首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
From 1974 to 1984, 543 Mg ha(-1) of biosolids were applied to portions of a land-reclamation site in Fulton County, IL. Soil organic C increased to 5.1% then decreased significantly (p < 0.01) to 3.8% following cessation of biosolids applications (1985-1997). Metal concentrations in amended soils (1995-1997) were not significantly different (p > 0.05) (Ni and Zn) or were significantly lower (p < 0.05) (6.4% for Cd and 8.4% for Cu) than concentrations from 1985-1987. For the same biosolids-amended fields, metal concentrations in corn (Zea mays L.) either remained the same (p > 0.05, grain Cu and Zn) or decreased (p < 0.05, grain Cd and Ni, leaf Cd, Cu, Ni, Zn) for plants grown in 1995-1997 compared with plants grown immediately following termination of biosolids applications (1985-1987). Biosolids application increased (p < 0.05) Cd and Zn concentrations in grain compared with unamended fields (0.01 to 0.10 mg kg(-1) for Cd and 23 to 28 mg kg(-1) for Zn) but had no effect (p > 0.05) on grain Ni concentrations. Biosolids reduced (p < 0.05) Cu concentration in grain compared with grain from unamended fields (1.9 to 1.5 mg kg(-1)). Biosolids increased (p < 0.05) Cd, Ni, and Zn concentrations in leaves compared with unamended fields (0.3 to 5.6 mg kg(-1) for Cd, 0.2 to 0.5 mg kg(-1) for Ni, and 32 to 87 mg kg(-1) for Zn), but had no significant effect (p > 0.05) on leaf Cu concentrations. Based on results from this field study, USEPA's Part 503 risk model overpredicted transfer of these metals from biosolids-amended soil to corn.  相似文献   

2.
Bioavailability of biosolids molybdenum to soybean grain   总被引:2,自引:0,他引:2  
Legumes grown in biosolids-amended soils and then fed to ruminants can represent problematic sources of molybdenum (Mo), but few field data are available to quantify the risk. We used a set of fields amended to high cumulative biosolids Mo loads (>18 kg ha(-1)) over 27 yr to generate additional data. Soybean [Glycine max (L.) Merr.] was grown on 29 fields (pH values>6.8) amended to a wide range of soil Mo loads. Soybean grain harvested from each field was analyzed for Mo and the concentrations regressed against soil Mo loads estimated from actual soil Mo concentrations in the 0- to 15-cm depth. Slopes of such linear regressions represent uptake coefficients (UC values) used by the USEPA to assess risk of biosolids Mo to ruminants fed forage grown on biosolids-amended land. The UC value for all 29 fields was estimated as 1.66, which agrees with the few soybean grain data in the literature. The UC value, however, is well below a conservative UC value of 4, recently recommended for all fresh legume materials fed to cattle. Soybean grain can contain high concentrations of Mo (>10 mg kg(-1)) and have low (<2:1) Cu to Mo ratios, which can exacerbate molybdenosis problems in cattle. However, soybean grain normally constitutes only -10% of dairy cattle diet, and other constituents (e.g., corn grain, stover, mineral supplements) are sufficient, or can be manipulated, to control molybdenosis.  相似文献   

3.
Debate exists over the biosolid phase (organic or inorganic) responsible for the reduction in phytoavailable Cd in soils amended with biosolids as compared with soils amended with inorganic salts. To test the importance of these two phases, adsorption isotherms were developed for soil samples (nine biosolids-amended soils and their five companion controls) and two biosolids samples from five experimental sites with documented histories of biosolids application. Subsamples were treated with 0.7 M NaClO to remove organic carbon. Cadmium nitrate was added to both moist soil samples and their soil inorganic fractions (SIF) in a 0.01 M Ca(NO3)2 solution at three pH levels (6.5, 5.5, and 4.5), and equilibrated at 22 +/- 1 degrees C for at least 48 h. Isotherms of Cd adsorption for biosolids-amended soil were intermediate to the control soil and biosolids. Decreasing pH did not remove the difference between these isotherms, although adsorption of Cd decreased with decreasing pH level. Organic matter removal reduced Cd adsorption on all soils but had little influence on the observed difference between biosolids-amended and control soils. Thus, increased adsorption associated with biosolids application was not limited to the organic matter addition from biosolids; rather, the biosolids application also altered the adsorptive properties of the SIF. The greater affinity of the inorganic fraction of biosolids-amended soils to adsorb Cd suggests that the increased retention of Cd on biosolids-amended soils is independent of the added organic matter and of a persistent nature.  相似文献   

