首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The recycling of sewage sludge on agriculture land represents an alternative, advantageous, disposal of this waste material. The aim of the present study was to evaluate the feasibility of using industrial sewage sludge, produced in Pakistan, as a fertiliser. Agricultural soil amended with 25% (w/w) sewage sludge with or without lime treatment was used for growing a variety of sorghum (PARC-SS-1). The mobility of the heavy metals (HMs) (Cd, Cu, Cr, Ni, Pb and Zn) and metalloid (As) in the untreated industrial waste water sewage sludge (UIWS) samples were assessed by applying a modified BCR (Community Bureau of Reference) sequential extraction procedure. The single extraction procedure comprised of the application of mild extractant (CaCl2) and water for the estimation of the proportion of easily soluble metal fractions. The precision and accuracy of BCR was evaluated by using a certified reference material of soil amended with sewage sludge BCR 483. The plant available metal contents, as extracted by the deionised water and 0.01 M CaCl2 solution and exchangeable fraction of BCR sequential, decreased with lime application in the range of 10–44% for As, Cr, Ni, Pb and Zn, except in the cases of Cd and Cu, where their mobility was increased by 10% and 24%, respectively. Sludge amendment enhanced the dry weight yield of sorghum and the increase was more obvious after liming up to 25%. The uptake of HMs were lower in test samples (3.2–21.8%), except for Cu and Cd, which was higher (4%), while they were below the permissible limit of these metals. The present experiment demonstrates that liming was important in factors facilitating the growth of sorghum in sludge-amended soil.  相似文献   

2.
Oily sludge landfarmed in Kuwait soil contains higher concentrations of certain elements than that of the untreated of, soil, e.g. S, Cu, Cr, Zn, Pb, Ni, Mo and V. The growth and elemental content of three different plants grown on a sandy soil previously treated with different concentrations of oily sludge were studied. Tested plants differed in their response to landfarmed oily sludge; ryegrass was the least affected followed by oats, then barley. Uptake of elements differed both qualitatively and quantitatively between test plants. In barley, Zn increased in plants cultivated in soil treated with oily sludge, whereas other metal concentrations were reduced or not affected, namely, Cu, Pb, Ni, V. The uptake of P was greater in plants grown on treated soil compared with those on untreated soil, whereas Na, Ca, K, were either reduced or unaffected. In oats, Zn, Ni, Cu, Pb, V, were not significantly changed. Uptakes of K, Ca, P, and Na in plants from treated soil were higher than that of the control. In ryegrass, heavy metal concentrations were either reduced or remained the same as that of the control. In all cases, concentrations of essential heavy metals and other true elements under investigation were still lower than the levels considered to be sufficient for micronutrients. Thus, the oily sludge was a source of certain micro-nutrients which were deficient in the sandy soil. Further, it appears that uptake and distribution of elements in plant tissues were both highly variable according to the plant, species, and the soil characteristics.  相似文献   

3.
超声波去除农用污泥中重金属的试验研究   总被引:1,自引:0,他引:1  
污水处理厂污泥中的重金属浓度高是污泥农用的主要障碍。为了降低农用污泥中的重金属含量,以Cu、Zn、Ni、Pb为对象,研究了超声波对其的影响。结果表明:超声对污泥中重金属有一定的溶出作用。当超声时间为30min时,溶解状态Cu、Zn、Ni、Pb的析出率分别为42.1%、37.5%、12.7%、14.7%;总的析出率分别为52.7%、44.7%、23.6%、71%。其中析出的Pb大部分以胶体状态存在,而溶解状态只占很少一部分。其他几种金属则以溶解状态为主。  相似文献   

