首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Results of a fault test performed in the unsaturated zone of Yucca Mountain, Nevada, were analyzed using a three-dimensional numerical model. The fault was explicitly represented as a discrete feature and the surrounding rock was treated as a dual-continuum (fracture-matrix) system. Model calibration against seepage and water-travel-velocity data suggests that lithophysal cavities connected to fractures can considerably enhance the effective fracture porosity and therefore retard water flow in fractures. Comparisons between simulation results and tracer concentration data also indicate that matrix diffusion is an important mechanism for solute transport in unsaturated fractured rock. We found that an increased fault-matrix and fracture-matrix interface areas were needed to match the observed tracer data, which is consistent with previous studies. The study results suggest that the current site-scale model for the unsaturated zone of Yucca Mountain may underestimate radionuclide transport time within the unsaturated zone, because an increased fracture-matrix interface area and the increased effective fracture porosity arising from lithophysal cavities are not considered in the current site-scale model.  相似文献   

2.
The investigation of the migration of a high pH plume in a fractured shear zone is foreseen by a long-term experiment at the Grimsel rock laboratory. In order to characterise the initial conditions for the long-term experiment and to evaluate an optimal hydraulic in situ set-up, several dipole experiments with nonreacting tracers have been performed. The dipole experiments differ in geometry, pumping rates and orientation to the background water flow. Several single and double-porosity models have been applied to fit the results of these dipole tracer tests in order to extract values for some transport parameters and discriminate for certain transport processes. A two-dimensional porous medium approach was successfully used to fit tracer breakthrough curves measured for a dipole experiment. A model based on a one-dimensional dual porous medium approach was also successful, although the applied hydraulic dipole, with similar injection and extraction rates, suggests the existence of an extended two-dimensional flow field. For the two-dimensional porous medium approach, tracer breakthrough could only be fitted with a complex flow field geometry within the heterogeneous fractured shear zone. The heterogeneity was generated by heterogeneous porosity and hydraulic permeability distributions. Predictions for further dipole geometries and a sorbing tracer have been calculated by means of both models using the flow and transport parameters deduced from fits for a single dipole experiment. This allows for comparison with the measured breakthrough of sorbing tracers. The foreseen experiment with sorbing (radionuclide) tracers will help decide on the appropriate approach that should be used to describe such dipole experiments in this shear zone. Additionally, the migration and spreading of a solution with high pH has been calculated taking into account mineral dissolution and precipitation in a two-dimensional porous medium approach in order to estimate the amount and character of the mineral reactions induced by the interaction between the high pH solution and the rock.  相似文献   

3.
This paper presents a triple-continuum conceptual model for simulating flow and transport processes in fractured rock. Field data collected from the unsaturated zone of Yucca Mountain, a repository site of high-level nuclear waste, show a large number of small-scale fractures. The effect of these small fractures has not been considered in previous modeling investigations within the context of a continuum approach. A new triple-continuum model (consisting of matrix, small-fracture, and large-fracture continua) has been developed to investigate the effect of these small fractures. This paper derives the model formulation and discusses the basic triple-continuum behavior of flow and transport processes under different conditions, using both analytical solutions and numerical approaches. The simulation results from the site-scale model of the unsaturated zone of Yucca Mountain indicate that these small fractures may have an important effect on radionuclide transport within the mountain.  相似文献   

