首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Red mud is highly alkaline (pH 13), saline and can contain elevated concentrations of several potentially toxic elements (e.g. Al, As, Mo and V). Release of up to 1 million m3 of bauxite residue (red mud) suspension from the Ajka repository, western Hungary, caused large-scale contamination of downstream rivers and floodplains. There is now concern about the potential leaching of toxic metal(loid)s from the red mud as some have enhanced solubility at high pH. This study investigated the impact of red mud addition to three different Hungarian soils with respect to trace element solubility and soil geochemistry. The effectiveness of gypsum amendment for the rehabilitation of red mud-contaminated soils was also examined. Red mud addition to soils caused a pH increase, proportional to red mud addition, of up to 4 pH units (e.g. pH 7 → 11). Increasing red mud addition also led to significant increases in salinity, dissolved organic carbon and aqueous trace element concentrations. However, the response was highly soil specific and one of the soils tested buffered pH to around pH 8.5 even with the highest red mud loading tested (33 % w/w); experiments using this soil also had much lower aqueous Al, As and V concentrations. Gypsum addition to soil/red mud mixtures, even at relatively low concentrations (1 % w/w), was sufficient to buffer experimental pH to 7.5–8.5. This effect was attributed to the reaction of Ca2+ supplied by the gypsum with OH? and carbonate from the red mud to precipitate calcite. The lowered pH enhanced trace element sorption and largely inhibited the release of Al, As and V. Mo concentrations, however, were largely unaffected by gypsum induced pH buffering due to the greater solubility of Mo (as molybdate) at circumneutral pH. Gypsum addition also leads to significantly higher porewater salinities, and column experiments demonstrated that this increase in total dissolved solids persisted even after 25 pore volume replacements. Gypsum addition could therefore provide a cheaper alternative to recovery (dig and dump) for the treatment of red mud-affected soils. The observed inhibition of trace metal release within red mud-affected soils was relatively insensitive to either the percentage of red mud or gypsum present, making the treatment easy to apply. However, there is risk that over-application of gypsum could lead to detrimental long-term increases in soil salinity.  相似文献   

2.
Using soil incubation experiments, the effect of red mud addition on the fractionation and bioaccessibility of Pb, Zn and As in combined contaminated soil was studied. The results showed that red mud addition could significantly decrease the concentration of HOAc-extractable Pb and Zn in soil. Compared with the control, 5% red mud addition could significantly reduce the concentrations of HOAc-extractable Pb and Zn in soil after 1, 2 and 3 months of incubation [62.5, 65.3 and 73.5% decrease (Pb), 56.7, 65.8 and 67.4% decrease (Zn)]. Whereas adding red mud could remarkably increase the concentrations of specific absorbed As and residual As in soil. The result of a simple bioavailability extraction test (SBET) indicated that all treatments with red mud addition markedly reduced the concentration of bioaccessible Zn but increased the concentration of bioaccessible As in soil, while having little effect on the concentration of bioaccessible Pb in soil. After 3 months incubation, all treatments including 1, 2 and 5% red mud addition reduced the concentration of bioaccessible Zn by 53.1–56.7% compared with the control, but increased the concentration of bioaccessible As by 1.81–6.25 times. The results suggested that red mud is an additive with potential for the remediation soil contaminated soil by combinations of heavy metals, although it should be added based on the different heavy metals in the soil. Combined use of red mud and hyperaccumulators to remediate heavy metal contaminated soil needs further study.  相似文献   

3.
The basic objective of this study was to compile the available information on the composition of sewage and industrial wastewaters in India and their effect on soil–plant health upon their use in agricultural fields. The composition of sewage water is quite variable depending upon the contributing source, mode of collection, and treatment provided. The composition of sewage water varied from site to site which was in accordance with the type of industries present in that area. Continuous use of sewage and industrial wastewater irrigation recorded improvement in water retention, hydraulic conductivity, organic C and build-up of available N, P, K, micronutrient status, and soil microbial count. The electrical conductivity although increased due to sewage irrigation, it was within the tolerance limit to cause any soil salinity hazard. The toxic metals like Cd, Cr, Pb, and Ni were found to be accumulated in soil and plant due to long-term use of sewage and industrial wastewater irrigation. The concentration of these metals was higher in leafy vegetables than in grain crops. This warrants the potential hazard to soil–plant health suggesting necessity of their safe use after pretreatment as a cheap potential alternative source of plant nutrients in agriculture.  相似文献   

