigration of young people would be more effective and feasible than relocating older people in reducing human population size and conserving giant panda habitat in the reserve.  相似文献   

3.
With growing levels of human-activity and frequent natural disturbances throughout the world, it is increasingly important that both research and management efforts take into account the widespread landscape fragmentation and its consequences for biodiversity conservation. The magnitude 5.12 Wenchuan earthquake in China caused dramatic impacts on giant panda (Ailuropoda melanoleuca) habitat in the nature reserves within Minshan and Qionglai mountains. With the combined stresses of the natural disaster and the extensive human activities during postquake reconstruction, giant panda habitat in this region may become more fragmented in the future. In order to preserve the giant panda population after the earthquake and protect the species against habitat fragmentation, this article explores a method of identifying giant panda migration corridors involving habitat suitability assessments and a least-cost path model. Focusing on postquake Wolong Nature Reserve, our results demonstrate that it contains 430.3 km2 of suitable habitat (21.1% of total area), 463.8 km2 of marginally suitable habitat (22.8%) and 1141.9 km2 of unsuitable habitat (50.1%). We further show that several giant panda dispersal corridors exist in the reserve, including four corridor groups that cross the provincial highway and five corridors that do not intersect areas of human activity. This study will contribute to management and conservation efforts in Wolong Nature Reserve and beyond after the Wenchuan earthquake.  相似文献   

4.
Abstract: The giant panda (Ailuropoda melanoleuca), is one of the world's most endangered species. Habitat loss and fragmentation have reduced its numbers, shrunk its distribution, and separated the population into isolated subpopulations. Such isolated, small populations are in danger of extinction due to random demographic factors and inbreeding. We used least‐cost modeling as a systematic approach to incorporate satellite imagery and data on ecological and behavioral parameters of the giant panda collected during more than 10 years of field research to design a conservation landscape for giant pandas in the Minshan Mountains. We identified 8 core habitats and 4 potential linkages that would link core habitats CH3, CH4, and CH5 with core habitats CH6, CH7, and CH8. Establishing and integrating the identified habitats with existing reserves would create an efficient reserve network for giant panda conservation. The core habitats had an average density of 4.9 pandas/100 km2 and contained approximately 76.6% of the giant panda population. About 45% of the core habitat (3245.4 km2) existed outside the current nature reserves network. Total estimated core habitat decreased between 30.4 and 44.5% with the addition of residential areas and road networks factored into the model. A conservation area for giant panda in the Minshan Mountains should aim to ensure habitat retention and connectivity, improve dispersal potential of corridors, and maintain the evolutionary potential of giant pandas in the face of future environmental changes.  相似文献   

5.
Global biodiversity loss is largely driven by human activities such as the conversion of natural to human-dominated landscapes. A popular approach to mitigating land cover change is the designation of protected areas (e.g., nature reserves). Nature reserves are traditionally perceived as strongholds of biodiversity conservation. However, many reserves are affected by land cover changes not only within their boundaries, but also in their surrounding areas. This study analyzed the changes in habitat for the giant panda (Ailuropoda melanoleuca) inside Wolong Nature Reserve, Sichuan, China, and in a 3-km buffer area outside its boundaries, through a time series of classified satellite imagery and field observations. Habitat connectivity between the inside and the outside of the reserve diminished between 1965 and 2001 because panda habitat was steadily lost both inside and outside the reserve. However, habitat connectivity slightly increased between 1997 and 2001 due to the stabilization of some panda habitat inside and outside the reserve. This stabilization most likely occurred as a response to changes in socioeconomic activities (e.g., shifts from agricultural to nonagricultural economies). Recently implemented government policies could further mitigate the impacts of land cover change on panda habitat. The results suggest that Wolong Nature Reserve, and perhaps other nature reserves in other parts of the world, cannot be managed as an isolated entity because habitat connectivity declines with land cover changes outside the reserve even if the area inside the reserve is well protected. The findings and approaches presented in this paper may also have important implications for the management of other nature reserves across the world.  相似文献   