4.
To evaluate the importance of both the inorganic and organic fractions in biosolids on Cd chemistry, a series of Cd sorption and desorption batch experiments (at pH 5.5) were conducted on different fractions of soils from a long-term field experimental site. The slope of the Cd sorption isotherm increased with rate of biosolids and was different for the different biosolids. Removal of organic carbon (OC) reduced the slope of the Cd sorption isotherm but did not account for the observed differences between biosolids-amended soils and a control soil, indicating that the increased adsorption associated with biosolids application was not limited to the increased OC from the addition of biosolids. Removal of both OC and Fe/Mn further reduced the slopes of Cd sorption isotherms and the sorption isotherm of the biosolids-amended soil was the same as that of the control, indicating both OC and Fe/Mn fractions added by the biosolids were important to the increased sorption observed for the biosolids-amended soil samples. Desorption experiments failed to remove from 60 to 90% of the sorbed Cd. This "apparent hysteresis" was higher for biosolids-amended soil than the control soil. Removal of both OC and Fe/Mn fractions was more effective in removing the observed differences between the biosolids-amended soil and the control than either alone. Results show that Cd added to biosolids-amended soil behaves differently than Cd added to soils without biosolids and support the hypothesis that the addition of Fe and Mn in the biosolids increased the retention of Cd in biosolids-amended soils.  相似文献   

5.
Biosolids are known to have a potential to restore degraded land, but the long-term impacts of this practice on the environment, including water quality, still need to be evaluated. The surface water chemistry (NO3-, NH4+, and total P, Cd, Cu, and Hg) was monitored for 31 yr from 1972 to 2002 in a 6000-ha watershed at Fulton County, Illinois, where the Metropolitan Water Reclamation District of Greater Chicago was restoring the productivity of strip-mined land using biosolids. The mean cumulative loading rates during the past 31 yr were 875 dry Mg ha(-1) for 1120-ha fields in the biosolids-amended watershed and 4.3 dry Mg ha(-1) for the 670-ha fields in the control watershed. Biosolids were injected into mine spoil fields as liquid fertilizer from 1972 to 1985, and incorporated as dewatered cake from 1980 to 1996 and air-dried solids from 1987 to 2002. The mean annual loadings of nutrients and trace elements from biosolids in 1 ha were 735 kg N, 530 kg P, 4.5 kg Cd, 30.7 kg Cu, and 0.11 kg Hg in the fields of the biosolids-amended watershed, and negligible in the fields of the control watershed. Sampling of surface water was conducted monthly in the 1970s, and three times per year in the 1980s and 1990s. The water samples were collected from 12 reservoirs and 2 creeks receiving drainage from the fields in the control watershed, and 8 reservoirs and 4 creeks associated with the fields in the biosolids-amended watershed for the analysis of NO3- -N (including NO2- N), NH4+-N, and total P, Cd, Cu, and Hg. Compared to the control (0.18 mg L(-1)), surface water NO3- -N in the biosolids-amended watershed (2.23 mg L(-1)) was consistently higher; however, it was still below the Illinois limit of 10 mg L(-1) for public and food-processing water supplies. Biosolids applications had a significant effect on mean concentrations of ammonium N (0.11 mg L(-1) for control and 0.24 mg L(-1) for biosolids) and total P (0.10 mg L(-1) for control and 0.16 mg L(-1) for biosolids) in surface water. Application of biosolids did not increase the concentrations of Cd and Hg in surface water. The elevation of Cu in surface water with biosolids application only occurred in some years of the first decade, when land-applied sludges contained high concentrations of trace metals, including Cu. In fact, following the promulgation of 40 CFR Part 503, the concentrations of all three metals fell below the method detection level (MDL) in surface water for nearly all samplings. Nitrate in the surface water tends to be higher in spring, and ammonium, total P, and total Hg in summer and fall. Mean nitrate, ammonium, and total phosphorus concentrations were found to be greater in creeks than reservoirs. The results indicate that application of biosolids for land reclamation at high loading rates from 1972 to 2002, with adequate runoff and soil erosion control, had only a minor impact on surface water quality.  相似文献   