4.
Processes that control the mobility, transformation and toxicity of metals in soil are of special importance in the root-developing zone. For this reason, there is a considerable interest in understanding trace elements (TEs) behavior in soil, emphasising the processes by which plants take them up. Increased root-zone salinity can affect plant TEs uptake and accumulation in plant tissue. Furthermore, copper (Cu) complexation by soil organic matter (SOM) is an effective mechanism of Cu retention in soils, controlling thus its bioavailability. Therefore, a greenhouse pot experiment was conducted to study the effects of soil Cu contamination in a saline environment on faba bean (Vicia faba L.) element uptake. Treatment with NaCl salinity was applied (control, 50 mM NaCl and 100 mM NaCl) on faba bean plants grown in a control and in a soil spiked with Cu (250 and 500 mg kg?1). Low and high SOM content trial variants were studied. Cu accumulation occurred in faba bean leaf, pod and seed. Cu contamination affected plant element concentrations in leaves (Na, Ca, Mg, Mn), pod (Zn, Mn) and seed (Mn, Mo, Zn). Root-zone salinity also affected faba bean element concentrations. Furthermore, Cu contamination—salinity and salinity—SOM interactions were significant for pod Cu concentration, suggesting that Cu phytoavailability could be affected by these interactions. Future research will be focused on the mechanisms of Cu translocation in plant and adaptation aspects of abiotic stress.  相似文献   

5.
Heavy metals and soil microbes   总被引:1,自引:0,他引:1  
Heavy metal pollution is a global issue due to health risks associated with metal contamination. Although many metals are essential for life, they can be harmful to man, animal, plant and microorganisms at toxic levels. Occurrence of heavy metals in soil is mainly attributed to natural weathering of metal-rich parent material and anthropogenic activities such as industrial, mining, agricultural activities. Here we review the effect of soil microbes on the biosorption and bioavailability of heavy metals; the mechanisms of heavy metals sequestration by plant and microbes; and the effects of pollution on soil microbial diversity and activities. The major points are: anthropogenic activities constitute the major source of heavy metals in the environment. Soil chemistry is the major determinant of metal solubility, movement and availability in the soil. High levels of heavy metals in living tissues cause severe organ impairment, neurological disorders and eventual death. Elevated levels of heavy metals in soils decrease microbial population, diversity and activities. Nonetheless, certain soil microbes tolerate and use heavy metals in their systems; as such they are used for bioremediation of polluted soils. Soil microbes can be used for remediation of contaminated soils either directly or by making heavy metals bioavailable in the rhizosphere of plants. Such plants can accumulate 100 mg g?1 Cd and As; 1000 mg g?1 Co, Cu, Cr, Ni and 10,000 mg g?1 Pb, Mn and Ni; and translocate metals to harvestable parts. Microbial activity changes soil physical properties such as soil structure and biochemical properties such as pH, soil redox state, soil enzymes that influence the solubility and bioavailability of heavy metals. The concept of ecological dose (ED50) and lethal concentration (LC50) was developed in response to the need to easily quantify the influence of pollutants on microbial-mediated ecological processes in various ecosystems.  相似文献   

6.
选取3种钝化材料(赤泥、硼泥、钙镁磷肥),通过盆栽试验,观测了在不同铜污染水平红壤上,3种钝化材料对小油菜(Brassica campestris,L var Conmunis)吸收铜的影响。结果表明:在铜污染红壤上,3种钝化材料降低土壤EDTA提取态铜含量的效果显著。其中,在高铜污染水平红壤上,施用高量赤泥、硼泥处理降低效果最为明显,较污染对照降低了41.48%、44.44%。在低铜污染水平红壤上,施用高量赤泥处理降低效果最为明显,较对照处理降低了35.83%。施用3种钝化材料均能促进小油菜生长,增加小油菜的生物量,降低小油菜对铜的吸收量。其中,低铜污染水平红壤上,施用高量赤泥、高量硼泥与硼泥-赤泥联合施用处理降低铜含量的效果最为明显,与污染对照相比,小油菜铜含量分别降低82.64%,72.71%,85.14%;在高铜污染水平红壤上,施用高量赤泥与硼泥、赤泥联合施用处理降低小油菜铜含量的效果最为明显,小油菜铜含量分别为36.37,36.32 mg.kg^-1。结果表明,用量为45 000 kg.hm^-2的赤泥是最佳的功能钝化材料。  相似文献   