6.
Giant panda (Ailuropoda melanoleuca) conservation is a possible success story in the making. If extinction of this iconic endangered species can be avoided, the species will become a showcase program for the Chinese government and its collaborators. We reviewed the major advancements in ecological science for the giant panda, examining how these advancements have contributed to panda conservation. Pandas’ morphological and behavioral adaptations to a diet of bamboo, which bear strong influence on movement ecology, have been well studied, providing knowledge to guide management actions ranging from reserve design to climate change mitigation. Foraging ecology has also provided essential information used in the creation of landscape models of panda habitat. Because habitat loss and fragmentation are major drivers of the panda population decline, efforts have been made to help identify core habitat areas, establish where habitat corridors are needed, and prioritize areas for protection and restoration. Thus, habitat models have provided guidance for the Chinese governments’ creation of 67 protected areas. Behavioral research has revealed a complex and efficient communication system and documented the need for protection of habitat that serves as a communication platform for bringing the sexes together for mating. Further research shows that den sites in old‐growth forests may be a limiting resource, indicating potential value in providing alternative den sites for rearing offspring. Advancements in molecular ecology have been revolutionary and have been applied to population census, determining population structure and genetic diversity, evaluating connectivity following habitat fragmentation, and understanding dispersal patterns. These advancements form a foundation for increasing the application of adaptive management approaches to move panda conservation forward more rapidly. Although the Chinese government has made great progress in setting aside protected areas, future emphasis will be improved management of pandas and their habitat.  相似文献   

7.
Patterns of Genetic Diversity in Remaining Giant Panda Populations   总被引:12,自引:0,他引:12  
Abstract: The giant panda ( Ailuropoda melanoleuca ) is among the more familiar symbols of species conservation. The protection of giant panda populations has been aided recently by the establishment of more and better-managed reserves in existing panda habitat located in six mountain ranges in western China. These remaining populations are becoming increasingly isolated from one another, however, leading to the concern that historic patterns of gene flow will be disrupted and that reduced population sizes will lead to diminished genetic variability. We analyzed four categories of molecular genetic markers (mtDNA restriction-fragment-length polymorphisms [RFLP], mtDNA control region sequences, nuclear multilocus DNA fingerprints, and microsatellite size variation) in giant pandas from three mountain populations (Qionglai, Minshan, and Qinling) to assess current levels of genetic diversity and to detect evidence of historic population subdivisions. The three populations had moderate levels of genetic diversity compared with similarly studied carnivores for all four gene measures, with a slight but consistent reduction in variability apparent in the smaller Qinling population. That population also showed significant differentiation consistent with its isolation since historic times. From a strictly genetic perspective, the giant panda species and the three populations look promising insofar as they have retained a large amount of genetic diversity in each population, although evidence of recent population reduction—likely from habitat loss—is apparent. Ecological management to increase habitat, population expansion, and gene flow would seem an effective strategy to stabilize the decline of this endangered species.  相似文献   

8.
The giant panda attracts disproportionate conservation resources. How well does this emphasis protect other endemic species? Detailed data on geographical ranges are not available for plants or invertebrates, so we restrict our analyses to 3 vertebrate taxa: birds, mammals, and amphibians. There are gaps in their protection, and we recommend practical actions to fill them. We identified patterns of species richness, then identified which species are endemic to China, and then which, like the panda, live in forests. After refining each species' range by its known elevational range and remaining forest habitats as determined from remote sensing, we identified the top 5% richest areas as the centers of endemism. Southern mountains, especially the eastern Hengduan Mountains, were centers for all 3 taxa. Over 96% of the panda habitat overlapped the endemic centers. Thus, investing in almost any panda habitat will benefit many other endemics. Existing panda national nature reserves cover all but one of the endemic species that overlap with the panda's distribution. Of particular interest are 14 mammal, 20 bird, and 82 amphibian species that are inadequately protected. Most of these species the International Union for Conservation of Nature currently deems threatened. But 7 mammal, 3 bird, and 20 amphibian species are currently nonthreatened, yet their geographical ranges are <20,000 km2 after accounting for elevational restriction and remaining habitats. These species concentrate mainly in Sichuan, Yunnan, Nan Mountains, and Hainan. There is a high concentration in the east Daxiang and Xiaoxiang Mountains of Sichuan, where pandas are absent and where there are no national nature reserves. The others concentrate in Yunnan, Nan Mountains, and Hainan. Here, 10 prefectures might establish new protected areas or upgrade local nature reserves to national status.  相似文献   

9.
The relationships between habitat amount and fragmentation level and functional connectivity and inbreeding remain unclear. Thus, we used genetic algorithms to optimize the transformation of habitat area and fragmentation variables into resistance surfaces to predict genetic structure and examined habitat area and fragmentation effects on inbreeding through a moving window and spatial autoregressive modeling approach. We applied these approaches to a wild giant panda population. The amount of habitat and its level of fragmentation had nonlinear effects on functional connectivity (gene flow) and inbreeding. Functional connectivity was highest when approximately 80% of the surrounding landscape was habitat. Although the relationship between habitat amount and inbreeding was also nonlinear, inbreeding increased as habitat increased until about 20% of the local landscape contained habitat, after which inbreeding decreased as habitat increased. Because habitat fragmentation also had nonlinear relationships with functional connectivity and inbreeding, we suggest these important responses cannot be effectively managed by minimizing or maximizing habitat or fragmentation. Our work offers insights for prioritization of protected areas.  相似文献   