4.
The heterogeneity of hydrogeologic properties at different scales may have different effects on flow and transport processes in a subsurface system. A model for the unsaturated zone of Yucca Mountain, Nevada, is developed to represent complex heterogeneity at two different scales: (1) layer scale corresponding to geologic layering and (2) local scale. The layer-scale hydrogeologic properties are obtained using inverse modeling, based on the available measurements collected from the Yucca Mountain site. Calibration results show a significant lateral and vertical variability in matrix and fracture properties. Hydrogeologic property distributions in a two-dimensional, vertical cross-section of the site are generated by combining the average layer-scale matrix and fracture properties with local-scale perturbations generated using a stochastic simulation method. The unsaturated water flow and conservative (nonsorbing) tracer transport through the cross-section are simulated for different sets of matrix and fracture property fields. Comparison of simulation results indicates that the local-scale heterogeneity of matrix and fracture properties has a considerable effect on unsaturated flow processes, leading to fast flow paths in fractures and the matrix. These paths shorten the travel time of a conservative tracer from the source (repository) horizon in the unsaturated zone to the water table for small fractions of total released tracer mass. As a result, the local-scale heterogeneity also has a noticeable effect on global tracer transport processes, characterized by an average breakthrough curve at the water table, especially at the early arrival time of tracer mass. However, the effect is not significant at the later time after 20% tracer mass reaches the water table. The simulation results also verify that matrix diffusion plays an important role in overall solute transport processes in the unsaturated zone at Yucca Mountain.  相似文献   

5.
Field-scale processes governing the transport of chelated radionuclides in groundwater remain conceptually unclear for highly structured, heterogeneous environments. The objectives of this research were to provide an improved understanding and predictive capability of the hydrological and geochemical mechanisms that control the transport behavior of chelated radionuclides and metals in anoxic subsurface environments that are complicated by fracture flow and matrix diffusion. Our approach involved a long-term, steady-state natural gradient field experiment where nonreactive Br- and reactive 57Co(II)EDTA2- 109CdEDTA2-, and 51Cr(VI) were injected into a fracture zone of a contaminated fractured shale bedrock. The spatial and temporal distribution of the tracer and solutes was monitored for 500 days using an array of groundwater sampling wells instrumented within the fast-flowing fracture regime and a slower flowing matrix regime. The tracers were preferentially transported along strike-parallel fractures coupled with the slow diffusion of significant tracer mass into the bedrock matrix. The chelated radionuclides and metals were significantly retarded by the solid phase with the mechanisms of retardation largely due to redox reactions and sorption coupled with mineral-induced chelate-radionuclide dissociation. The formation of significant Fe(III)EDTA byproduct that accompanied the dissociation of the radionuclide-chelate complexes was believed to be the result of surface interactions with biotite which was the only Fe(III)-bearing mineral phase present in these Fe-reducing environments. These results counter current conceptual models that suggest chelated contaminants move conservatively through Fe-reducing environments since they are devoid of Fe-oxyhydroxides that are known to aggressively compete for chelates in oxic regimes. Modeling results further demonstrated that chelate-radionuclide dissociation reactions were most prevalent along fractures where accelerated weathering processes are expected to expose more primary minerals than the surrounding rock matrix. The findings of this study suggest that physical retardation mechanisms (i.e. diffusion) are dominant within the matrix regime, whereas geochemical retardation mechanisms are dominant within the fracture regime.  相似文献   

6.
Matrix diffusion is an important mechanism for solute transport in fractured rock. We recently conducted a literature survey on the effective matrix diffusion coefficient, Dme, a key parameter for describing matrix diffusion processes at the field scale. Forty field tracer tests at 15 fractured geologic sites were surveyed and selected for the study, based on data availability and quality. Field-scale Dme values were calculated, either directly using data reported in the literature, or by reanalyzing the corresponding field tracer tests. The reanalysis was conducted for the selected tracer tests using analytic or semi-analytic solutions for tracer transport in linear, radial, or interwell flow fields. Surveyed data show that the scale factor of the effective matrix diffusion coefficient (defined as the ratio of Dme to the lab-scale matrix diffusion coefficient, Dm, of the same tracer) is generally larger than one, indicating that the effective matrix diffusion coefficient in the field is comparatively larger than the matrix diffusion coefficient at the rock-core scale. This larger value can be attributed to the many mass-transfer processes at different scales in naturally heterogeneous, fractured rock systems.Furthermore, we observed a moderate, on average trend toward systematic increase in the scale factor with observation scale. This trend suggests that the effective matrix diffusion coefficient is likely to be statistically scale-dependent. The scale-factor value ranges from 0.5 to 884 for observation scales from 5 to 2000 m. At a given scale, the scale factor varies by two orders of magnitude, reflecting the influence of differing degrees of fractured rock heterogeneity at different geologic sites. In addition, the surveyed data indicate that field-scale longitudinal dispersivity generally increases with observation scale, which is consistent with previous studies. The scale-dependent field-scale matrix diffusion coefficient (and dispersivity) may have significant implications for assessing long-term, large-scale radionuclide and contaminant transport events in fractured rock, both for nuclear waste disposal and contaminant remediation.  相似文献   