7.
8.
将赤泥按0%、2.5%、5%、7.5%、10%的重量比例与土壤混合,考察赤泥掺混对土地处理系统中植物除磷效果的影响.结果表明,赤泥从生物量以及磷吸收两方面影响植物除磷.适量的赤泥掺混可提高植物生物量,掺混比为5%时生物量最大.另一方面,赤泥掺混越多,对植物磷吸收的抑制也越大.总体效果上,掺混比例为5%时,黑麦草和高羊茅...  相似文献   

9.
The immobilisation of heavy metals in contaminated soils is a promising alternative to conventional remediation techniques. Very few studies have focused on the use of iron-rich nanomaterials and natural materials for the adsorption of toxic metals in soils. Synthesised iron-rich nanomaterials (Fe and Zr–Fe oxides) and natural iron-rich materials (natural red earth; NRE) were used to immobilise As and Pb in contaminated agricultural soil. Total concentrations of As and Pb in the initial soil (as control) were 170.76 and 1945.11 mg kg?1, respectively. Amendments were applied into the soil at 1, 2.5 and 5% (w/w) in triplicate and incubated for 150 days. Except for the NRE-amended soil, soil pH decreased from 5.6 to 4.9 with increasing application rates of Fe and Zr–Fe oxides. With addition of Fe and Zr–Fe oxides at 5%, the ammonium acetate (NHO4Ac)-extractable Pb was greatly decreased by 83 and 65% compared with NRE addition (43%). All subjected amendments also led to a decrease in NHO4Ac-extractable As in the soils, indicating the high capacity of As immobilisation. Soil amended with NRE showed a lower ratio of cy19:0 to 18:1ω7c, indicating decreased microbial stress. The toxicity characteristic leaching procedure produced results similar to the NHO4Ac extraction for As and Pb. The NRE addition is recommended for immobilising heavy metals and maintaining biological soil properties.  相似文献   

10.
Vegetation management in shallow groundwater table environments requires an understanding of the interactions between the physical and biological factors that determine root-zone soil salinization and moisture. In this study, the effects of groundwater depth and flood irrigation strategies on water and salt dynamics and reed water use were analyzed in the shallow groundwater region of the Yellow River Delta in China using the HYDRUS-1D model. The results indicated that there is a conflict between water, salt stress, and reed water use with variations in groundwater depth. A water table depth of 3.5 m is the minimum limit to maintain a safe level of soil salinity, but at this depth, the environmental stress on reeds is worsened by the decrease in soil water storage. Maintaining the flood pulses on the wetland, especially during May, may be critical for restoring the reed wetland in the Yellow River Delta.  相似文献   

11.
A soil column experiment was set up to investigate the effect of red mud from Ajka (Hungary) on a typical soil profile from the affected area. The chemical changes caused by the red mud leachate and the effects of these changes on living organisms were assessed. Ecotoxicological tests were performed with Vibrio fischeri, Sinapis alba and Folsomia candida and the number of aerobic heterotrophic microorganisms was determined. The total, plant-available, exchangeable and water-soluble fractions of Na, Mo, Cu and Cr increased in the soil, mostly owing to their leaching from the red mud layer, but partly to the increase in the pH and DOC concentration. The chemical changes only had significant effects on the test organisms in the 0–30 cm soil layer, except for F. candida, which also had a lower survival rate in the 30–50 cm soil layer. No severe toxic effects were detected in the test organisms; in fact a stimulating effect was revealed for the aerobic heterotrophic cell number and for S. alba germination. However, the red mud itself was toxic, so the ecotoxicological tests justified the removal of red mud from the soil surface after the disaster.  相似文献   

12.
Soil heavy metal contamination is a major health issue. Chemical immobilization of toxic metals is a promising technique to solve this issue. In this study, soil was sampled from a copper mining-polluted area in eastern China. Coal fly ash and straw were applied to soil samples at 5 % w/w ratio and 2 % w/w ratio, and incubated for 6 weeks. The CaCl2-extractable Cu, Cd and Zn, phytoavailability and soil microbial activity were measured. The results showed that coal fly ash, straw and the mixture of coal fly ash and straw decreased CaCl2-extractable metals. Coal fly ash or the mixture of the two amendments are therefore efficient metal stabilizers.  相似文献   

