首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Management efforts to control excess algal growth in the Neuse River and Estuary, North Carolina began in the 1980s, with an initial focus on phosphorus (P) input reduction. However, continued water quality problems in the 1990s led to development of a Total Maximum Daily Load (TMDL) for nitrogen (N) in 1999 to improve conditions in N-sensitive estuarine waters. Evaluation of the effectiveness of management actions implemented in the Neuse River basin is a challenging endeavor due to natural variations in N export associated with climate. A simplified approach is presented that allows evaluation of trends in flow-normalized nutrient loading to provide feedback on effectiveness of implemented actions to reduce N loading to estuarine waters. The approach is applied to five watershed locations, including the headwaters of the Neuse Estuary. Decreases in nitrate + nitrite (NO3–N) concentrations occurred throughout the basin and were largest just downstream of the Raleigh metropolitan area. Conversely, concentrations of total Kjeldahl N (TKN) increased at many stations, particularly under high flow conditions. This indicates a relative increase in organic N (Org-N) inputs since the mid-1990s. Overall, patterns in different N fractions at watershed stations indicate both partial success in reducing N inputs and ongoing challenges for N loading under high flow conditions. In downstream waters, NO3–N concentrations decreased concurrent with TMDL implementation in the upper portion of the estuary but not in the middle and lower reaches. The lack of progress in the middle and lower reaches of the estuary may, at least in part, be affected by remineralization of settled particle-bound N deposited under high river flows.  相似文献   

2.
Streams alter the concentration of nutrients they transport and thereby influence nutrient loading to estuaries downstream; however, the relationship between in-stream uptake, discharge variability, and subsequent nutrient export is poorly understood. In this study, in-stream N and P uptake were examined in the stream network draining a row-crop agricultural operation in coastal North Carolina. The effect of in-stream nutrient uptake on estuarine loading was examined using continuous measurements of watershed nutrient export. From August to December 2003, 52 and 83% of the NH4+ and PO4(3-) loads were exported during storms while concurrent storm flow volume was 34% of the total. Whole-ecosystem mass transfer velocities (Vf) of NH4+ and PO4(3-), measured using short-term additions of inorganic nutrients, ranged from 0.1 to 25 mm min(-1). Using a mass balance approach, this in-stream uptake was found to attenuate 65 to 98% of the NH4+ flux and 78 to 98% of the PO4(3-) flux in small, first-order drainage ditches. For the larger channel downstream, an empirical model based on Vf and discharge was developed to estimate the percentage of the nutrient load retained in-stream. The model predicted that all of the upstream NH4+ and PO4(3-) load was retained during base flow, while 65 and 37% of the NH4+ and PO4(3-) load was retained during storms. Remineralization from the streambed (vs. terrestrial sources) was the apparent source of NH4+ and PO4(3-) to the estuary during base flow. In-stream uptake reduced the dissolved inorganic N to dissolved inorganic P ratio of water exported to the N-limited estuary, thus limiting the potential for estuarine phytoplankton growth.  相似文献   

3.
A detailed study of water and nitrogen (N) discharge from a small, representative subwatershed of Rehoboth Bay, Delaware, was conducted to determine total N loads to the bay. The concentrations of ammonium (NH4(+)), nitrate + nitrite (NO3(-) + NO2(-)), and dissolved and particulate organic N were determined in baseflow and storm waters discharging from Bundicks Branch from October 1998 to April 2002. A novel hydrographic separation model that accounts for significant decreases in baseflow during storm events was developed to estimate N loads during unsampled storms. Nitrogen loads based on gauged flows alone (7100-19,100 kg/yr) significantly underestimated those based on land use-land cover (LULC) and estimated N export factors from different classes of LULC (32,000-40,600 kg/yr). However, when ungauged underflow and associated N loads were included in the total loads (25,500-33,800 kg/yr), there was much better agreement with LULC export models. This suggests that in permeable coastal plain sediments, underflow contributes significantly to N fluxes to estuarine receiving waters, particularly in drier years. Based on the similarity in LULC, N loads from the Bundicks Branch subwatershed were used to estimate upland loads to the entire Rehoboth Bay Watershed (259,000-316,000 kg/yr). These N loads from the watershed were much greater than those from direct atmospheric deposition (49,000-64,500 kg/yr) and from a local wastewater treatment plant (9700-13,700 kg/yr). While the watershed was the principal source of N at all times during the year, the relative contributions from the watershed, wastewater, and direct atmospheric deposition varied predictably with season.  相似文献   