7.
This work is focused on measuring the concentration distribution of a conservative tracer in a homogeneous synthetic porous material and in heterogeneous natural sandstone using MRI techniques, and on the use of spatially resolved porosity data to define spatially variable diffusion coefficients in heterogeneous media. The measurements are made by employing SPRITE, a fast MRI method that yields quantitative, spatially-resolved tracer concentrations in porous media. Diffusion experiments involving the migration of H(2)O into D(2)O-saturated porous media are conducted. One-dimensional spatial distributions of H(2)O-tracer concentrations acquired from experiments with the homogeneous synthetic calcium silicate are fitted with the one-dimensional analytical solution of Fick's second law to confirm that the experimental method provides results that are consistent with expectations for Fickian diffusion in porous media. The MRI-measured concentration profiles match well with the solution for Fick's second law and provide a pore-water diffusion coefficient of 1.75×10(-9)m(2)s(-1). The experimental approach was then extended to evaluate diffusion in a heterogeneous natural sandstone in three dimensions. The relatively high hydraulic conductivity of the sandstone, and the contrast in fluid density between the H(2)O tracer and the D(2)O pore fluid, lead to solute transport by a combination of diffusion and density-driven advection. The MRI measurements of spatially distributed tracer concentration, combined with numerical simulations allow for the identification of the respective influences of advection and diffusion. The experimental data are interpreted with the aid of MIN3P-D - a multicomponent reactive transport code that includes the coupled processes of diffusion and density-driven advection. The model defines local diffusion coefficients as a function of spatially resolved porosity measurements. The D(e) values calculated for the heterogeneous sandstone and used to simulate diffusive and advective transport range from 5.4×10(-12) to 1.0×10(-10)m(2)s(-1). These methods have broad applicability to studies of contaminant migration in geological materials.  相似文献   

8.
Tracer experiments conducted using a flow field established by injecting water into one borehole and withdrawing water from another are often used to establish connections and investigate dispersion in fractured rock. As a result of uncertainty in the uniqueness of existing models used for interpretation, this method has not been widely used to investigate more general transport processes including matrix diffusion or advective solute exchange between mobile and immobile zones of fluid. To explore the utility of the injection-withdrawal method as a general investigative tool and with the intent to resolve the transport processes in a discrete fracture, two tracer experiments were conducted using the injection-withdrawal configuration. The experiments were conducted in a fracture which has a large aperture (>500 microm) and horizontally pervades a dolostone formation. One experiment was conducted in the direction of the hydraulic gradient and the other in the direction opposite to the natural gradient. Two tracers having significantly different values of the free-water diffusion coefficient were used. To interpret the experiments, a hybrid numerical-analytical model was developed which accounts for the arcuate shape of the flow field, advection-dispersion in the fracture, diffusion into the matrix adjacent to the fracture, and the presence of natural flow in the fracture. The model was verified by comparison to a fully analytical solution and to a well-known finite-element model. Interpretation of the tracer experiments showed that when only one tracer, advection-dispersion, and matrix diffusion are considered, non-unique results were obtained. However, by using multiple tracers and by accounting for the presence of natural flow in the fracture, unique interpretations were obtained in which a single value of matrix porosity was estimated from the results of both experiments. The estimate of porosity agrees well with independent measurements of porosity obtained from core samples. This suggests that: (i) the injection-withdrawal method is a viable tool for the investigation of general transport processes provided all relevant experimental conditions are considered and multiple conservative tracers are used; and (ii) for the conditions of the experiments conducted in this study, the dominant mechanism for exchange of solute between the fracture and surrounding medium is matrix diffusion.  相似文献   