6.
Agricultural utilization of biosolids poses a potential risk to ruminant animals due to transfer of Mo from biosolids to forage to the animal in amounts large enough to suppress Cu uptake by the animal. Alkaline-stabilized biosolids (ASB) must be given particular consideration in assessment of Mo risk because the high pH of these biosolids could increase Mo and decrease Cu uptake by forage legumes. In this 3-yr field experiment, ASB and ground agricultural limestone (AL) were applied based on their alkalinity at rates equivalent to 0, 0.5, 1.0, and 2.0 times the lime requirement of the soil and alfalfa (Medicago sativa L.) was grown. Alfalfa yield was similar with AL and ASB except in the second year when ASB produced larger yields, apparently due to increased B availability with ASB. Application of ASB did not detectably increase extractable soil Mo (0- to 15-cm depth), but increased alfalfa Mo uptake in all cuttings with yield-weighted uptake coefficients (UCs) of 8.07 and 7.11 following the first and second ASB applications, respectively. Although ASB increased extractable soil Cu, and alfalfa Cu content was greater with ASB than with AL, yield-weighted alfalfa Cu to Mo ratio was decreased by ASB to levels near 3. These results suggest that ASB may have a greater effect on Mo uptake and Cu to Mo ratio of forage legumes than do other biosolids. Additional research is needed to determine implications of larger Mo cumulative loading with ASB for Mo risk, particularly in the soil pH range of 7 to 8.  相似文献   

7.
The USEPA standards (40 CFR Part 503) for the use or disposal of sewage sludge (biosolids) derived risk-based numerical values for Mo for the biosolids --> land --> plant --> animal pathway (Pathway 6). Following legal challenge, most Mo numerical standards were withdrawn, pending additional field-generated data using modern biosolids (Mo concentrations <75 mg kg(-1) and a reassessment of this pathway. This paper presents a reevaluation of biosolids Mo data, refinement of the risk assessment algorithms, and a reassessment of Mo-induced hypocuprosis from land application of biosolids. Forage Mo uptake coefficients (UC) are derived from field studies, many of which used modern biosolids applied to numerous soil types, with varying soil pH values, and supporting various crops. Typical cattle diet scenarios are used to calculate a diet-weighted UC value that realistically represents forage Mo exposure to cattle. Recent biosolids use data are employed to estimate the fraction of animal forage (FC) likely to be affected by biosolids applications nationally. Field data are used to estimate long-term Mo leaching and a leaching correction factor (LC) is used to adjust cumulative biosolids application limits. The modified UC and new FC and LC factors are used in a new algorithm to calculate biosolids Mo Pathway 6 risk. The resulting numerical standards for Mo are cumulative limit (RPc)=40 kg Mo ha(-1), and alternate pollutant limit (APL) = 40 mg Mo kg(-1) We regard the modifications to algorithms and parameters and calculations as conservative, and believe that the risk of Mo-induced hypocuprosis from biosolids Mo is small. Providing adequate Cu mineral supplements, standard procedure in proper herd management, would augment the conservatism of the new risk assessment.  相似文献   

8.
Fate of biosolids trace metals in a dryland wheat agroecosystem   总被引:1,自引:0,他引:1  
Biosolids land application for beneficial reuse applies varying amounts of trace metals to soils. Measuring plant-available or total soil metals is typically performed to ensure environmental protection, but these techniques do not quantify which soil phases play important roles in terms of metal release or attenuation. This study assessed the distribution of Cd, Cr, Cu, Mo, Ni, Pb, and Zn associated with soluble/exchangeable, specifically adsorbed/carbonate-bound, amorphous Mn hydroxyoxide-bound, amorphous Fe hydroxyoxide-bound, organically complexed, and residual inorganic phases. Biosolids were applied every 2 yr from 1982 to 2002 (except in 1998) at rates of 0, 6.7, 13.4, 26.8, and 40.3 dry Mg biosolids ha(-)(1) to 3.6- by 17.1-m plots. In 2003, 0- to 20-cm and 20- to 60-cm soil depths were collected and subjected to 4 mol L(-1) HNO(3) digestion and sequential extraction. Trace metals were concentrated in the 0- to 20-cm depth, with no significant observable downward movement using 4 mol L(-1) HNO(3) or sequential extraction. The sequential extraction showed nearly all measurable Cd present in relatively mobile forms and Cr, Cu, Mo, Ni, Pb, and Zn present in more resistant phases. Biosolids application did not affect Cd or Cr fractionation but did increase relatively immobile Cu, Mo, and Zn phases and relatively mobile Cu, Ni, and Pb pools. The mobile phases have not contributed to significant downward metal movement. Long-term, repeated biosolids applications at rates considered several times greater than agronomic levels should not significantly contribute to downward metal transport and ground water contamination for soils under similar climatic conditions, agronomic practices, and histories.  相似文献   