10.
The landscape surrounding protected areas influences their ability to maintain ecosystem functions and achieve conservation goals. As anthropogenic intensification continues, it is important to monitor land-use and land-cover change in and around protected areas. We measure land-cover change surrounding protected areas in the Maputaland-Pondoland-Albany Biodiversity hotspot from the 1980s to present. Using Landsat imagery, we classified land cover within and around each protected area. Agricultural land uses were increasing and often directly border protected area boundaries. Human settlements increased around every protected area, potentially increasing human activity along the edges of protected areas and threatening their ecological integrity. Urban expansion around protected areas varied but increased as much as 10%. Woody vegetation cover varied both within and around protected areas with possible evidence of deforestation and shrub encroachment throughout the hotspot. We recommend monitoring land cover across southeastern Africa to better understand regional trends in land-use impacts to protected areas.  相似文献   

11.
The degree to which spatial patterns influence the dynamics and distribution of populations is a central question in ecology. This question is even more pressing in the context of rapid habitat loss and fragmentation, which threaten global biodiversity. However, the relative influence of habitat loss and landscape fragmentation, the spatial patterning of remaining habitat, remains unclear. If landscape pattern affects population size, managers may be able to design landscapes that mitigate habitat loss. We present the results of a mensurative experiment designed to test four habitat loss vs. fragmentation hypotheses. Unlike previous studies, we measured landscape structure using quantitative, spatially explicit habitat distribution models previously developed for two species: Blackburnian Warbler (Dendroica fusca) and Ovenbird (Seiurus aurocapilla). We used a stratified sampling design that reduced the confounding of habitat amount and fragmentation variables. Occurrence and reoccurrence of both species were strongly influenced by characteristics at scales greater than the individual territory, indicating little support for the random-sample hypothesis. However, the type and spatial extent of landscape influence differed. Both occurrence and reoccurrence of Blackburnian Warblers were influenced by the amount of poor-quality matrix at 300- and 2000-m spatial extents. The occurrence and reoccurrence of Ovenbirds depended on a landscape pattern variable, patch size, but only in cases when patches were isolated. These results support the hypothesis that landscape pattern is important for some species only when the amount of suitable habitat is low. Although theoretical models have predicted such an interaction between landscape fragmentation and composition, to our knowledge this is the first study to report empirical evidence of such nonlinear fragmentation effects. Defining landscapes quantitatively from an organism-based perspective may increase power to detect fragmentation effects, particularly in forest mosaics where boundaries between patches and matrix are ambiguous. Our results indicate that manipulating landscape pattern may reduce negative impacts of habitat loss for Ovenbird, but not Blackburnian Warbler. We emphasize that most variance in the occurrence of both species was explained by local scale or landscape composition variables rather than variables reflecting landscape pattern.  相似文献   

12.
Abstract:  Amphibians worldwide are facing rapid declines due to habitat loss and fragmentation, disease, and other causes. Where habitat alteration is implicated, there is a need for spatially explicit conservation plans. Models built with geographic information systems (GIS) are frequently used to inform such planning. We explored the potential for using GIS models of functional landscape connectivity as a reliable proxy for genetically derived measures of population isolation. We used genetic assignment tests to characterize isolation of marbled salamander populations and evaluated whether the relative amount of modified habitat around breeding ponds was a reliable indicator of population isolation. Using a resampling analysis, we determined whether certain land-cover variables consistently described population isolation. We randomly drew half the data for model building and tested the performance of the best models on the other half 100 times. Deciduous forest was consistently associated with lower levels of population isolation, whereas salamander populations in regions of agriculture and anthropogenic development were more isolated. Models that included these variables and pond size explained 65–70% of variation in genetically inferred isolation across sites. The resampling analysis confirmed that these habitat variables were consistently good predictors of isolation. Used judiciously, simple GIS models with key land-cover variables can be used to estimate population isolation if field sampling and genetic analysis are not possible.  相似文献   