9.
A multidimensional, mountain-scale, thermal-hydrologic (TH) numerical model is presented for investigating unsaturated flow behavior in response to decay heat from the proposed radioactive waste repository in the Yucca Mountain unsaturated zone (UZ), The model, consisting of both two-dimensional (2-D) and three-dimensional (3-D) representations of the UZ repository system, is based on the current repository design, drift layout, thermal loading scenario, and estimated current and future climate conditions. This mountain-scale TH model evaluates the coupled TH processes related to mountain-scale UZ flow. It also simulates the impact of radioactive waste heat release on the natural hydrogeological system, including heat-driven processes occurring near and far away from the emplacement tunnels or drifts. The model simulates predict thermally perturbed liquid saturation, gas- and liquid-phase fluxes, and water and rock temperature elevations, as well as the changes in water flux driven by evaporation/condensation processes and drainage between drifts. These simulations provide insights into mountain-scale thermally perturbed flow fields under thermal loading conditions.  相似文献   

10.
Thermal venting is a remediation technique suitable to the liquid unsaturated zone to enhance recovery of less-volatile residual hydrocarbon contaminants. Thermal venting is different to traditional soil venting because heated air instead of air at ambient conditions is applied to the contaminated zone. The vapor pressure of a less-volatile contaminants is typically increased by temperature causing the gas-phase concentrations to increase by three- to five-fold over a temperature increase of 20–30°C. The work described in this first paper provides the theoretical framework of analysis related to thermal venting. The analysis included nonisothermal gas flow, thermal energy transport and multicomponent mass transport in a multiphase porous medium. The transient gas flow analysis included the effect of temperature on fluid properties and gas compressibility. The heat energy transport analysis was performed under the thermodynamic equilibrium condition with phase-summed effective thermal properties. Multi-component mass transport was performed under local equilibrium for partitioning between phases. Model verification was performed to the extend possible using analytical and available experimental data for different physical processes. The second paper of this two-part series will demonstrate the applicability of thermal venting technique through numerical simulations of hypothetical laboratory and field-scale scenarios.  相似文献   

11.
To investigate the coupled effects of solution chemistry and hydrodynamics on the mobility of quantum dot (QD) nanoparticles in the vadose zone, laboratory scale transport experiments involving single and/or sequential infiltrations of QDs in unsaturated and saturated porous media, and computations of total interaction and capillary potential energies were performed. As ionic strength increased, QD retention in the unsaturated porous media increased; however, this retention was significantly suppressed in the presence of a non-ionic surfactant in the infiltration suspensions as indicated by surfactant enhanced transport of QDs. In the vadose zone, the non-ionic surfactant limited the formation of QD aggregates, enhanced QD mobility and transport, and lowered the solution surface tension, which resulted in a decrease in capillary forces that not only led to a reduction in the removal of QDs, but also impacted the vadose zone flow processes. When chemical transport conditions were favorable (ionic strength of 5 × 10(-4)M and 5 × 10(-3)M, or ionic strengths of 5 × 10(-2)M and 0.5M with surfactant), the dominating phenomena controlling the mobility and transport of QDs in the vadose zone were meso-scale processes, where infiltration by preferential flow results in the rapid transport of QDs. When chemical transport conditions were unfavorable (ionic strength of 5 × 10(-2)M and 0.5M) the dominating phenomena controlling the mobility and transport of QDs in the vadose zone were pore-scale processes governed by gas-water interfaces (GWI) that impact the mobility of QDs. The addition of surfactant enhanced the transport of QDs both in favorable and unfavorable chemical transport conditions. The mobility and retention of QDs was controlled by interaction and capillary forces, with the latter being the most influential. GWI were found to be the dominant mechanism and site for QD removal compared with solid-water interfaces (SWI) and pore straining. Additionally, ripening phenomena were demonstrated to enhance QDs removal or retention in porous media and to be attenuated by the presence of surfactant.  相似文献   