4.
Measurements were conducted during 2004-2005 and 2009-2010 to characterize atmospheric nitrogen (N) deposition to the Jiulong River Estuary - Xiamen Bay area in southeast China. Isotopic analysis and long-term data (1990-2009) for inorganic N extracted from the national acid deposition dataset were used to determine the dominant source of atmospheric nitrate and N component dynamics. The results showed that the mean dissolved total N concentration in rain water for the three coastal area sites was 2.71 ± 1.58 mg N L(-1) (n = 141) in 2004. The mean dissolved inorganic N at the Xiamen site was 1.62 ± 1.19 mg N L(-1) (n = 46) in 2004-2005 and 1.56 ± 1.39 mg N L(-1) (n = 36) in 2009-2010, although the difference is not significant, nitrate turnover dominates the N component in the latter period. Total deposition flux over Xiamen was 30 kg N ha(-1) yr(-1), of which dry and wet deposition contributed 16% and 84%, respectively. Nitrate in wet deposition with low isotopic value (between -3.05 and -7.48‰) was likely to have mostly originated from combustion NO(x) from vehicle exhausts. The inorganic N in acid deposition exhibited a significant increase (mainly for nitrate) since the mid-1990s, which is consistent with the increased gaseous concentrations of NO(x) and expanding number of automobiles in the coastal city (Xiamen). The time series of nitrate anions and ammonium cations as well as pH values during the period 1990-2009 reflected an increasing trend of N emission with potential implication for N-induced acidification.  相似文献   

5.
ABSTRACT: The concentrations of dissolved fixed inorganic nitrogen (ΣN) in Bermuda ground waters can be very high due to both natural and anthropogenic processes. The high anthropogenic flux is due to domestic cesspit operation. Mass balance calculations indicate that ground water seepage, especially rich in ΣN, is a major source of nutrients into the near shore coastal zone of Bermuda. The ground water flux of ΣN is approximately 1.5 to 4 times that of the sewage flux of ΣN to Bermuda's nearshore waters. This input of ΣN may be important in the development of algal blooms in these waters. Our work, coupled with other recent investigations, suggests that the ground water input of nutrients into nearshore marine waters is an important process globally.  相似文献   

6.
The application of inorganic nitrogen fertilizers on agricultural landscapes has the potential to generate concerns of environmental degradation at fine to coarse scales across the catchment and landscape. Inorganic nitrogen species (NO3*, NO2*, and NH3) are typically associated with subsurface flow processes; however, surface runoff from rainfall events in no-till agriculture with inorganic surface fertilizers might contribute to downstream eutrophication. Inorganic nitrogen reduction capacity of agricultural drainage ditches under no-till cotton was determined under natural, variable rainfall conditions in northern Mississippi. Monthly grab baseflow samples and storm-generated flow samples were variably sampled temporally within two experimental farm ditches over 2 yr. Inorganic nitrogen concentrations, in conjunction with Manning's equation and Natural Resources Conservation Service dimensionless hydrographs, provided individual water volumes per storm event and thus maximum effluent and outflow nitrogen loads. Base and stormflow regression results indicate drainage ditches reducing NO3* and NH3 over the length of the ditch for growing and dormant seasons. Overall, maximum storm loads of dissolved inorganic nitrogen (DIN) from the farm over the 2-yr sampling period accounted for 2.2% of the initial fertilizer application, of which 1.1% left the ditch (0.84 kg ha(-1) yr(-1)) (a 57% ditch reduction of DIN load over 2 yr). Long-term sampling incorporating data on application and loss of fertilizers and farm management will provide critical information for farmers and scientists on the potential of economic gains and downstream ecosystem eutrophication, respectively.  相似文献   