4.
Chemical immobilization is a relatively inexpensive in situ remediation method that reduces soil contaminant solubility, but the ability of this remediation treatment to reduce heavy metal bioavailability and ecotoxicity to soil invertebrates has not been evaluated. Our objectives were to (i) assess the ability of chemical immobilization amendments (municipal sewage sludge biosolids and rock phosphate) to reduce metal bioavailability and toxicity in a toxic metal-contaminated smelter soil and (ii) evaluate soil extraction methods using Ca(NO3)2 solution or ion-exchange membranes coated with diethylenetriaminepentaacetic acid (DTPA) as surrogate measures of metal bioavailability and ecotoxicity. We treated a soil contaminated by Zn and Pb milling and smelting operations and an uncontaminated control soil with lime-stabilized municipal biosolids (LSB), rock phosphate (RP), or anaerobically digested municipal biosolids (SS) and evaluated lethality of the remediated soils to earthworm (Eisenia fetida Savigny). Lime-stabilized municipal biosolids was the only remediation amendment to successfully immobilize lethal levels of Zn in the smelter soil (14-d cumulative mortality < or = 15%). Calcium nitrate-extractable Zn in the lethal Zn smelter soil-amendment combinations was 11.5 to 18.2 mmol/kg, compared with the nonlethal LSB amended soil (0.62 mmol/kg). The Ca(NO3)2-extractable Zn-based median lethal concentration (LC50) of 6.33 mmol/kg previously developed in Zn-spiked artificial soils was applicable in the remediated smelter soils despite a 14-fold difference in total Zn concentration. Chelating ion-exchange membrane uptake among the soils was highly variable (mean CV = 39%) compared with the Ca(NO3)2-extraction (mean CV = 1.9%) and not well related to earthworm toxicity.  相似文献   

5.
Fate of biosolids trace metals in a dryland wheat agroecosystem   总被引:1,自引:0,他引:1  
Biosolids land application for beneficial reuse applies varying amounts of trace metals to soils. Measuring plant-available or total soil metals is typically performed to ensure environmental protection, but these techniques do not quantify which soil phases play important roles in terms of metal release or attenuation. This study assessed the distribution of Cd, Cr, Cu, Mo, Ni, Pb, and Zn associated with soluble/exchangeable, specifically adsorbed/carbonate-bound, amorphous Mn hydroxyoxide-bound, amorphous Fe hydroxyoxide-bound, organically complexed, and residual inorganic phases. Biosolids were applied every 2 yr from 1982 to 2002 (except in 1998) at rates of 0, 6.7, 13.4, 26.8, and 40.3 dry Mg biosolids ha(-)(1) to 3.6- by 17.1-m plots. In 2003, 0- to 20-cm and 20- to 60-cm soil depths were collected and subjected to 4 mol L(-1) HNO(3) digestion and sequential extraction. Trace metals were concentrated in the 0- to 20-cm depth, with no significant observable downward movement using 4 mol L(-1) HNO(3) or sequential extraction. The sequential extraction showed nearly all measurable Cd present in relatively mobile forms and Cr, Cu, Mo, Ni, Pb, and Zn present in more resistant phases. Biosolids application did not affect Cd or Cr fractionation but did increase relatively immobile Cu, Mo, and Zn phases and relatively mobile Cu, Ni, and Pb pools. The mobile phases have not contributed to significant downward metal movement. Long-term, repeated biosolids applications at rates considered several times greater than agronomic levels should not significantly contribute to downward metal transport and ground water contamination for soils under similar climatic conditions, agronomic practices, and histories.  相似文献   

