首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 204 毫秒
1.
Abstract: The giant panda (Ailuropoda melanoleuca), is one of the world's most endangered species. Habitat loss and fragmentation have reduced its numbers, shrunk its distribution, and separated the population into isolated subpopulations. Such isolated, small populations are in danger of extinction due to random demographic factors and inbreeding. We used least‐cost modeling as a systematic approach to incorporate satellite imagery and data on ecological and behavioral parameters of the giant panda collected during more than 10 years of field research to design a conservation landscape for giant pandas in the Minshan Mountains. We identified 8 core habitats and 4 potential linkages that would link core habitats CH3, CH4, and CH5 with core habitats CH6, CH7, and CH8. Establishing and integrating the identified habitats with existing reserves would create an efficient reserve network for giant panda conservation. The core habitats had an average density of 4.9 pandas/100 km2 and contained approximately 76.6% of the giant panda population. About 45% of the core habitat (3245.4 km2) existed outside the current nature reserves network. Total estimated core habitat decreased between 30.4 and 44.5% with the addition of residential areas and road networks factored into the model. A conservation area for giant panda in the Minshan Mountains should aim to ensure habitat retention and connectivity, improve dispersal potential of corridors, and maintain the evolutionary potential of giant pandas in the face of future environmental changes.  相似文献   

2.
Protected area delineation and conservation action are urgently needed on marine islands, but the potential biodiversity benefits of these activities can be difficult to assess due to lack of species diversity information for lesser known taxa. We used linear mixed effects modeling and simple spatial analyses to investigate whether conservation activities based on the diversity of well‐known insular taxa (birds and mammals) are likely to also capture the diversity of lesser known taxa (reptiles, amphibians, vascular land plants, ants, land snails, butterflies, and tenebrionid beetles). We assembled total, threatened, and endemic diversity data for both well‐known and lesser known taxa and combined these with physical island biogeography characteristics for 1190 islands from 109 archipelagos. Among physical island biogeography factors, island area was the best indicator of diversity of both well‐known and little‐known taxa. Among taxonomic factors, total mammal species richness was the best indicator of total diversity of lesser known taxa, and the combination of threatened mammal and threatened bird diversity was the best indicator of lesser known endemic richness. The results of other intertaxon diversity comparisons were highly variable, however. Based on our results, we suggest that protecting islands above a certain minimum threshold area may be the most efficient use of conservation resources. For example, using our island database, if the threshold were set at 10 km2 and the smallest 10% of islands greater than this threshold were protected, 119 islands would be protected. The islands would range in size from 10 to 29 km2 and would include 268 lesser known species endemic to a single island, along with 11 bird and mammal species endemic to a single island. Our results suggest that for islands of equivalent size, prioritization based on total or threatened bird and mammal diversity may also capture opportunities to protect lesser known species endemic to islands. Beneficios de los Taxa Poco Estudiados para la Conservación de la Diversidad de Aves y Mamíferos en Islas  相似文献   

3.
Protected areas are critical for the conservation of residual tropical forest biodiversity, yet many of these are being deforested by humans both within and outside of their administrative boundaries. Therefore, it is critical to document the significance of protected areas for conserving tropical biodiversity, particularly in mega-diverse Southeast Asia. We evaluated the importance of protected areas (national parks [NP], nature reserves [NR], and wildlife reserves [WR]) in preserving avifaunal diversity, particularly the endemic and forest species, on the island of Sulawesi. This island has one of the highest numbers of endemic avifauna genera (12) globally and is also experiencing heavy deforestation. Rarefaction analyses and species estimators showed that parks and reserves consistently recorded higher number of forest, endemic, and endemic forest bird species, in addition to larger population densities, than in their surrounding human-modified areas across eight protected areas (Gunung Manembo-nembo WR, Tangkoko-Batu Angus and Dua Saudara NR, Gunung Ambang NR, Bogani Nani Wartabone NP, Gunung Tinombala NR, Gunung Sojol NR, Lore Lindu NP, and Rawa Aopa Watumohai NP). This implies that protecting natural forests must remain as one of the fundamental conservation strategies in Sulawesi. Two small reserves (Gunung Manembo-nembo WR and Tangkoko-Batu Angus and Dua Saudara NR), however, had high number of forest and endemic bird species both within and outside their boundaries, suggesting the importance of buffer areas for augmenting small reserves so as to improve their conservation value. Ordination analyses revealed the differential response of bird species to different environmental factors (e.g., native tree cover), highlighting the significance of forested habitats with dense native vegetation cover for effective conservation of forest dependent and endemic avifauna. In addition, the distinctiveness in bird species composition among protected areas highlights the importance of establishing a reserve network across major altitudinal zones so as to achieve maximum complementarity for the conservation of Sulawesi's unique avifauna.  相似文献   