9.
ABSTRACT: Farms that once spread only manures are now also applying sewage biosolids (sludge) and/or other wastes such as those from food processing. The objective of this study was to monitor environmental impacts at a dairy farm applying these materials. Fields were selected representing recent waste applications of manure (M1, M2), sewage biosolids (B1, B2), or fertilizer only control (F1, F2), although most fields had historical biosolids applications. Fields representing each treatment were not experimental replicates because of varying applications and soil characteristics. Septage and food processing wastes were also applied. Soil percolates were collected with wick lysimeters. Runoff was sampled at seven stream sites. Test field soils and alfalfa (Medicago sativa) were analyzed for trace elements. Cumulative trace metal loadings were low, at most only 1 percent of USEPA Part 503 limits. Surface soil enrichment was most evident for Mo, P, and S. Alfalfa tissue showed no trends of concern. The B2 site had the greatest percolate concentrations for 6 of 13 elements. Percolate Cu was somewhat elevated at Sites M1, M2, B2, and Fl. Percolate sodium was elevated on all M and B fields and sulfur was greatest at M2, B1, and B2. Soluble orthophosphate correlated with stream discharge during intensive monitoring of Stream Sites S1 (fertilizer) and S2 (biosolids). Peaks in S2 streamwater Mo lagged large runoff events by five days. Total streamwater export of Cu, Na, Mo, and soluble P were greater from the S2 biosolids subwatershed than from the S1 fertilizer subwatershed. Percolate concentrations exceeded corresponding streamwater concentrations in most cases.  相似文献   

10.
Agronomic use of biosolids as a fertilizer material remains controversial in part due to public concerns regarding the potential pollution of soils, crop tissue, and ground water by excess nutrients and trace elements in biosolids. This study was designed to assess the effects of long-term commercial-scale application of biosolids on soils and crop tissue sampled from 18 production farms throughout Pennsylvania. Biosolids application rates ranged from 5 to 159 Mg ha(-1) on a dry weight basis. Soil cores and crop tissue samples from corn (Zea mays L.), soybean (Glycine spp.), alfalfa (Medicago sativa L.), orchardgrass (Dactylis spp.) hay, and/or sorghum [Sorghum bicolor (L.) Moench] were collected for three years from georeferenced locations at each farm. Samples were tested for nutrients, trace elements, and other variables. Biosolids-treated fields had more post-growing season soil NO3 and Ca and less soil K than control fields and there was some evidence that soil P concentrations were higher in treated fields. The soil concentrations of Cu, Cr, Hg, Mo, Mn, Pb, and Zn were higher in biosolids-treated fields than in control fields; however, differences were < or = 0.06 of the USEPA Part 503 cumulative pollutant loading rates (CPLRs). There were no differences in the concentrations of measured nutrients or trace elements in the crop tissue grown on treated or control fields at any time during the study. Commercial-scale biosolids application resulted in soil trace element increases that were in line with expected increases based on estimated trace element loading. Excess NO3 and apparent P buildup indicates a need to reassess biosolids nutrient management practices.  相似文献   

11.
Continuous addition of municipal biosolids to soils based on plant nitrogen (N) requirements can cause buildup of soil phosphorus (P) in excess of crop requirements; runoff from these soils can potentially contribute to nonpoint P pollution of surface waters. However, because biosolids are often produced using lime and/or metal salts, the potential for biosolids P to cause runoff P losses can vary with wastewater treatment plant (WWTP) process. This study was conducted to determine the effect of wastewater treatment process on the forms and amounts of P in biosolids, biosolids-amended soils, and in runoff from biosolids-amended soils. We amended two soil types with eight biosolids and a poultry litter (PL) at equal rates of total P (200 kg ha(-1); unamended soils were used as controls. All biosolids and amended soils were analyzed for various types of extractable P, inorganic P fractions, and the degree of P saturation (acid ammonium oxalate method). Amended soils were placed under a simulated rainfall and all runoff was collected and analyzed for dissolved reactive phosphorus (DRP), iron-oxide-coated filter paper strip-extractable phosphorus (FeO-P), and total phosphorus (EPA3050 P). Results showed that biosolids produced with a biological nutrient removal (BNR) process caused the highest increases in extractable soil P and runoff DRP. Alternatively, biosolids produced with iron only consistently had the lowest extractable P and caused the lowest increases in extractable soil P and runoff DRP when added to soils. Differences in soil and biosolids extractable P levels as well as P runoff losses were related to the inorganic P forms of the biosolids.  相似文献   