7.
Data from 89 forested catchments and plots across Europe were used to define empirical relationships between aluminum leaching and input fluxes of major ions, output fluxes of major ions, ecosystem parameters such as soil pH, and combinations of these. Forests that release dissolved Al to seepage or surface waters are located primarily in areas receiving the highest loading of acid rain, and the output flux of Al shows the highest correlations to the throughfall flux of inorganic nitrogen, the output fluxes of NO3-, H+, and SO4(2-), and the mineral soil pH. If the speciation of Al is taken to be Al3+ (an overestimate), Al is released in a nearly 1:1 molar charge ratio with the sum of NO3- and SO4(2-) in runoff or seepage water over a wide range of basepoor bedrock types and acid deposition across Europe. The empirical data point to a threshold range of N deposition of 80 to 150 mmolc N m(-2) yr(-1) and a (less clearly defined) range of S deposition of 100 to 200 mmolc SO4(-2) m(-2) yr(-1) above which Al released from forests exceeds 100 mmolc Al m(-2) yr(-1). Within this threshold range, the sites that release little or no dissolved Al are those that continue to assimilate input N and/or have high soil pH (>4.5).  相似文献   

8.
Application of integrated Chesapeake Bay models of the airshed, watershed, and estuary support air and water nitrogen controls in the Chesapeake. The models include an airshed model of the Mid‐Atlantic region which tracks the estimated atmospheric deposition loads of nitrogen to the watershed, tidal Bay, and adjacent coastal ocean. The three integrated models allow tracking of the transport and fate of nitrogen air emissions, including deposition in the Chesapeake watershed, the subsequent uptake, transformation, and transport to Bay tidal waters, and their ultimate influence on Chesapeake water quality. This article describes the development of the airshed model, its application to scenarios supporting the Chesapeake Total Maximum Daily Load (TMDL), and key findings from the scenarios. Key findings are that the atmospheric deposition loads are among the largest input loads of nitrogen in the watershed, and that the indirect nitrogen deposition loads to the watershed, which are subsequently delivered to the Bay are larger than the direct loads of atmospheric nitrogen deposition to Chesapeake tidal waters. Atmospheric deposition loads of nitrogen deposited in coastal waters, which are exchanged with the Chesapeake, are also estimated. About half the atmospheric deposition loads of nitrogen originate from outside the Chesapeake watershed. For the first time in a TMDL, the loads of atmospheric nitrogen deposition are an explicit part of the TMDL load reductions.  相似文献   

9.
Atmospheric deposition of nitrate nitrogen and ammonium nitrogen has been identified as a major factor in the decline of water quality in the Chesapeake Bay. Reports have indicated that atmospheric deposition may account for 25 to 80% of the total nitrogen load entering the bay. However, uncertainties exist regarding the accuracy of the atmospheric deposition inputs, nitrogen retention coefficients, and in-stream nutrient uptake rates used in these studies. This project was designed to reassess the potential inputs of atmospheric nitrogen deposition to the bay through the use of a high-resolution wet deposition model, improved wet and dry deposition and nutrient retention estimates, existing soils and land use data, and geographic information systems software. Model results indicate that the methods used in previous studies may overestimate the contribution of atmospheric nitrate and ammonium deposition to the Chesapeake Bay watershed (CBW). Wet and dry atmospheric nitrate and ammonium nitrogen deposition estimates to the CBW ranged from 52.7 to 141.9 and 41.9 to 60.1 million kg/yr, respectively, between 1984 and 1996. Dry and total atmospheric deposition loads to the watershed are substantially less than previous estimates. Estimates of the percent contribution of atmospherically deposited nitrogen to the Chesapeake Bay represent between 20 and 32% of the total nitrate and ammonium nitrogen load to the watershed from all nitrogen sources. While these estimates are lower than many other published estimates, regression analysis of model parameters, nitrogen retention coefficients, output, and measured in-stream nitrogen loads indicate that the calculated nitrogen loads may still be too high.  相似文献   