6.
Long-term land application of sewage sludge (SS) has caused concern over the potential release of trace metals into the environment following the degradation of organic matter (OM). This study was performed to assess the impact of OM degradation on the relative distribution of Cu, Zn, Pb, and As in SS and SS-amended soils. Three SSs of different ages and two soils treated with SS were subjected to incubation and direct chemical oxidation using diluted HO, followed by a sequential extraction. The majority of Cu, Pb, and As were bound to OM, whereas the majority of Zn was bound with Fe/Mn oxides for all three SSs. Incubation of SS for 6 mo did not result in a substantial decrease in OM content or a change in the relative distribution of Cu, Zn, Pb, and As. Direct OM oxidation to 30 and 70% by diluted HO resulted in a significant decrease in organically bound Cu but increased its exchangeable, carbonate-bound, and Fe/Mn-bound fractions. Oxidation of OM slightly decreased organically bound Zn but significantly increased exchangeable Zn in all SSs. Oxide- and carbonate-bound Zn also decreased following OM oxidation. Exchangeable fractions of As and Pb were minute before and after OM degradation, indicating that release into the environment would be unlikely. The relative distribution of Cu, Zn, Pb, and As in SS-treated soils was similar to that of SS, suggesting a dominant role of SS properties in controlling metal distribution following OM oxidation. Overall, OM oxidation increased the mobility and bioavailability of Zn and Cu, whereas it had less impact on Pb and As.  相似文献   

7.
The Akaki River, laden with untreated wastes from domestic, industrial, and commercial sources, serves as a source of water for irrigating vegetable farms. The purpose of this study is to identify the impact of waste-water irrigation on the level of heavy metals and to predict their potential mobility and bioavailability. Zn and V had the highest, whereas Hg the lowest, concentrations observed in the soils. The average contents of As, Co, Cr, Cu, Ni, Zn, V, and Hg of both soils; and Pb and Se from Fluvisol surpassed the mean + 2 SD of the corresponding levels reported for their uncontaminated counterparts. Apparently, irrigation with waste water for the last few decades has contributed to the observed higher concentrations of the above elements in the study soils (Vertisol and Fluvisol) when compared to uncontaminated Vertisol and Fluvisol. On the other hand, Vertisol accommodated comparatively higher average levels of Cr, Cu, Ni, Zn, etc V, and Cd, whereas high contents of Pb and Se were observed in Fluvisol. Alternatively, comparable levels of Co and Hg were found in either soil. Except for Ni, Cr, and Cd in contaminated Vertisol, heavy metals in the soils were not significantly affected by the depth (0–20 and 30–50 cm). When the same element from the two soils was compared, the levels of Cr, Cu, Ni, Pb, Se, Zn, V, Cd at 0–20 cm; and Cr, Ni, Cu, Cd, and Zn at 30–50 cm were significantly different. Organic carbon (in both soils), CEC (Fluvisol), and clay (Vertisol) exhibited significant positive correspondences with the total heavy metal levels. Conversely, Se and Hg contents revealed perceptible associations with carbonate and pH. The exchangeable fraction was dominated by Hg and Cd, whereas the carbonate fraction was abounded with Cd, Pb, and Co. conversely, V and Pb displayed strong affinity to reducible fraction, where as Cr, Cu, Zn, and Ni dominated the oxidizable fraction. Cr, Hg, Se, and Zn (in both soils) showed preference to the residual fraction. Generally, a considerable proportion of the total levels of many of the heavy metals resided in non residual fractions. The enhanced lability is generally expected to follow the order: Cd > Co > Pb > Cu > Ni > Se > V and Pb > Cd > Co > Cu > Ni > Zn in Vertisol and Fluvisol, respectively. For the similar wastewater application, the soil variables influence the status and the distribution of the associated heavy metals among the different soil fractions in the study soils. Among heavy metals that presented relatively elevated levels and with potential mobility, Co, Cu, Ni (either soil), V (Vertisol), Pb, and Zn (Fluvisol) could pose health threat through their introduction into the food chain in the wastewater irrigated soils.  相似文献   

8.
通过2年的定点调查,研究了湘中某工业区附近农田土壤、糙米中重金属含量状况;并对重金属在水稻植株中的含量分布,以及影响糙米中重金属含量的土壤因素进行了探讨。  相似文献   