4.
Abstract: Environmental synergisms may pose the greatest threat to tropical biodiversity. Using recently updated data sets from the International Union for Conservation of Nature (IUCN) Red List, we evaluated the incidence of perceived threats to all known mammal, bird, and amphibian species in tropical forests. Vulnerable, endangered, and extinct species were collectively far more likely to be imperiled by combinations of threats than expected by chance. Among 45 possible pairwise combinations of 10 different threats, 69%, 93%, and 71% were significantly more frequent than expected for threatened mammals, birds, and amphibians, respectively, even with a stringent Bonferroni‐corrected probability value (p= 0.003). Based on this analysis, we identified five key environmental synergisms in the tropics and speculate on the existence of others. The most important involve interactions between habitat loss or alteration (from agriculture, urban sprawl, infrastructure, or logging) and other anthropogenic disturbances such as hunting, fire, exotic‐species invasions, or pollution. Climatic change and emerging pathogens also can interact with other threats. We assert that environmental synergisms are more likely the norm than the exception for threatened species and ecosystems, can vary markedly in nature among geographic regions and taxa, and may be exceedingly difficult to predict in terms of their ultimate impacts. The perils posed by environmental synergisms highlight the need for a precautionary approach to tropical biodiversity conservation.  相似文献   

5.
Severely fragmented habitats increase the risk of extirpation of native mammal populations through isolation, increased edge effects, and predation. Therefore, monitoring the movement of mammal populations through anthropogenically altered landscapes can inform conservation. We used metabarcoding of invertebrate-derived DNA (iDNA) from carrion flies (Calliphoridae and Sarcophagidae) to track mammal populations in the wheat belt of southwestern Australia, where widespread clearing for agriculture has removed most of the native perennial vegetation and replaced it with an agricultural system. We investigated whether the localization of the iDNA signal reflected the predicted distribution of 4 native species—echidna (Tachyglossus aculeatus), numbat (Myrmecobius fasciatus), woylie (Bettongia penicillata), and chuditch (Dasyurus geoffroii)—and 2 non-native, invasive mammal species—fox (Vulpes vulpes) and feral cat (Felis catus). We collected bulk iDNA samples (n = 150 samples from 3428 carrion flies) at 3 time points from 3 conservation reserves and 35 road edges between them. We detected 14 of the 40 mammal species known from the region, including our target species. Most detections of target taxa were in conservation reserves. There were a few detections from road edges. We detected foxes and feral cats throughout the study area, including all conservation reserves. There was a significant difference between the diversity (F3, 98 = 5.91, p < 0.001) and composition (F3, 43 = 1.72, p < 0.01) of taxa detections on road edges and conservation reserves. Conservation reserves hosted more native biodiversity than road edges. Our results suggest that the signals from iDNA reflect the known distribution of target mammals in this region. The development of iDNA methods shows promise for future noninvasive monitoring of mammals. With further development, iDNA metabarcoding could inform decision-making related to conservation of endangered taxa, invasive species management, and impacts of habitat fragmentation.  相似文献   