12.
The application of biosolids (sewage sludge) to agricultural soils provides P in excess of crop needs when applied to meet the N needs of most agronomic crops. These overapplications can result in the buildup of P in soils to values well above those needed for optimum crop yields and also may increase risk of P losses to surface and ground waters. Because of concerns regarding the influence of P on water quality in the USA, many state and federal agencies now recommend or require P-based nutrient management plans for animal manures. Similar actions are now under consideration for the land application of biosolids. We reviewed the literature on this subject and conducted a national survey to determine if states had restrictions on P levels in biosolids-amended soils. The literature review indicates that while the current N-based approach to biosolids management does result in increases of soil P, some properties of biosolids may mitigate the environmental risk to water quality associated with land application of P in biosolids. Results of the survey showed that 24 states have regulations or guidelines that can be imposed to restrict land application of biosolids based on P. Many of these states use numerical thresholds for P in biosolids-amended soils that are based on soil test phosphorus (STP) values that are much greater than the values considered to be agronomically beneficial. We suggest there is the need for a comprehensive environmental risk assessment of biosolids P. If risk assessment suggests the need for regulation of biosolids application, we suggest regulations be based on the P Site Index (PSI), which is the method being used by most states for animal manure management.  相似文献   

13.
This study was part of a larger effort to generate field data appropriate to the assessment of biosolids molybdenum (Mo) risk to ruminants. Corn (Zea mays L.) is an important component of cattle diet, and is a logical crop for biosolids amendment owing to its high N requirement. Paired soil and corn stover samples archived from two unique field experiments were analyzed to quantify the relationship (uptake coefficient, UC) between stover Mo and soil Mo load. Both studies used biosolids with total Mo concentrations typical of modern materials. Data from long-term (continuous corn) plots in Fulton County, IL confirm expected low Mo accumulation by corn stover, even at very high biosolids loads and soil Mo loads estimated to be near 18 kg Mo ha(-1). Uptake slopes were actually negative, but USEPA protocol would assign UC values of 0.001. Data from plots in Minnesota also suggested essentially no correlations between stover Mo and soil Mo loads for continuous corn. However, greater Mo accumulation in corn grown following soybean [Glycine max (L.) Merr.] suggests the possibility of enhanced Mo bioavailability to corn in corn-soybean rotations. Nevertheless, molybdenosis risk to cattle consuming corn stover produced on biosolids-amended land is small as stover Mo concentrations were always low and stover Cu to Mo ratios exceeded 2:1, which avoids molybdenosis problems.  相似文献   

14.
Laws mandating phosphorus (P)-based nutrient management plans have been passed in several U.S. Mid-Atlantic states. Biosolids (sewage sludge) are frequently applied to agricultural land and in this study we evaluated how biosolids treatment processes and biosolids P tests were related to P behavior in biosolids-amended soils. Eight biosolids generated by different treatment processes, with respect to digestion and iron (Fe), aluminum (Al), and lime addition, and a poultry litter (PL), were incubated with an Elkton silt loam (fine-silty, mixed, active, mesic Typic Endoaquult) and a Suffolk sandy loam (fine-loamy, siliceous, semiactive, thermic Typic Hapludult) for 51 d. The amended soils were analyzed at 1 and 51 d for water-soluble phosphorus (WSP), iron-oxide strip--extractable phosphorus (FeO-P), Mehlich-1 P and pH. The biosolids and PL were analyzed for P, Fe, and Al by USEPA 3050 acid-peroxide digestion and acid ammonium oxalate, Mehlich-1, and Mehlich-3 extractions. Biosolids and PL amendments increased extractable P in the Suffolk sandy loam to a greater extent than in the Elkton silt loam throughout the 51 d of the incubation. The trend of extractable WSP, FeO-P, and Mehlich-1 P generally followed the pattern: [soils amended with biosolids produced without the use of Fe or Al] > [PL and biosolids produced using Fe or Al and lime] > [biosolids produced using only Fe and Al salts]. Mehlich-3 P and the molar ratio of P to [Al + Fe] by either the USEPA 3050 digestion or oxalate extraction of the biosolids were good predictors of changes in soil-extractable P following biosolids but not PL amendment. Therefore, the testing of biosolids for P availability, rather than total P, is a more appropriate tool for predicting extractable P from the biosolids-amended soils used in this study.  相似文献   