10.
Dissolved organic nitrogen (DON) has been hypothesized to play a major role in N cycling in a variety of ecosystems. Our aim was to assess the seasonal and concentration relationships between dissolved organic carbon (DOC), DON, and NO3- within 102 streams and 16 lakes within catchments of differing complexity situated in Wales. Further, we aimed to assess whether patterns of land use, soil type, and vegetation gave consistent trends in DON and dissolved inorganic nitrogen (DIN) relationships over a diverse range of catchments. Our results reinforce that DON constitutes a significant component of the total dissolved N pool typically representing 40 to 50% of the total N in streams and lakes but sometimes representing greater than 85% of the total dissolved N. Generally, the levels of DON were inversely correlated with the concentration of DIN. In contrast to DIN concentrations, which showed distinct seasonality, DON showed no consistent seasonal trend. We hypothesize that this reflects differences in the bioavailability of these two N types. The amount of DON, DOC, and DIN was significantly related to soil type with higher DON export from Histosol-dominated catchments in comparison with Spodosol-dominated watersheds. Vegetation cover also had a significant effect on DON concentrations independent of soil type with a nearly twofold decrease in DON export from forested catchments in comparison with nonforested watersheds. Due to the diversity in catchment DON behavior, we speculate that this will limit the adoption of DON as a broad-scale indicator of catchment condition for use in monitoring and assessment programs.  相似文献   

11.
The watershed of the Neuse River, a major tributary of the largest lagoonal estuary on the U.S. mainland, has sustained rapid growth of human and swine populations. This study integrated a decade of available land cover and water quality data to examine relationships between land use changes and surface water quality. Geographic Information Systems (GIS) analysis was used to characterize 26 subbasins throughout the watershed for changes in land use during 1992–2001, considering urban, agricultural (cropland, animal as pasture, and densities of confined animal feed operations [CAFOs]), forested, grassland, and wetland categories and numbers of wastewater treatment plants (WWTPs). GIS was also used together with longitudinal regression analysis to identify specific land use characteristics that influenced surface water quality. Total phosphorus concentrations were significantly higher during summer in subbasins with high densities of WWTPs and CAFOs. Nitrate was significantly higher during winter in subbasins with high numbers of WWTPs, and organic nitrogen was higher in subbasins with higher agricultural coverage, especially with high coverage of pastures fertilized with animal manure. Ammonium concentrations were elevated after high precipitation. Overall, wastewater discharges in the upper, increasingly urbanized Neuse basin and intensive swine agriculture in the lower basin have been the highest contributors of nitrogen and phosphorus to receiving surface waters. Although nonpoint sources have been emphasized in the eutrophication of rivers and estuaries such as the Neuse, point sources continue to be major nutrient contributors in watersheds sustaining increasing human population growth. The described correlation and regression analyses represent a rapid, reliable method to relate land use patterns to water quality, and they can be adapted to watersheds in any region.  相似文献   

12.
Eutrophication is a serious water quality problem in estuaries receiving increasing anthropogenic nutrient loads. Managers undertaking nutrient-reduction strategies aimed at controlling estuarine eutrophication are faced with the challenge that upstream freshwater segments often are phosphorus (P)-limited, whereas more saline downstream segments are nitrogen (N)-limited. Management also must consider climatic (hydrologic) variability, which affects nutrient delivery and processing. The interactive effects of selective nutrient input reductions and climatic perturbations were examined in the Neuse River Estuary (NRE), North Carolina, a shallow estuary with more than a 30-year history of accelerated nutrient loading and water quality decline. The NRE also has experienced a recent increase in Atlantic hurricanes and record flooding, which has affected hydrology and nutrient loadings. The authors examined the water quality consequences of selective nutrient (P but not N) reductions in the 1980s, followed by N reductions in the 1990s and an increase in hurricane frequency since the mid-1990s. Selective P reductions decreased upstream phytoplankton blooms, but increased downstream phytoplankton biomass. Storms modified these trends. In particular, upstream annual N and P concentrations have decreased during the elevated hurricane period. Increased flushing and scouring from storms and flooding appear to have enhanced nutrient retention capabilities of the NRE watershed. From a management perspective, one cannot rely on largely unpredictable changes in storm frequency and intensity to negate anthropogenic nutrient enrichment and eutrophication. To control eutrophication along the hydrologically variable freshwater–marine continuum, N and P reductions should be applied adaptively to reflect point-source–dominated drought and non–point-source–dominated flood conditions.  相似文献   