9.
Heavy metals in soils may adversely affect environmental quality. In this study, we investigated the release of Zn, Cd, Pb, and Cu from four contaminated soils by column leaching and single and sequential batch extractions. Homogeneously packed soil columns were leached with 67 mL/g 10(-2) M CaCl2 to investigate the exchangeable metal pool and subsequently with 1400 mL/g 10(-2) M CaCl2 adjusted to pH 3 to study the potential of metal release in response to soil acidification. In two noncalcareous soils (pH 5.7 and 5.1), exchange by Ca resulted in pronounced release peaks for Zn and Cd that were coupled to the exchange of Mg by Ca, and 40 to 70% of total Zn and Cd contents were rapidly mobilized. These amounts compared well with exchangeable pools determined in single and sequential batch extractions. In two soils with near-neutral pH, the effluent concentrations of Zn and Cd were several orders of magnitude lower and no pronounced elution peaks were observed. This behavior was also observed for Cu and Pb in all four soils. When the soils were leached at pH 3, the column effluent patterns reflected the coupling of CaCO3 dissolution (if present) and other proton buffering reactions, proton-induced metal release, and metal-specific readsorption within the soil column. Varying the flow rate by a factor of five had only minor effects on the release patterns. Overall, Ca exchange and subsequent acidification to pH 3 removed between 65 and 90% of total Zn, Cd, Pb, and Cu from the four contaminated soils.  相似文献   

10.
An inventory of trace element inputs to agricultural soils in China   总被引:45,自引:0,他引:45  
It is important to understand the status and extent of soil contamination with trace elements to make sustainable management strategies for agricultural soils. The inputs of trace elements to agricultural soils via atmospheric deposition, livestock manures, fertilizers and agrochemicals, sewage irrigation and sewage sludge in China were analyzed and an annual inventory of trace element inputs was developed. The results showed that atmospheric deposition was responsible for 43–85% of the total As, Cr, Hg, Ni and Pb inputs, while livestock manures accounted for approximately 55%, 69% and 51% of the total Cd, Cu and Zn inputs, respectively. Among the elements concerned, Cd was a top priority in agricultural soils in China, with an average input rate of 0.004 mg/kg/yr in the plough layer (0–20 cm). Due to the spatial and temporal heterogeneity of the sources, the inventory as well as the environmental risks of trace elements in soils varies on a regional scale. For example, sewage sludge and fertilizers (mainly organic and phosphate-based inorganic fertilizers) can also be the predominant sources of trace elements where these materials were excessively applied. This work provides baseline information to develop policies to control and reduce toxic element inputs to and accumulation in agricultural soils.  相似文献   

11.
通过评价西安市污水厂污泥理化性质、重金属含量和潜在生态风险,探究污泥再利用的可行性.分析了西安市7个具有代表性的生活污水处理厂污泥的基本理化性质和6种重金属(Cr、Cu、Ni、Pb、Cd和Zn)在不同时期的含量变化,并对污泥再利用做了可行性评价和潜在风险评价.结果 表明,各污水厂污泥除XA3污水厂Cd未达标外,其余污水...  相似文献   

12.
Concerns over the possible increase in phytoavailability of biosolids-applied trace metals to plants have been raised based on the assumption that decomposition of applied organic matter would increase phytoavailability. The objectives of this study were to assess the effect of time on chemical extractability and concentration of Cd, Cu, Ni, and Zn in plants on plots established by a single application of biosolids with high trace metals content in 1984. Biosolids were applied to 1.5 by 2.3 m confined plots of a Davidson clay loam (clayey, kaolinitic, thermic Rhodic Kandiudults) at 0, 42, 84, 126, 168, and 210 Mg ha(-1). The highest biosolids application supplied 4.5, 760, 43, and 620 kg ha(-1) of Cd, Cu, Ni, and Zn, respectively. Radish (Raphanus sativus L.), romaine lettuce (Lactuca sativa L. var. longifolia), and barley (Hordeum vulgare L.) were planted at the site for 3 consecutive years, 17 to 19 yr after biosolids application. Extractable Cd, Cu, Ni, and Zn (as measured by DTPA, CaCl(2,) and Mehlich-1) were determined on 15-cm depth samples from each plot. The DTPA-extractable Cu and Zn decreased by 58 and 42%, respectively, 17 yr after application despite a significant reduction in organic matter content. Biosolids treatments had no significant effect on crop yield. Plant tissue metal concentrations increased with biosolids rate but were within the normal range of these crops. Trace metal concentrations in plants generally correlated well with the concentrations extracted from soil with DTPA, CaCl(2), and Mehlich-1. Metal concentrations in plant tissue exhibited a plateau response in most cases. The uptake coefficient values generated for the different crops were in agreement with the values set by the Part 503 Rule.  相似文献   