6.
We aspired to set conservation priorities in ways that lead to direct conservation actions. Very large‐scale strategic mapping leads to familiar conservation priorities exemplified by biodiversity hotspots. In contrast, tactical conservation actions unfold on much smaller geographical extents and they need to reflect the habitat loss and fragmentation that have sharply restricted where species now live. Our aspirations for direct, practical actions were demanding. First, we identified the global, strategic conservation priorities and then downscaled to practical local actions within the selected priorities. In doing this, we recognized the limitations of incomplete information. We started such a process in Colombia and used the results presented here to implement reforestation of degraded land to prevent the isolation of a large area of cloud forest. We used existing range maps of 171 bird species to identify priority conservation areas that would conserve the greatest number of species at risk in Colombia. By at risk species, we mean those that are endemic and have small ranges. The Western Andes had the highest concentrations of such species—100 in total—but the lowest densities of national parks. We then adjusted the priorities for this region by refining these species ranges by selecting only areas of suitable elevation and remaining habitat. The estimated ranges of these species shrank by 18–100% after accounting for habitat and suitable elevation. Setting conservation priorities on the basis of currently available range maps excluded priority areas in the Western Andes and, by extension, likely elsewhere and for other taxa. By incorporating detailed maps of remaining natural habitats, we made practical recommendations for conservation actions. One recommendation was to restore forest connections to a patch of cloud forest about to become isolated from the main Andes. Establecimiento de Prioridades Prácticas para la Conservación de Aves en los Andes Occidentales de Colombia  相似文献   

7.
Over the past 1000 years New Zealand has lost 40–50% of its bird species, and over half of these extinctions are attributable to predation by introduced mammals. Populations of many extant forest bird species continue to be depredated by mammals, especially rats, possums, and mustelids. The management history of New Zealand's forests over the past 50 years presents a unique opportunity because a varied program of mammalian predator control has created a replicated management experiment. We conducted a meta-analysis of population-level responses of forest birds to different levels of mammal control recorded across New Zealand. We collected data from 32 uniquely treated sites and 20 extant bird species representing a total of 247 population responses to 3 intensities of invasive mammal control (zero, low, and high). The treatments varied from eradication of invasive mammals via ground-based techniques to periodic suppression of mammals via aerially sown toxin. We modeled population-level responses of birds according to key life history attributes to determine the biological processes that influence species’ responses to management. Large endemic species, such as the Kaka (Nestor meridionalis) and New Zealand Pigeon (Hemiphaga novaeseelandiae), responded positively at the population level to mammal control in 61 of 77 cases for species ≥20 g compared with 31 positive responses from 78 cases for species <20 g. The Fantail (Rhipidura fuliginosa) and Grey Warbler (Gerygone igata), both shallow endemic species, and 4 nonendemic species (Blackbird [Turdus merula], Chaffinch [Fringilla coelebs], Dunnock [Prunella modularis], and Silvereye [Zosterops lateralis]) that arrived in New Zealand in the last 200 years tended to have slight negative or neutral responses to mammal control (59 of 77 cases). Our results suggest that large, deeply endemic forest birds, especially cavity nesters, are most at risk of further decline in the absence of mammal control and, conversely suggest that 6 species apparently tolerate the presence of invasive mammals and may be sensitive to competition from larger endemic birds.  相似文献   

8.
The importance of large reserves has been long maintained in the scientific literature, often leading to dismissal of the conservation potential of small reserves. However, over half the global protected-area inventory is composed of protected areas that are <100 ha, and the median size of added protected area is decreasing. Studies of the conservation value of small reserves and fragments of natural area are relatively uncommon in the literature. We reviewed SCOPUS and WOK for studies on small reserve and fragment contributions to biodiversity conservation and ecosystem services, and fifty-eight taxon-specific studies were included in the review. Small reserves harbored substantial portions (upward of 50%) of regional species diversity for many taxa (birds, plants, amphibians, and small mammals) and even some endemic, specialist bird species. Unfortunately, small reserves and fragments almost always harbored more generalist and exotic species than large reserves. Community composition depended on habitat quality, surrounding land use (agricultural vs. urban), and reserve and fragment size, which presents opportunities for management and improvement. Small reserves also provided ecosystem services, such as pollination and biological pest control, and cultural services, such as recreation and improved human health. Limitations associated with small reserves, such as extinction debt and support of area-sensitive species, necessitate a complement of larger reserves. However, we argue that small reserves can make viable and significant contributions to conservation goals directly as habitat and indirectly by increasing landscape connectivity and quality to the benefit of large reserves. To effectively conserve biodiversity for future generations in landscapes fragmented by human development, small reserves and fragments must be included in conservation planning.  相似文献   