13.
Cyanobacterial blooms in Lake Taihu occurred at the end of April 2007 and had crucial impacts on the livelihood of millions of people living there. Excessive nutrients may promote bloom formation. Atmospheric nitrogen (N) and phosphorus (P) deposition appears to play an important role in algal bloom formation. Bulk deposition and rain water samples were collected respectively from May 1 to November 30, 2007, the period of optimal algal growth, to measure the bulk atmospheric deposition rate, wet deposition rate, and dry deposition rate for total nitrogen (TN; i.e., all species of nitrogen), and total phosphorus (TP; i.e., all species of phosphorus), in northern Lake Taihu, China. The trends of the bulk atmospheric deposition rate for TN and the wet deposition rate for TN showed double peaks during the observation period and distinct influence with plum rains and typhoons. Meanwhile, monthly bulk atmospheric deposition rates for TP showed little influence of annual precipitation. However, excessive rain may lead to high atmospheric N and P deposition rates. In bulk deposition samples, the average percentage of total dissolved nitrogen accounting for TN was 91.2% and changed little with time. However, the average percentage of total dissolved phosphorus accounting for TP was 65.6% and changed substantially with time. Annual bulk atmospheric deposition rates of TN and TP during 2007 in Lake Taihu were estimated to be 2,976 and 84 kg km−2 a−1, respectively. The results showed decreases of 34.4% and 78.7%, respectively, compared to 2002–2003. Annual bulk deposition load of TN for Lake Taihu was estimated at 6,958 t a−1 in 2007 including 4,642 t a−1 of wet deposition, lower than the values obtained in 2002–2003. This may be due to measures taken to save energy and emission control regulations in the Yangtze River Delta. Nevertheless, high atmospheric N and P deposition loads helped support cyanobacterial blooms in northern Lake Taihu during summer and autumn, the period of favorable algal growth.  相似文献   

14.
Internal cycling of nutrients from the sediment and water column can be an important contribution to the total nutrient load of an aquatic ecosystem. Our objective was to estimate the internal nutrient loading of the Lower St. Johns River (LSJR). Dissolved reactive phosphorus (DRP) and ammonium (NH(4)-N) flux from sediments were measured under aerobic and anaerobic water column conditions using intact cores, to estimate the overall contribution of the sediments to P and N loading to the LSJR. The DRP flux under aerobic water column conditions averaged 0.13 mg m(-2) d(-1), approximately 37 times lower than that under anaerobic conditions (4.77 mg m(-2) d(-1)). The average NH(4)-N released from the anaerobic cores (18.03 mg m(-2) d(-1)) was also significantly greater than in the aerobic cores for all sites and seasons, indicating the strong relationship between nutrient fluxes and oxygen availability in the water column. The mean annual internal DRP load was estimated to be 330 metric tons (Mg) yr(-1), 21% of the total P load to the river, while the mean annual internal load of NH(4)-N was determined to be 2066 Mg yr(-1), 28% of the total N load to the LSJR estuary. As water resource managers reduce external loading to the LSJR the frequency of anaerobic events should decline, thereby reducing nutrient fluxes from the sediment to the water column, reducing the internal loading of DRP and NH(4)-N. Results from this study demonstrate that the internal flux of nutrients from sediments may be a significant portion of the total load and should be accounted for in the total nutrient budget of the river for successful restoration.  相似文献   