15.
Concerns over the possible increase in phytoavailability of biosolids-applied trace metals to plants have been raised based on the assumption that decomposition of applied organic matter would increase phytoavailability. The objectives of this study were to assess the effect of time on chemical extractability and concentration of Cd, Cu, Ni, and Zn in plants on plots established by a single application of biosolids with high trace metals content in 1984. Biosolids were applied to 1.5 by 2.3 m confined plots of a Davidson clay loam (clayey, kaolinitic, thermic Rhodic Kandiudults) at 0, 42, 84, 126, 168, and 210 Mg ha(-1). The highest biosolids application supplied 4.5, 760, 43, and 620 kg ha(-1) of Cd, Cu, Ni, and Zn, respectively. Radish (Raphanus sativus L.), romaine lettuce (Lactuca sativa L. var. longifolia), and barley (Hordeum vulgare L.) were planted at the site for 3 consecutive years, 17 to 19 yr after biosolids application. Extractable Cd, Cu, Ni, and Zn (as measured by DTPA, CaCl(2,) and Mehlich-1) were determined on 15-cm depth samples from each plot. The DTPA-extractable Cu and Zn decreased by 58 and 42%, respectively, 17 yr after application despite a significant reduction in organic matter content. Biosolids treatments had no significant effect on crop yield. Plant tissue metal concentrations increased with biosolids rate but were within the normal range of these crops. Trace metal concentrations in plants generally correlated well with the concentrations extracted from soil with DTPA, CaCl(2), and Mehlich-1. Metal concentrations in plant tissue exhibited a plateau response in most cases. The uptake coefficient values generated for the different crops were in agreement with the values set by the Part 503 Rule.  相似文献   

16.
The long-term mobility of trace metals has been cited as a potential hazard by critics of EPA 503 rule governing the land application of biosolids. The objectives of this study were to assess the accumulation of Cu, Ni, Cd, and Zn within the soil profile; the distribution of exchangeable, specifically adsorbed, organic, and oxide fractions of each metal; and mass balance of Cu, Ni, and Zn 17 yr after a single biosolids application. Biosolids were applied to 1.5- x 2.3-m confined plots of a Davidson clay loam (fine, kaolinitic, thermic Rhodic Kandiudult) in 1984 at 0, 42, 84, 126, 168, and 210 Mg ha(-1). The highest biosolids application supplied 4.5, 750, 43, and 600 kg ha(-1) of Cd, Cu, Ni, and Zn, respectively. Soils were sampled to a depth of 0.9 m and sectioned into 5-cm increments after separating the Ap horizon. Total (EPA-3050B), bioavailable (Mehlich-I), sequential extraction, and dispersible clay analyses were performed on samples from the control, 126 Mg ha(-1), and 210 Mg ha(-1) treatments. Trace metals are still concentrated in the top 0.2 m with slight enrichment down to 0.3 m. More than 85% of applied Cu, Ni, and Zn are still found in the topsoil where biosolids was incorporated and 95% or more of the applied metals were accounted for with mass balance calculations. Mehlich-I results showed a slight increase in metal concentration down to 0.35 m. Biosolids application increased the concentrations of trace metals in all the extracted fractions. The major portions of Cu, Zn, and Ni are associated with the metal-oxides fraction. Dispersible clay content and water-soluble metal contents were low and except for water-soluble Zn they were not affected by biosolids application. Results from this study showed that 17 yr after biosolids application there was negligible movement of trace metals through the soil profile and consequently there is little risk of contamination of ground water at this site.  相似文献   