9.
Wet grassland populations of wading birds in the United Kingdom have declined severely since 1990. To help mitigate these declines, the Royal Society for the Protection of Birds has restored and managed lowland wet grassland nature reserves to benefit these and other species. However, the impact of these reserves on bird population trends has not been evaluated experimentally due to a lack of control populations. We compared population trends from 1994 to 2018 among 5 bird species of conservation concern that breed on these nature reserves with counterfactual trends created from matched breeding bird survey observations. We compared reserve trends with 3 different counterfactuals based on different scenarios of how reserve populations could have developed in the absence of conservation. Effects of conservation interventions were positive for all 4 targeted wading bird species: Lapwing (Vanellus vanellus), Redshank (Tringa totanus), Curlew (Numenius arquata), and Snipe (Gallinago gallinago). There was no positive effect of conservation interventions on reserves for the passerine, Yellow Wagtail (Motacilla flava). Our approach using monitoring data to produce valid counterfactual controls is a broadly applicable method allowing large-scale evaluation of conservation impact.  相似文献   

10.
Spillover effects are an expansion of conservation benefits beyond protected areas through dispersal of species that reside within. They have been well documented in marine but not terrestrial systems. To understand the effects on wildlife created by conservation fences, we explored the internal and external gradients of activity in mammal, reptile, and bird species at a conservation reserve in arid Australia that is fenced to exclude invasive rabbits (Oryctolagus cuniculus), cats (Felis catus), and foxes (Vulpes vulpes). Two methods were used: counts of animal tracks along transects on sand dunes and captures at pitfall-trapping sites. In both cases, sites were spaced at different distances from the reserve fenceline inside and outside the reserve. We recorded a range of spillover, source-sink, step, and barrier effects that combined to create a zone within and around the reserve with fence-induced species-specific wildlife gradients. Two endemic rodents but none of the 4 mammal species reintroduced to the reserve showed positive spillover effects. Barrier effects, where activity was highest close to the fence, were recorded for the feral cat and native bettong (Bettongia lesueur), species that could not breach the fence. In comparison, some reptiles and native mammal species that could permeate the fence displayed source-sink effects; that is, their activity levels were reduced close to the fence likely due to constant emigration to the side with lower density. Activity of some reptiles was lowest at sites inside the reserve and gradually increased at outside sites with distance from the fence, a gradient likely related to trophic cascades triggered by predator exclusion. Our result shows that fenced reserves can create overlapping layers of species-specific gradients related to each species’ ability to permeate the fence and its varying susceptibility to threats. Managers should be aware that these gradients may extend for several kilometers either side of the fence and that not all contained species will increase in abundance. Creating wider conservation benefits may require increased fence permeability and threat reduction outside the fence.  相似文献   

11.
Rising temperatures, a widespread consequence of climate change, have been implicated in enigmatic amphibian declines from habitats with little apparent human impact. The pathogenic fungus Batrachochytrium dendrobatidis (Bd), now widespread in Neotropical mountains, may act in synergy with climate change causing collapse in thermally stressed hosts. We measured the thermal tolerance of frogs along a wide elevational gradient in the Tropical Andes, where frog populations have collapsed. We used the difference between critical thermal maximum and the temperature a frog experiences in nature as a measure of tolerance to high temperatures. Temperature tolerance increased as elevation increased, suggesting that frogs at higher elevations may be less sensitive to rising temperatures. We tested the alternative pathogen optimal growth hypothesis that prevalence of the pathogen should decrease as temperatures fall outside the optimal range of pathogen growth. Our infection‐prevalence data supported the pathogen optimal growth hypothesis because we found that prevalence of Bd increased when host temperatures matched its optimal growth range. These findings suggest that rising temperatures may not be the driver of amphibian declines in the eastern slopes of the Andes. Zoonotic outbreaks of Bd are the most parsimonious hypothesis to explain the collapse of montane amphibian faunas; but our results also reveal that lowland tropical amphibians, despite being shielded from Bd by higher temperatures, are vulnerable to climate‐warming stress. Fisiología Termal, Enfermedades y Disminuciones de Anfibios en las Laderas Orientales de los Andes  相似文献   