15.
Previous research has shown that plant diversity influences N and P cycles. However, the effect of plant diversity on complete ecosystem N and P budgets has not yet been assessed. For 20 plots of artificially established grassland mixtures differing in plant diversity, we determined N and P inputs by bulk and dry deposition and N and P losses by mowing (and subsequent removal of the biomass) and leaching from April 2003 to March 2004. Total deposition of N and P was 2.3 +/- 0.1 and 0.2 +/- 0.01 g m(-2) yr(-1), respectively. Mowing was the main N and P loss. The net N and P budgets were negative (-6.3 +/- 1.1 g N and -1.9 +/- 0.2 g P m(-2) yr(-1)). For N, this included a conservative estimate of atmospheric N(2) fixation. Nitrogen losses as N(2)O were expected to be small at our study site (<0.05 g m(-2) yr(-1)). Legumes increased the removal of N with the harvest and decreased leaching of NH(4)-N and dissolved organic nitrogen (DON) from the canopy. Reduced roughness of grass-containing mixtures decreased dry deposition of N and P. Total dissolved P and NO(3)-N leaching from the canopy increased in the presence of grasses attributable to the decreased N and P demand of grass-containing mixtures. Species richness did not have an effect on any of the studied fluxes. Our results demonstrate that the N and P fluxes in managed grassland are modified by the presence or absence of particular functional plant groups and are mainly driven by the management.  相似文献   

16.
Evaluation of a denitrification wall to reduce surface water nitrogen loads   总被引:1,自引:0,他引:1  
Denitrification walls have significantly reduced nitrogen concentrations in groundwater for at least 15 yr. This has spurred interest in developing methods to efficiently increase capture volume to reduce N loads in larger watersheds. The objective of this study was to maximize treatment volume by locating a wall where a large groundwatershed was funneled toward seepage slope headwaters. Nitrogen concentration and load were measured before and after wall installation in paired treatment and control streams. Beginning 2 d after installation, nitrogen concentration in the treatment stream declined from 6.7 ± 1.2 to 3.9 ± 0.78 mg L and total N loading rate declined by 65% (391 kg yr) with no corresponding decline in the control watershed. This wall, which only comprised 10 to 11% of the edge of field area that contributed to the treatment watershed, treated approximately 60% of the stream discharge, which confirmed the targeted approach. The total load reduction measured in the stream 155 m downstream from the wall (340 kg yr) was higher than that found in another study that measured load reductions in groundwater wells immediately around the wall (228 kg yr). This indicated the possibility of an extended impact on denitrification from carbon exported beyond the wall. This extended impact was inauspiciously confirmed when oxygen levels at the stream headwaters temporarily declined for 50 d. This research indicates that targeting walls adjacent to streams can effectively reduce N loading in receiving waters, although with a potentially short-term impact on water quality.  相似文献   

17.
ABSTRACT: Dairy cow pastures and feeding areas around barns can be a significant source of nonpoint source pollutants to nearby streams. To help document the significance of these sources, nutrient export in streamfiow from a 56.7-ha, mostly agricultural, watershed located in southwestern North Carolina was monitored from August 1994 to January 1996. Total nitrogen and phosphorus export rates from the upper, predominantly pasture, part of the watershed were 18.0 and 1.4 kg/ha/yr, respectively, as measured by weekly grab sampling and 18.7 and 4.9 kg/halyr, respectively, as measured from storm event monitoring. Nitrogen and phosphorus export rates for the area between the monitoring sites, which included overgrazed cow holding and feeding areas and farm buildings, were 376 and 86 kgfhalyr, respectively, for grab sampling and 351 and 160 kg/ha/yr, respectively, for storm event monitoring. To estimate the amount of reduction from nonpoint source controls necessary to effect a significant reduction in pollutant loading, statistical analyses of the load data were conducted. The analyses for the five pollutants monitored showed that total suspended solids would require the greatest reduction (34.6 percent for weekly grab and 33.6 percent for storm) in loading after the implementation of controls for statistical significance. Nitrate plus nitrite was found to require the least reduction (12.6 percent for weekly grab). Pollutant export rates computed from weekly grab samples and storm event samples used separately were compared to corresponding export rates computed from combining grab and storm event samples to assess the differences in monitoring schemes.  相似文献   