12.
Processes that control the redox conditions in deep groundwaters have been studied. The understanding of such processes in a long-term perspective is important for the safety assessment of a deep geological repository for high-level nuclear waste. An oxidising environment at the depth of the repository would increase the solubility and mobility of many radionuclides, and increase the potential risk for radioactive contamination at the ground surface. Proposed repository concepts also include engineered barriers such as copper canisters, the corrosion of which increases considerably in an oxidising environment compared to prevailing reducing conditions. Swedish granitic rocks are typically relatively sparsely fractured and are best treated as a dual-porosity medium with fast flowing channels through fractures in the rock with a surrounding porous matrix, the pores of which are accessible from the fracture by diffusive transport. Highly simplified problems have been explored with the aim to gain understanding of the underlying transport processes, thermodynamics and chemical reaction kinetics. The degree of complexity is increased successively, and mechanisms and processes identified as of key importance are included in a model framework. For highly complex models, analytical expressions are not fully capable of describing the processes involved, and in such cases the solutions are obtained by numerical calculations. Deep in the rock the main source for reducing capacity is identified as reducing minerals. Such minerals are found inside the porous rock matrix and as infill particles or coatings in fractures in the rock. The model formulation also allows for different flow modes such as flow along discrete fractures in sparsely fractured rocks and along flowpaths in a fracture network. The scavenging of oxygen is exemplified for these cases as well as for more comprehensive applications, including glaciation considerations. Results show that chemical reaction kinetics control the scavenging of oxygen during a relatively short time with respect to the lifetime of the repository. For longer times the scavenging of oxygen is controlled by transport processes in the porous rock matrix. The penetration depth of oxygen along the flowpath depends largely on the hydraulic properties, which may vary significantly between different locations and situations. The results indicate that oxygen, in the absence of easily degradable organic matter, may reach long distances along a flow path during the life-time of the repository (hundreds to thousands of metres in a million years depending on e.g. hydraulic properties of the flow path and the availability of reducing capacity). However, large uncertainties regarding key input parameters exist leading to the conclusion that the results from the model must be treated with caution pending more accurate and validated data. Ongoing and planned experiments are expected to reduce these uncertainties, which are required in order to make more reliable predictions for a safety assessment of a nuclear waste repository.  相似文献   

13.
The couplings among chemical reaction rates, advective and diffusive transport in fractured media or soils, and changes in hydraulic properties due to precipitation and dissolution within fractures and in rock matrix are important for both nuclear waste disposal and remediation of contaminated sites. This paper describes the development and application of LEHGC2.0, a mechanistically based numerical model for simulation of coupled fluid flow and reactive chemical transport, including both fast and slow reactions in variably saturated media. Theoretical bases and numerical implementations are summarized, and two example problems are demonstrated. The first example deals with the effect of precipitation/dissolution on fluid flow and matrix diffusion in a two-dimensional fractured media. Because of the precipitation and decreased diffusion of solute from the fracture into the matrix, retardation in the fractured medium is not as large as the case wherein interactions between chemical reactions and transport are not considered. The second example focuses on a complicated but realistic advective-dispersive-reactive transport problem. This example exemplifies the need for innovative numerical algorithms to solve problems involving stiff geochemical reactions.  相似文献   

14.
15.
In the crystalline rocks of the Canadian Shield, geochemical conditions are currently reducing at depths of 500-1000 m. However, during future glacial periods, altered hydrologic conditions could potentially result in enhanced recharge of glacial melt water containing a relatively high concentration of dissolved oxygen (O2). It is therefore of interest to investigate the physical and geochemical processes, including naturally-occurring redox reactions, that may control O2 ingress. In this study, the reactive transport code MIN3P is used in combination with 2k factorial analyses to identify the most important parameters controlling oxygen migration and attenuation in fractured crystalline rocks. Scenarios considered are based on simplified conceptual models that include a single vertical fracture, or a fracture zone, contained within a rock matrix that extends from the ground surface to a depth of 500 m. Consistent with field observations, Fe(II)-bearing minerals are present in the fractures (i.e. chlorite) and the rock matrix (biotite and small quantities of pyrite). For the parameter ranges investigated, results indicate that for the single fracture case, the most influential factors controlling dissolved O2 ingress are flow velocity in the fracture, fracture aperture, and the biotite reaction rate in the rock matrix. The most important parameters for the fracture zone simulations are flow velocity in the individual fractures, pO2 in the recharge water, biotite reaction rate, and to a lesser degree the abundance and reactivity of chlorite in the fracture zone, and the fracture zone width. These parameters should therefore receive increased consideration during site characterization, and in the formulation of site-specific models intended to predict O2 behavior in crystalline rocks.  相似文献   