13.
Metals in soils amended with sewage sludge are typically less available compared with those in soils spiked with soluble metal salts. However, it is unclear if this difference remains in the long term. A survey of copper (Cu) availability was made in soils amended with sewage sludge, manure, and compost, collectively named organic amendments. Paired sets of amended and control soils were collected from 22 field trials where the organic amendments had aged up to 112 yr. Amended soils had higher total Cu concentrations (range, 2-220 mg Cu kg; median, 15 mg Cu kg) and organic C (range, 1-16 g kg; median, 4 g kg) than control soils. All samples were freshly spiked with CuCl, and the toxicity of added Cu to barley was compared between amended and control soils. The toxicity of added Cu was significantly lower in amended soils than in control soil in 15 sets by, on average, a factor of 1.4, suggesting that aged amendments do not largely increase Cu binding sites. The fraction of added Cu that is isotopic exchangeable Cu (labile Cu) was compared between control soils freshly spiked with CuCl and amended soils with both soils at identical total Cu concentrations. Copper derived from amendments was significantly less labile (on average 5.9-fold) than freshly added Cu in 18 sets of soils. This study shows that Cu availability after long-term applications of organic amendments is lower than that of freshly added Cu salts, mainly because of its lower availability in the original matrix and ageing reactions than because of increased metal binding sites in soil.  相似文献   

14.
Few effective strategies exist for remediating and restoring metal-contaminated soils. We have evaluated the potential of two environmentally compatible, nondestructive, biological soil-washing agents for remediating aged, lead-contaminated soils. Two contaminated soils were washed with 10 mM rhamnolipid biosurfactant and 5.3% carboxymethyl-beta-cyclodextrin (CMCD). The metal removal efficiency of these agents was compared with 10 mM diethylenetriamine pentaacetic acid (DTPA) and 10 mM KNO3. Lead removal rates by both soil-washing agents exceeded the removal by KNO3, but were an order of magnitude less than removal by the synthetic chelator, DTPA. Analysis of soil extractions revealed that the Pb in the first soil (3780 mg kg(-1)) was primarily associated with the soluble, exchangeable, oxide, and residual fractions while the Pb in the second soil (23 900 mg kg(-1)) was found in the soluble, exchangeable, carbonate, and residual fractions. After 10 consecutive washes, rhamnolipid had removed 14.2 and 15.3% of the Pb from the first and second soils, respectively, and CMCD had removed 5 and 13.4% from the same two soils. The Pb removal rate by both agents either increased or was consistent throughout the 10 extractions, indicating a potential for continued removal with extended washing. Significant levels of Cu and Zn in both soils did not prevent Pb removal by either agent. Interestingly, the effectiveness of each agent varied as a function of Pb speciation in the soil. Rhamnolipid was more effective than CMCD in removing Pb bound to amorphous iron oxides, while both agents demonstrated similar potential for removing soluble, exchangeable, and carbonate-bound Pb. Neither agent demonstrated potential for the complete remediation of metal-contaminated soils.  相似文献   