18.
The relative contribution of reduced nitrogen to acid and eutrophic deposition in Europe has increased recently as a result of European policies which have been successful in reducing SO(2) and NO(x) emissions but have had smaller impacts on ammonia (NH(3)) emissions. In this paper the Fine Resolution Atmospheric Multi-pollutant Exchange (FRAME) model was used to calculate the spatial patterns of annual average ammonia and ammonium (NH(4)(+)) air concentrations and reduced nitrogen (NH(x)) dry and wet deposition with a 5 km × 5 km grid for years 2002-2005. The modelled air concentrations of NH(3) and dry deposition of NH(x) show similar spatial patterns for all years considered. The largest year to year changes were found for wet deposition, which vary considerably with precipitation amount. The FRAME modelled air concentrations and wet deposition are in reasonable agreement with available measurements (Pearson's correlation coefficients above 0.6 for years 2002-2005), and with spatial patterns of concentrations and deposition of NH(x) reported with the EMEP results, but show larger spatial gradients. The error statistics show that the FRAME model results are in better agreement with measurements if compared with EMEP estimates. The differences in deposition budgets calculated with FRAME and EMEP do not exceed 17% for wet and 6% for dry deposition, with FRAME estimates higher than for EMEP wet deposition for modelled period and lower or equal for dry deposition. The FRAME estimates of wet deposition budget are lower than the measurement-based values reported by the Chief Inspectorate of Environmental Protection of Poland, with the differences by approximately 3%. Up to 93% of dry and 53% of wet deposition of NH(x) in Poland originates from national sources. Over the western part of Poland and mountainous areas in the south, transboundary transport can contribute over 80% of total (dry + wet) NH(x) deposition. The spatial pattern of the relative contribution of national sources to total deposition of NH(x) may change significantly due to the general circulation of air.  相似文献   

19.
ABSTRACT: The Caloosahatchee River has two major sources of freshwater one from its watershed and the other via an artificial connection to Lake Okeechobee. The contribution of each source to the freshwater discharge reaching the downstream estuary varies and either may dominate. Routine monitoring data were analyzed to determine the effects of total river discharge and source of discharge (river basin, lake) on water quality in the downstream estuary. Parameters examined were: color, total suspended solids, light attenuation, chlorophyll a, and total and dissolved inorganic nitrogen and phosphorus. In general, the concentrations of color, and total and dissolved inorganic nitrogen increased, and total suspended solids decreased, as total discharge increased. When the river basin was the major source, the concentrations of nutrients (excepting ammonia) and color in the estuary were relatively higher than when the lake was the major source. Light attenuation was greater when the river basin dominated freshwater discharge to the estuary. The analysis indicates that water quality in the downstream estuary changes as a function of both total discharge and source of discharge. Relative to discharge from the river basin, releases from Lake Okeechobee do not detectably increase concentrations of nutrients, color, or TSS in the estuary.  相似文献   

20.
This study quantified nonpoint source nitrogen (NPS‐N) sources and sinks across the 14,582 km2 Neuse River Basin (NRB) located in North Carolina, to provide tabular data summaries and graphic overlay products to support the development of management approaches to best achieve established N reduction goals. First, a remote sensor derived, land cover classification was performed to support modeling needs. Modeling efforts included the development of a mass balance model to quantify potential N sources and sinks, followed by a precipitation event driven hydrologic model to effectively transport excess N across the landscape to individual stream reaches to support subsequent labeling of transported N values corresponding to source origin. Results indicated that agricultural land contributed 55 percent of the total annual NPS‐N loadings, followed by forested land at 23 percent (background), and urban areas at 21 percent. Average annual N source contributions were quantified for agricultural (1.4 kg/ha), urban (1.2 kg/ha), and forested cover types (0.5 kg/ha). Nonpoint source‐N contributions were greatest during the winter (40 percent), followed by spring (32 percent), summer (28 percent), and fall (0.3 percent). Seasonal total N loadings shifted from urban dominated and forest dominated sources during the winter, to agricultural sources in the spring and summer. A quantitative assessment of the significant NRB land use activities indicated that high (greater than 70 percent impervious) and medium (greater than 35 percent impervious) density urban development were the greatest contributors of NPS‐N on a unit area basis (1.9 and 1.6 kg/ha/yr, respectively), followed by row crops and pasture/hay cover types (1.4 kg/ha/yr).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号