12.
Understanding critical habitats of threatened and endemic animals is essential for mitigating extinction risks, developing recovery plans, and siting reserves, but assessment methods are generally lacking. We evaluated critical habitats of 8 threatened or endemic fish species on coral and rocky reefs of subtropical eastern Australia, by measuring physical and substratum‐type variables of habitats at fish sightings. We used nonmetric and metric multidimensional scaling (nMDS, mMDS), Analysis of similarities (ANOSIM), similarity percentages analysis (SIMPER), permutational analysis of multivariate dispersions (PERMDISP), and other multivariate tools to distinguish critical habitats. Niche breadth was widest for 2 endemic wrasses, and reef inclination was important for several species, often found in relatively deep microhabitats. Critical habitats of mainland reef species included small caves or habitat‐forming hosts such as gorgonian corals and black coral trees. Hard corals appeared important for reef fishes at Lord Howe Island, and red algae for mainland reef fishes. A wide range of habitat variables are required to assess critical habitats owing to varied affinities of species to different habitat features. We advocate assessments of critical habitats matched to the spatial scale used by the animals and a combination of multivariate methods. Our multivariate approach furnishes a general template for assessing the critical habitats of species, understanding how these vary among species, and determining differences in the degree of habitat specificity. Definición de Hábitats Críticos para Peces Arrecifales Amenazados y Endémicos Mediante un Método Multivariado  相似文献   

13.
Abstract: Amphibians are declining worldwide, but these declines have been particularly dramatic in tropical mountains, where high endemism and vulnerability to an introduced fungal pathogen, Batrachochytrium dendrobatidis (Bd), is associated with amphibian extinctions. We surveyed frogs in the Peruvian Andes in montane forests along a steep elevational gradient (1200–3700 m). We used visual encounter surveys to sample stream‐dwelling and arboreal species and leaf‐litter plots to sample terrestrial‐breeding species. We compared species richness and abundance among the wet seasons of 1999, 2008, and 2009. Despite similar sampling effort among years, the number of species (46 in 1999) declined by 47% between 1999 and 2008 and by 38% between 1999 and 2009. When we combined the number of species we found in 2008 and 2009, the decline from 1999 was 36%. Declines of stream‐dwelling and arboreal species (a reduction in species richness of 55%) were much greater than declines of terrestrial‐breeding species (reduction of 20% in 2008 and 24% in 2009). Similarly, abundances of stream‐dwelling and arboreal frogs were lower in the combined 2008–2009 period than in 1999, whereas densities of frogs in leaf‐litter plots did not differ among survey years. These declines may be associated with the infection of frogs with Bd. B. dendrobatidis prevalence correlated significantly with the proportion of species that were absent from the 2008 and 2009 surveys along the elevational gradient. Our results suggest Bd may have arrived at the site between 1999 and 2007, which is consistent with the hypothesis that this pathogen is spreading in epidemic waves along the Andean cordilleras. Our results also indicate a rapid decline of frog species richness and abundance in our study area, a national park that contains many endemic amphibian species and is high in amphibian species richness.  相似文献   