15.
The long-term mobility of trace metals has been cited as a potential hazard by critics of EPA 503 rule governing the land application of biosolids. The objectives of this study were to assess the accumulation of Cu, Ni, Cd, and Zn within the soil profile; the distribution of exchangeable, specifically adsorbed, organic, and oxide fractions of each metal; and mass balance of Cu, Ni, and Zn 17 yr after a single biosolids application. Biosolids were applied to 1.5- x 2.3-m confined plots of a Davidson clay loam (fine, kaolinitic, thermic Rhodic Kandiudult) in 1984 at 0, 42, 84, 126, 168, and 210 Mg ha(-1). The highest biosolids application supplied 4.5, 750, 43, and 600 kg ha(-1) of Cd, Cu, Ni, and Zn, respectively. Soils were sampled to a depth of 0.9 m and sectioned into 5-cm increments after separating the Ap horizon. Total (EPA-3050B), bioavailable (Mehlich-I), sequential extraction, and dispersible clay analyses were performed on samples from the control, 126 Mg ha(-1), and 210 Mg ha(-1) treatments. Trace metals are still concentrated in the top 0.2 m with slight enrichment down to 0.3 m. More than 85% of applied Cu, Ni, and Zn are still found in the topsoil where biosolids was incorporated and 95% or more of the applied metals were accounted for with mass balance calculations. Mehlich-I results showed a slight increase in metal concentration down to 0.35 m. Biosolids application increased the concentrations of trace metals in all the extracted fractions. The major portions of Cu, Zn, and Ni are associated with the metal-oxides fraction. Dispersible clay content and water-soluble metal contents were low and except for water-soluble Zn they were not affected by biosolids application. Results from this study showed that 17 yr after biosolids application there was negligible movement of trace metals through the soil profile and consequently there is little risk of contamination of ground water at this site.  相似文献   

16.
To predict the availability of metals to plants, it is important to understand both solution- and solid-phase processes in the soil, including the kinetics of metal release from its binding agent (ligand and/or particle). The present study examined the speciation and availability of Zn, Cd, Pb, and Cu in a range of well-equilibrated metal-contaminated soils from diverse sources using several techniques as a basis for predicting metal uptake by plants. Wheat (Triticum aestivum L.) was grown in 13 metal-contaminated soils and metal tissue concentrations (Zn, Cd, Pb, and Cu) in plant shoots were compared with total soil metal concentrations, total soluble metal, and free metal activities (pM2+) in soil pore waters, 0.01 M CaCl2-extractable metal concentrations, E values measured by isotope dilution, and effective metal concentrations, C(E), measured by diffusive gradients in thin films (DGT). In the DGT technique, ions are dynamically removed by their diffusion through a gel to a binding resin, while E values represent the isotopically exchangeable (labile) metal pools. Free metal activities (Zn2+, Cd2+, and Pb2+) in soil pore waters were determined using a Donnan dialysis technique. Plant Zn and Cd concentrations were highly related to C(E), while relationships for Zn and Cd with respect to the other measures of metals in the soils were generally lower, except for CaCl2-extractable Cd. These results suggest that the kinetically labile solid-phase pool of metal, which is included in the DGT measurement, played an important role in Zn and Cd uptake by wheat along with the labile metal in soil solution. Plant Pb concentrations were highly related to both soil pore water concentrations and C(E), indicating that supply from the solid phase may not be so important for Pb. Predictions of Cu uptake by wheat from these soils by the various measures of Cu were generally poor, except surprisingly for total Cu.  相似文献   