16.
Correct interpretation of tracer test data is critical for understanding transport processes in the subsurface. This task can be greatly complicated by the presence of intraborehole flows in a highly dynamic flow environment. At a new tracer test site (Hanford IFRC) a dynamic flow field created by changes in the stage of the adjacent Columbia River, coupled with a heterogeneous hydraulic conductivity distribution, leads to considerable variations in vertical hydraulic gradients. These variations, in turn, create intraborehole flows in fully-screened (6.5m) observation wells with frequently alternating upward and downward movement. This phenomenon, in conjunction with a highly permeable aquifer formation and small horizontal hydraulic gradients, makes modeling analysis and model calibration a formidable challenge. Groundwater head data alone were insufficient to define the flow model boundary conditions, and the movement of the tracer was highly sensitive to the dynamics of the flow field. This study shows that model calibration can be significantly improved by explicitly considering (a) dynamic flow model boundary conditions and (b) intraborehole flow. The findings from this study underscore the difficulties in interpreting tracer tests and understanding solute transport under highly dynamic flow conditions.  相似文献   

17.
The most common technique used for numerical simulations of tracer mixing is that of the numerical solution of the advection–diffusion equation with the unresolved fluxes parameterized using the similarity theory. Despite correct predictions of the overall directions of transport, models based on a numerical solution of the advection–diffusion equation lack sufficient accuracy to correctly reproduce the coupling of mixing with small scale processes which are sensitive to the microstructure of the tracer distribution. The objective of this paper is to revisit the basic formalism employed in numerical models used to investigate atmospheric tracers. The main mathematical method proposed here is the theory of kinematics of mixing which could be applied effectively for simulations of atmospheric transport processes. At the beginning of the paper, we introduce simple mathematical transformations in order to demonstrate how complex topological structures are created by mixing processes. These idealistic flow systems are essential to explain transport properties of much more complex three-dimensional geophysical flows. An example of the application of the kinematics of mixing to the analysis of tracer transport on a planetary scale is presented in the following sections. The complex filamentary structures simulated in the numerical experiment are evaluated using some commonly applied statistical measures in order to compare the results with the data published in the literature. The results of the experiment are also analysed with the help of simple conceptual models of fluid filaments. The microstructure of the tracer distribution introduced in the paper is essential to increase our understanding of atmospheric transport and to develop more realistic parameterizations of small-scale mixing. The presented results could also be used to improve calculations of the coupling between microphysical processes and tracer mixing.  相似文献   

18.
This study characterizes layer- and local-scale heterogeneities in hydraulic parameters (i.e., matrix permeability and porosity) and investigates the relative effect of layer- and local-scale heterogeneities on the uncertainty assessment of unsaturated flow and tracer transport in the unsaturated zone of Yucca Mountain, USA. The layer-scale heterogeneity is specific to hydrogeologic layers with layerwise properties, while the local-scale heterogeneity refers to the spatial variation of hydraulic properties within a layer. A Monte Carlo method is used to estimate mean, variance, and 5th, and 95th percentiles for the quantities of interest (e.g., matrix saturation and normalized cumulative mass arrival). Model simulations of unsaturated flow are evaluated by comparing the simulated and observed matrix saturations. Local-scale heterogeneity is examined by comparing the results of this study with those of the previous study that only considers layer-scale heterogeneity. We find that local-scale heterogeneity significantly increases predictive uncertainty in the percolation fluxes and tracer plumes, whereas the mean predictions are only slightly affected by the local-scale heterogeneity. The mean travel time of the conservative and reactive tracers to the water table in the early stage increases significantly due to the local-scale heterogeneity, while the influence of local-scale heterogeneity on travel time gradually decreases over time. Layer-scale heterogeneity is more important than local-scale heterogeneity for simulating overall tracer travel time, suggesting that it would be more cost-effective to reduce the layer-scale parameter uncertainty in order to reduce predictive uncertainty in tracer transport.  相似文献   