17.
Monitoring of repeated composted biosolids applications is necessary for improving beneficial reuse program management strategies, because materials will likely be reapplied to the same site at a future point in time. A field trial evaluated a single and a repeated composted biosolids application in terms of long-term (13–14 years) and short-term (2–3 years) effects, respectively, on soil chemistry and plant community in a Colorado semi-arid grassland. Six composted biosolids rates (0, 2.5, 5, 10, 21, 30 Mg ha?1) were surface applied in a split-plot design study with treatment (increasing compost rates) as the main factor and co-application time (1991, or 1991 and 2002) as the split factor applications. Short- and long-term treatment effects were evident in 2004 and 2005 for soil 0–8 cm depth pH, EC, NO3-N, NH4-N, total N, and AB-DTPA soil Cd, Cu, Mo, Zn, P, and Ba. Soil organic matter increases were still evident 13 and 14 years following composted biosolids application. The repeated composted biosolids application increased soil NO3-N and NH4-N and decreased AB-DTPA extractable Ba as compared to the single composted biosolids application in 2004; differences between short- and long-term applications were less evident in 2005. Increasing biosolids rates resulted in increased native perennial grass cover in 2005. Plant tissue Cu, Mo, Zn, and P concentrations increased, while Ba content decreased depending on specific plant species and year. Overall, the lack of many significant negative effects suggests that short- or long-term composted biosolids application at the rates studied did not adversely affect this semi-arid grassland ecosystem.  相似文献   

18.
Many studies have implicated dissolved organic carbon (DOC) as an important contributor to the elevated mobility of trace metals in soils amended with biosolids. Few of these studies, however, have quantified both DOC and metal concentrations. We completed laboratory leaching column studies on a dryland Platner loam (fine, smectitic, mesic Aridic Paleustoll) and an irrigated Osgood sand (loamy, mixed, mesic Arenic Ustollic Haplargid), both with a history of biosolids application. The soils were neutral to slightly alkaline in pH prior to amendment. We performed an additional application of biosolids to one set of columns in the laboratory at a rate of 28 Mg ha(-1) to investigate the effect of time following application on metal mobility. The effect of electrolyte concentration was studied by using both distilled water and simulated irrigation water. Biosolids application increased both DOC and Cu in the column effluents resulting in a positive correlation between Cu and DOC across application treatments for both soils. Both Cu and Pb were mobilized under conditions of low electrical conductivity (EC). This may be the result of the release of a strong metal-binding component of DOC under these conditions. Conversely, Zn mobility was positively correlated with EC, suggesting that either cation exchange or the formation of inorganic complexes influences Zn mobility. Anodic stripping voltammetry measurements indicated that only a small percentage of the total dissolved metals existed as free ions or inorganic complexes; the remainder appears to be complexed to DOC.  相似文献   

19.
Soil organic carbon (SOC) and dissolved organic carbon (DOC) affect long-term heavy metal solubility in biosolids-amended soils, but their role needs to be further studied under Mediterranean climatic conditions. We investigated Zn solubility, as assessed by water extraction, in two typical Greek soils amended with biosolids at 0, 20, and 100 Mg ha(-1) during a 310-d incubation period. It was found that SOC decreased by nearly 30% over time in the 100 Mg ha(-1) treatment. There was evidence that DOC affected Zn solubility, because DOC increased significantly on Day 23, probably due to a flush in microbial activity, and water-extractable Zn followed the same trend. After that, both DOC and water-extractable Zn decreased back to values similar to those of the unamended soils. Although Zn solubility did not increase overall even at high biosolids application rates, this study shows that time-limited fluctuations in Zn solubility due to sudden DOC flushes, can be significant, and need to be further investigated.  相似文献   

20.
Land application is becoming a preferred option for disposal of sewage sludge (biosolids) from wastewater treatment plants. However, it creates potential risks due to the heavy metal contents of these materials, with copper (Cu) being of chief concern. The long-term fate of biosolid metals applied to agricultural soils is not well understood, particularly in the soils of the Middle East. This investigation was conducted to determine whether the availability of Cu changes with time in biosolid-amended and nonamended soils from Israel. Seven soils, typifying the span of properties and formation environments encountered in Israel, were incubated with and without biosolids for 7 yr, and changes in organic carbon (OC) content and labile Cu concentration were determined. Isotopic exchange techniques, using 64Cu, and ion activity measurements, using a Cu2+ ion selective electrode, revealed that the available Cu concentration remained relatively low and stable over the 7-yr incubation. This was despite substantial reductions in OC. This study shows that, with regard to Cu, application of such biosolids to these soils at rates of up to 250 Mg ha(-1) does not pose a threat to the environment in the short to medium term.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号