14.
Protected areas (nature reserves) cover 0.7% of the land area in southern Finland (162,000 km2), which belongs to the south- and mid-boreal coniferous forest zones. The value of these areas in preserving land birds was studied on the basis of quantitative censuses. The numbers of bird pairs were estimated in nature reserves and in the whole of southern Finland, and the significance of the reserves was evaluated based on how large a proportion of the total population in southern Finland was found in them. Forest habitat generalists and species of coniferous forests occurred in protected areas as expected by the proportion of these areas in southern Finland. Specimens of these species groups comprise two thirds of all the country's land birds. Species of old-growth forests and open peatlands clearly preferred protected areas, whereas species of bushes, and lush and deciduous forest were scarcer in protected areas than elsewhere in southern Finland. The latter fertile habitats are poorly represented in protected areas, even though due to their disappearance or alteration elsewhere several species confined to these habitats have declined and are even threatened. Drainage of open peatlands and clearcutting of old-growth forests has caused a decrease in the area of these habitats in southern Finland during the past decades. Therefore, protected areas have a high significance in preserving bird species preferring these habitats. Protected areas are particularly important for decreased species of old-growth forests, such as the Three-toed Woodpecker Picoides tridactylus and the Siberian Jay Perisoreus infaustus , as about 10% of their total population in southern Finland was estimated to breed in protected areas. The future protection of both old-growth and deciduous forests is important if we are to preserve bio-diversity of land birds in Finland.  相似文献   

15.
云南地区中国种子植物特有属的研究   总被引:1,自引:0,他引:1  
冯建孟  朱有勇 《生态环境》2010,19(3):621-625
物种特有现象的研究具有重要的区系地理学和保护生物学意义。利用大尺度的植物物种分布信息,探讨了云南地区中国种子植物特有属的科、属组成,区系性质及其地理分布格局。结果表明,云南地区拥有中国种子植物特有属125属,分属于59科,共含种子植物246种,是中国种子植物特有属的重要分布地区之一。含特有属较多的科主要为菊科Compositae、苦苣苔科Gesnefiaceae、伞形科Umbelliferae、禾本科Gramineae和唇形科Labiatae。从各属所包含的物种数来看,单型属占主体地位。根据科的分布区类型构成,云南地区中国种子植物特有属主要起源于热带地区。从属的生活型构成来看,主要以草本植物属为主,而木本植物属所占比重相对较小,暗示着研究区域内特有属的区系兼有年轻成分和古老成分,但以年轻成分为主。从空间分布格局来看,特有属主要分布在“田中线”以东地区。与过去的研究结果不同,我们发现云南地区拥有3个重要的特有属分布中心和3个次级分布中心。  相似文献   

16.
The impacts of land‐use change on biodiversity in the Himalayas are poorly known, notwithstanding widespread deforestation and agricultural intensification in this highly biodiverse region. Although intact primary forests harbor many Himalayan birds during breeding, a large number of bird species use agricultural lands during winter. We assessed how Himalayan bird species richness, abundance, and composition during winter are affected by forest loss stemming from agriculture and grazing. Bird surveys along 12 elevational transects within primary forest, low‐intensity agriculture, mixed subsistence agriculture, and intensively grazed pastures in winter revealed that bird species richness and abundance were greatest in low‐intensity and mixed agriculture, intermediate in grazed pastures, and lowest in primary forest at both local and landscape scales; over twice as many species and individuals were recorded in low‐intensity agriculture than in primary forest. Bird communities in primary forests were distinct from those in all other land‐use classes, but only 4 species were unique to primary forests. Low‐, medium‐, and high‐intensity agriculture harbored 32 unique species. Of the species observed in primary forest, 80% had equal or greater abundance in low‐intensity agricultural lands, underscoring the value of these lands in retaining diverse community assemblages at high densities in winter. Among disturbed landscapes, bird species richness and abundance declined as land‐use intensity increased, especially in high‐intensity pastures. Our results suggest that agricultural landscapes are important for most Himalayan bird species in winter. But agricultural intensification—especially increased grazing—will likely result in biodiversity losses. Given that forest reserves alone may inadequately conserve Himalayan birds in winter, comprehensive conservation strategies in the region must go beyond protecting intact primary forests and ensure that low‐intensity agricultural lands are not extensively converted to high‐intensity pastures.  相似文献   