13.
Anthropogenic impacts have reduced natural areas but increased the area of anthropogenic landscapes. There is debate about whether anthropogenic landscapes (e.g., farmlands, orchards, and fish ponds) provide alternatives to natural habitat and under what circumstances. We considered whether anthropogenic landscapes can mitigate population declines for waterbirds. We collected data on population trends and biological traits of 1203 populations of 579 species across the planet. Using Bayesian generalized linear mixed models, we tested whether the ability of a species to use an anthropogenic landscape can predict population trends of waterbird globally and of species of conservation concern. Anthropogenic landscapes benefited population maintenance of common but not less-common species. Conversely, the use of anthropogenic landscapes was associated with population declines for threatened species. Our findings delineate some limitations to the ability of anthropogenic landscapes to mitigate population declines, suggesting that the maintenance of global waterbird populations depends on protecting remaining natural areas and improving the habitat quality in anthropogenic landscapes. Article impact statement: Protecting natural areas and improving the quality of anthropogenic landscapes as habitat are both needed to achieve effective conservation.  相似文献   

14.
Urban and exurban expansion results in habitat and biodiversity loss globally. We hypothesize that a coupled-model approach could connect urban planning for future cities with landscape ecology to consider wildland habitat connectivity. Our work combines urban growth simulations with models of wildlife corridors to examine how species will be impacted by development to test this hypothesis. We leverage a land use change model (SLEUTH) with structural and functional landscape-connectivity modeling techniques to ascertain the spatial extent and locations of connectivity related threats to a national park in southern Arizona, USA, and describe how protected areas might be impacted by urban expansion. Results of projected growth significantly altered structural connectivity (80%) when compared to current (baseline) corridor conditions. Moreover, projected growth impacted functional connectivity differently amongst species, indicating resilience of some species and near-complete displacement of others. We propose that implementing a geospatial-design-based model will allow for a better understanding of the impacts management decisions have on wildlife populations. The application provides the potential to understand both human and environmental impacts of land-system dynamics, critical for long-term sustainability.  相似文献   

15.
Abstract:  We explored the interaction of science and society in attempts to restore impaired marine ecosystems in Channel Islands National Park and National Marine Sanctuary, California. Deteriorating resource conditions triggered a community's desire to change public policy. Channel Islands National Park, one of 40 marine protected areas in the U.S. National Park System, was proclaimed a national monument in 1938 and expanded substantially in 1980 by an act of Congress. Collapse of marine life populations and loss of 80% of the giant kelp (Macrocystis pyrifera) forests in the park between 1980 and 1998 showed that habitat and water quality protection alone had not secured sustainable ocean ecosystems or fisheries. The failed fishery management strategies and practices prompted formal community and agency requests in 1998 for a network of reserves protected from direct fishing impacts to serve as marine recovery areas. A 2-year attempt to build a community consensus based on science for a reserve network successfully identified recovery goals for fisheries, biodiversity, education, economics, and heritage values. Nevertheless, the community group failed to garner unanimous support for a specific reserve network to achieve those common goals. The group submitted a recommendation, supported by 14 of 16 members, to state and federal authorities in 2001 for action in their respective jurisdictions. California adopted the half of the network in state waters in 2003. This process exposed the socioeconomic factors involved in the design of marine protected areas that can be negotiated successfully among groups of people and factors determined by nature that cannot be negotiated. Understanding the differences among the factors was crucial in reaching consensus and changing public policy.  相似文献   

16.
Abstract:  For several decades, many grassland bird species have been declining in abundance throughout the Midwest and Great Plains regions of the United States, possibly due to loss of natural grassland habitat and increasing urbanization. I used 20 years of data from the North American Breeding Bird Survey to identify increasing, decreasing, and stable populations of 36 grassland-nesting bird species. I characterized the immediate landscape (circle with radius = 30 km) surrounding each population based on data from the National Resources Inventory. For each landscape, I calculated the proportion of eight different land-cover types: restored grassland, rangeland, cultivated cropland, pasture, noncultivated cropland, forest, urban land, and water. Using a null model, I compared landscape composition of increasing, decreasing, and stable populations. As predicted on the basis of the habitat preferences of grassland birds, increasing populations inhabited landscapes that contained significantly more restored grassland and rangeland but significantly less forest land and urban land than landscapes inhabited by decreasing populations. There was no significant difference in the proportion of cropland within the landscapes of increasing and decreasing populations, although cropland composed a large proportion (>30%) of many landscapes. In contrast, restored grassland typically composed a very small proportion (<3.5%) of total land cover, yet it was significantly more common in the landscapes of increasing than decreasing populations. These results suggest that grassland birds may benefit from government initiatives, such as the Conservation Reserve Program, that promote the restoration of grassland at a landscape scale.  相似文献   