19.
A mesoscale (21 m in flow distance) infiltration and seepage test was recently conducted in a deep, unsaturated fractured rock system at the crossover point of two underground tunnels. Water was released from a 3 mx4 m infiltration plot on the floor of an alcove in the upper tunnel, and seepage was collected from the ceiling of a niche in the lower tunnel. Significant temporal and (particularly) spatial variabilities were observed in both measured infiltration and seepage rates. To analyze the test results, a three-dimensional unsaturated flow model was used. A column-based scheme was developed to capture heterogeneous hydraulic properties reflected by these spatial variabilities observed. Fracture permeability and van Genuchten alpha parameter [van Genuchten, M.T., 1980. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J. 44, 892-898] were calibrated for each rock column in the upper and lower hydrogeologic units in the test bed. The calibrated fracture properties for the infiltration and seepage zone enabled a good match between simulated and measured (spatially varying) seepage rates. The numerical model was also able to capture the general trend of the highly transient seepage processes through a discrete fracture network. The calibrated properties and measured infiltration/seepage rates were further compared with mapped discrete fracture patterns at the top and bottom boundaries. The measured infiltration rates and calibrated fracture permeability of the upper unit were found to be partially controlled by the fracture patterns on the infiltration plot (as indicated by their positive correlations with fracture density). However, no correlation could be established between measured seepage rates and density of fractures mapped on the niche ceiling. This lack of correlation indicates the complexity of (preferential) unsaturated flow within the discrete fracture network. This also indicates that continuum-based modeling of unsaturated flow in fractured rock at mesoscale or a larger scale is not necessarily conditional explicitly on discrete fracture patterns.  相似文献   

20.
It is known that under unsaturated conditions, the transport of solutes can deviate from ideal advective-dispersive behaviour even for macroscopically homogeneous porous materials. Causes may include physical non-equilibrium, sorption kinetics, non-linear sorption, and the irregular distribution of sorption sites. We have performed laboratory experiments designed to identify the processes responsible for the non-ideality of radioactive Sr transport observed under unsaturated flow conditions in an Aeolian sandy deposit from the Chernobyl exclusion zone. Miscible displacement experiments were carried out at various water contents and corresponding flow rates in a laboratory model system. Results of our experiments have shown that breakthrough curves of a conservative tracer exhibit a higher degree of asymmetry when the water content decreases than at saturated water content and same Darcy velocity. It is possible that velocity variations caused by heterogeneities at the macroscopic scale are responsible for this situation. Another explanation is that molecular diffusion drives the solute mass transfer between mobile and immobile water regions, but the surface of contact between these water regions is small. At very low concentrations, representative of a radioactive Sr contamination of the pore water, sorption and physical disequilibrium dominate the radioactive Sr transport under unsaturated flow conditions. A sorption reaction is described by a cation exchange mechanism calibrated under fully saturated conditions. The sorption capacity, as well as the exchange coefficients are not affected by desaturation. The number of accessible exchange sites was calculated on the basis that the solid remained in contact with water and that the fraction of solid phase in contact with mobile water is numerically equal to the proportion of mobile water to total water content. That means that for this type of sandy soil, the nature of mineral phases is the same in advective and non-advective domains. So sorption reaction parameters can be estimated from more easily conducted saturated experiments, but hydrodynamic behaviour must be characterized by conservative tracer experiments under unsaturated flow conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号