17.
Global biodiversity loss is largely driven by human activities such as the conversion of natural to human-dominated landscapes. A popular approach to mitigating land cover change is the designation of protected areas (e.g., nature reserves). Nature reserves are traditionally perceived as strongholds of biodiversity conservation. However, many reserves are affected by land cover changes not only within their boundaries, but also in their surrounding areas. This study analyzed the changes in habitat for the giant panda (Ailuropoda melanoleuca) inside Wolong Nature Reserve, Sichuan, China, and in a 3-km buffer area outside its boundaries, through a time series of classified satellite imagery and field observations. Habitat connectivity between the inside and the outside of the reserve diminished between 1965 and 2001 because panda habitat was steadily lost both inside and outside the reserve. However, habitat connectivity slightly increased between 1997 and 2001 due to the stabilization of some panda habitat inside and outside the reserve. This stabilization most likely occurred as a response to changes in socioeconomic activities (e.g., shifts from agricultural to nonagricultural economies). Recently implemented government policies could further mitigate the impacts of land cover change on panda habitat. The results suggest that Wolong Nature Reserve, and perhaps other nature reserves in other parts of the world, cannot be managed as an isolated entity because habitat connectivity declines with land cover changes outside the reserve even if the area inside the reserve is well protected. The findings and approaches presented in this paper may also have important implications for the management of other nature reserves across the world.  相似文献   

18.
Abstract: Although enhancing reserve shape has been suggested as an alternative to enlarging nature reserves, the importance of reserve shape relative to reserve area remains unclear. Here we examined the relative importance of area and shape of forest patches to species richness, species composition, and species abundance (abundance of each species) for 3 taxa (33 birds, 41 butterflies, and 91 forest‐floor plants) in a fragmented landscape in central Hokkaido, northern Japan. We grouped the species according to their potential edge responses (interior‐, neutral‐, and edge‐species groups for birds and forest‐floor plants, woodland‐ and open‐land‐species groups for butterflies) and analyzed them separately. We used a shape index that was independent of area as an index of shape circularization. Hierarchical partitioning and variation partitioning revealed that patch area was generally more important than patch shape for species richness and species composition of birds and butterflies. For forest‐floor plants, effects of patch area and shape were small, whereas effects of local forest structure were large. Patch area and circularization generally increased abundances of interior species of birds and forest‐floor plants and woodland species of butterflies. Nevertheless, only patch circularization increased abundances of 1 woodland species of butterfly and 2 and 6 interior species of birds and forest‐floor plants, respectively. We did not find any significant interaction effects between patch area and shape. Our results suggest that although reserves generally should be large and circular, there is a trade‐off between patch area and shape, which should be taken into consideration when managing reserves.  相似文献   

19.
Abstract: Analysis of geographic concentrations of endemic taxa is often used to determine priorities for conservation action; nevertheless, assumptions inherent in the taxonomic authority list used as the basis for analysis are not always considered. We analyzed foci of avian endemism in Mexico under two alternate species concepts. Under the biological species concept, 101 bird species are endemic to Mexico and are concentrated in the mountains of the western and southern portions of the country. Under the phylogenetic species concept, however, total endemic species rises to 249, which are concentrated in the mountains and lowlands of western Mexico. Twenty-four narrow endemic biological species are concentrated on offshore islands, but 97 narrow endemic phylogenetic species show a concentration in the Transvolcanic Belt of the mainland and on several offshore islands. Our study demonstrates that conservation priorities based on concentrations of endemic taxa depend critically on the particular taxonomic authority employed and that biodiversity evaluations need to be developed in collaboration or consultation with practicing systematic specialists.  相似文献   

20.
When conservation biologists formulate strategy used in decisions concerning the locations of new national parks, refuges and reserves, accurate information about species richness and spatialpatterns of species distributions can be critical. Recent research has demonstrated that spatial models and bioindicator taxa can be quite useful for determining generalized spatial patterns of unrelated taxa on a continental scale. In this research, I incorporate abiotic effects, in this case altitudinal relief, into both the mean and the covariance structures of the spatial prediction model. I use bird species data collected in the Indian subcontinent and cross-validation techniques to illustrate the degree of improvement in prediction accuracy engendered by using theabiotic factor and the modified spatial models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号