17.
Major and trace elements of selected pedons in the USA   总被引:6,自引:0,他引:6  
Few studies of soil geochemistry over large geographic areas exist, especially studies encompassing data from major pedogenic horizons that evaluate both native concentrations of elements and anthropogenically contaminated soils. In this study, pedons (n = 486) were analyzed for trace (Cd, Co, Cr, Cu, Hg, Mn, Ni, Pb, Zn) and major (Al, Ca, Fe, K, Mg, Na, P, Si, Ti, Zr) elements, as well as other soil properties. The objectives were to (i) determine the concentration range of selected elements in a variety of U.S. soils with and without known anthropogenic additions, (ii) illustrate the association of elemental source and content by assessing trace elemental content for several selected pedons, and (iii) evaluate relationships among and between elements and other soil properties. Trace element concentrations in the non-anthropogenic dataset (NAD) were in the order Mn > (Zn, Cr, Ni, Cu) > (Pb, Co) > (Cd, Hg), with greatest mean total concentrations for the Andisol order. Geometric means by horizon indicate that trace elements are concentrated in surface and/or B horizons over C horizons. Median values for trace elements are significantly higher in surface horizons of the anthropogenic dataset (AD) over the NAD. Total Al, Fe, cation exchange capacity (CEC), organic C, pH, and clay exhibit significant correlations (0.56, 0.74, 0.50, 0.31, 0.16, and 0.30, respectively) with total trace element concentrations of all horizons of the NAD. Manganese shows the best inter-element correlation (0.33) with these associated total concentrations. Total Fe has one of the strongest relationships, explaining 55 and 30% of the variation in total trace element concentrations for all horizons in the NAD and AD, respectively.  相似文献   

18.
河南农田土壤重金属污染状况及其评价   总被引:3,自引:0,他引:3  
在河南境内取自农田土壤102例表层样品,分析了其中的Cr、Zn、Cu、Pb、Ni、As等8种重金属元素的含量。结果表明:河南农田土壤中除Cr偶有超出我国《土壤环境质量标准》(GB15618—1995)二级标准的土样外,其他项目均不超标,重金属污染由高到低排序为Cr〉Zn〉Ni〉Cd〉Hg〉Cu〉Pb〉As。重金属元素在河南各土壤利用类型中分布规律不明显,按4种主要土壤利用类型考查来看,重金属污染程度大小排序为:果园地〉水田〉菜地〉其他粮田;河南农田土壤综合污染指数总平均为0.981,土壤总体为尚清洁,重金属污染处于警戒水平;河南农田土壤中Cr含量较高的土壤主要是粗骨土与石质土,其天然本底值较高。  相似文献   

19.
The long-term application of biosolids that periodically contained elevated metal concentrations has raised questions about potential effects on animal health. To address these concerns, we determined metal concentrations (As, Cd, Cu, Pb, Hg, Mo, Ni, Se, and Zn) in both soil and bermudagrass [Cynodon dactylon (L.) Pers.] forage from 10 fields in the following categories of biosolids application: six or more years (>6YR), less than six years (<6YR), and no applications (NS). Soil metal concentrations in all groups were similar to values reported for mineral soils in Georgia, and well below USEPA cumulative limits. Average metal concentrations in the forage were below the maximum tolerable level (MTL) for beef cattle, although two biosolids-amended fields in the >6YR group produced forage that was at or near the MTL for Cd and Mo, and one field in the <6YR group produced forage above the MTL for Cd. The Cu to Mo ratios in forage decreased with increasing time of sludge application, with the average in the >6YR group at a proposed 5:1 Cu to Mo ratio limit to protect ruminant health. Sulfur concentrations in the forage from all three groups was near the MTL of 4 g kg(-1). The study indicated that toxic levels of metals have not accumulated in the soils due to long-term biosolids application. Overall forage quality from the biosolids-amended fields was similar to that of commercially fertilized fields; however, due to the relatively high S and potential for a low Cu to Mo ratio, Cu supplements should be used to ensure ruminant health.  相似文献   

20.
The characteristic levels of heavy metals (Cd, Cr, Cu, Pb, Ni and Zn) of soil profiles of automobile mechanic waste dumps were studied. The concentration of heavy metals decreased with the depth of the profile and lateral distance from the dumpsites. The levels found in this study exceeded background concentrations and limits for agricultural and residential purposes. The distribution pattern of heavy metals in the soil profiles were in the following order Pb > Zn > Cu > Cd > Ni > Cr. The mechanic waste dumps represent potential sources of heavy metal pollution to environment. The elevated levels of heavy metals in these soil profiles constitute a serious threat to both surface and groundwater.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号