17.
The Amur tiger (Panthera tigris altaica) is a flagship species of the boreal forest ecosystem in northeastern China and Russia Far East. During the past century, the tiger population has declined sharply from more than 3000 to fewer than 600 individuals, and its habitat has become much smaller and greatly fragmented. Poaching, habitat degradation, habitat loss, and habitat fragmentation have been widely recognized as the primary causes for the observed population decline. Using a population viability analysis tool (RAMAS/GIS), we simulated the effects of poaching, habitat degradation, habitat loss, and habitat fragmentation on the population dynamics and extinction risk of the Amur tiger, and then explored the relative effectiveness of three conservation strategies involving improving habitat quality and establishing movement corridors in China and Russia. A series of controlled simulation experiments were performed based on the current spatial distribution of habitat and field-observed vital rates. Our results showed that the Amur tiger population could be viable for the next 100 years if the current habitat area and quality were well-maintained, with poaching strictly prohibited of the tigers and their main prey species. Poaching and habitat degradation (mainly prey scarcity) had the largest negative impacts on the tiger population persistence. While the effect of habitat loss was also substantial, habitat fragmentation per se had less influence on the long-term fate of the tiger population. However, to sustain the subpopulations in both Russia and China would take much greater conservation efforts. The viability of the Chinese population of tigers would rely heavily on its connectivity with the largest patch on the other side of the border. Improving the habitat quality of small patches only or increasing habitat connectivity through movement corridors alone would not be enough to guarantee the long-term population persistence of the Amur tiger in both Russia and China. The only conservation strategy that allowed for long-term persistence of tigers in both countries required both the improvement of habitat quality and the establishment of a transnational reserve network. Our study provides new insights into the metapopulation dynamics and persistence of the Amur tiger, which should be useful in landscape and conservation planning for protecting the biggest cat species in the world.  相似文献   

18.
A key question facing conservation biologists is whether declines in species' distributions are keeping pace with landscape change, or whether current distributions overestimate probabilities of future persistence. We use metapopulations of the marsh fritillary butterfly Euphydryas aurinia in the United Kingdom as a model system to test for extinction debt in a declining species. We derive parameters for a metapopulation model (incidence function model, IFM) using information from a 625-km2 landscape where habitat patch occupancy, colonization, and extinction rates for E. aurinia depend on patch connectivity, area, and quality. We then show that habitat networks in six extant metapopulations in 16-km2 squares were larger, had longer modeled persistence times (using IFM), and higher metapopulation capacity (lambdaM) than six extinct metapopulations. However, there was a > 99% chance that one or more of the six extant metapopulations would go extinct in 100 years in the absence of further habitat loss. For 11 out of 12 networks, minimum areas of habitat needed for 95% persistence of metapopulation simulations after 100 years ranged from 80 to 142 ha (approximately 5-9% of land area), depending on the spatial location of habitat. The area of habitat exceeded the estimated minimum viable metapopulation size (MVM) in only two of the six extant metapopulations, and even then by only 20%. The remaining four extant networks were expected to suffer extinction in 15-126 years. MVM was consistently estimated as approximately 5% of land area based on a sensitivity analysis of IFM parameters and was reduced only marginally (to approximately 4%) by modeling the potential impact of long-distance colonization over wider landscapes. The results suggest a widespread extinction debt among extant metapopulations of a declining species, necessitating conservation management or reserve designation even in apparent strongholds. For threatened species, metapopulation modeling is a potential means to identify landscapes near to extinction thresholds, to which conservation measures can be targeted for the best chance of success.  相似文献   

19.
Solar radiation is an important parameter in ecological process modeling, hydrological modeling and bio-physical modeling. However, models focusing on solar radiation in relation to giant panda habitat and seasonal distribution are limited. The research aims to form spatial models of 12 month solar radiation patterns and to investigate the relation between the solar radiation patterns and the monthly distribution patterns of giant pandas. The solar radiation model of Kumar et al. was adopted for this study in Foping Nature Reserve (NR), China. By comparing twelve monthly solar radiation patterns and calculating statistics such as maximum, minimum, mean and standard deviation of the solar radiation, diversified solar radiation patterns over different months were obtained. Maximum solar radiation occurred in June and July, while minimum solar radiation occurred in December and January. The annual sum of solar radiation was 6954 MJ/m2 in Foping NR. The range in solar radiation was smaller in hot months and larger in cold months. Radio tracking data of giant pandas were collected for twelve months and the ensuing maps were overlaid with the twelve-month solar radiation map to analyze the relation between the giant panda's monthly distribution and solar radiation. Our results showed that giant pandas prefer areas with lower solar radiation in warm months and select areas with higher solar radiation in cold months, which illustrates that the distribution of giant pandas is indeed affected by solar radiation. To a certain degree, it also explains the behavior of seasonal movement by giant pandas in Foping NR.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号