13.
There is limited study to simultaneously determine the relative bioavailability of heavy metals such as Cd, Pb, Cu, Cr(VI), and Ni in soil samples. In the present study, the bioaccessibility of heavy metals using in vitro assay was compared with the relative bioavailability of heavy metals using in vivo mouse model. The bioaccessibility of heavy metals ranged from 9.05 ± 0.97 % (Cr) to 42.8 ± 3.52 % (Cd). The uptake profile of heavy metals in soil and solution samples in mouse revealed that the uptake kinetics could be fitted to a two-compartment model. The relative bioavailability of heavy meals ranged from 34.8 ± 7.0 % (Ni) to 131 ± 20.3 % (Cu). Poor correlation between bioaccessibility and relative bioavailability of heavy metals was observed (r 2 = 0.11, p > 0.05). The relative bioavailability of heavy metals was significantly higher than the bioaccessibility of heavy metals (p < 0.05). The present study indicated that the in vitro digestion method should be carefully employed in risk assessment.  相似文献   

14.
Twenty trace elements in fine particulate matters (i.e., PM2.5) at urban Chengdu, a southwest megacity of China, were determined to study the characteristics, sources and human health risk of particulate toxic heavy metals. This work mainly focused on eight toxic heavy metal elements (As, Cd, Cr, Cu, Mn, Ni, Pb and Zn). The average concentration of PM2.5 was 165.1 ± 84.7 µg m?3 during the study period, significantly exceeding the National Ambient Air Quality Standard (35 µg m?3 in annual average). The particulate heavy metal pollution was very serious in which Cd and As concentrations in PM2.5 significantly surpassed the WHO standard. The enrichment factor values of heavy metals were typically higher than 10, suggesting that they were mainly influenced by anthropogenic sources. More specifically, the Cr, Mn and Ni were slightly enriched, Cu was highly enriched, while As, Cd, Pb and Zn were severely enriched. The results of correlation analysis showed that Cd may come from metallurgy and mechanical manufacturing emissions, and the other metals were predominately influenced by traffic emissions and coal combustion. The results of health risk assessment indicated that As, Mn and Cd would pose a significant non-carcinogenic health risk to both children and adults, while Cr would cause carcinogenic risk. Other toxic heavy metals were within a safe level.  相似文献   

15.
Abstract:  The reed Phragmites australis Cav. is aggressively invading salt marshes along the Atlantic Coast of North America. We examined the interactive role of habitat alteration (i.e., shoreline development) in driving this invasion and its consequences for plant richness in New England salt marshes. We surveyed 22 salt marshes in Narragansett Bay, Rhode Island, and quantified shoreline development, Phragmites cover, soil salinity, and nitrogen availability. Shoreline development, operationally defined as removal of the woody vegetation bordering marshes, explained >90% of intermarsh variation in Phragmites cover. Shoreline development was also significantly correlated with reduced soil salinities and increased nitrogen availability, suggesting that removing woody vegetation bordering marshes increases nitrogen availability and decreases soil salinities, thus facilitating Phragmites invasion. Soil salinity (64%) and nitrogen availability (56%) alone explained a large proportion of variation in Phragmites cover, but together they explained 80% of the variation in Phragmites invasion success. Both univariate and aggregate (multidimensional scaling) analyses of plant community composition revealed that Phragmites dominance in developed salt marshes resulted in an almost three-fold decrease in plant species richness. Our findings illustrate the importance of maintaining integrity of habitat borders in conserving natural communities and provide an example of the critical role that local conservation can play in preserving these systems. In addition, our findings provide ecologists and natural resource managers with a mechanistic understanding of how human habitat alteration in one vegetation community can interact with species introductions in adjacent communities (i.e., flow-on or adjacency effects) to hasten ecosystem degradation.  相似文献   

16.
European floodplain soils are frequently contaminated with potentially toxic inorganic substances. We used a multi-surface model to estimate the aqueous concentrations of Cd, Cu, Ni, Pb and Zn in three Mollic Fluvisols from the Central Elbe River (Germany). The model considered complexation in solution and interactions with soil organic matter (SOM), a clay mineral and hydrous Al, Fe and Mn oxides. The amounts of reactive metals were derived from extraction with 0.43 M HNO3. Modelling was carried out as a function of pH (soil pH ± 1.4) because it varies in floodplain soils owing to redox processes that consume or release protons. The fraction of reactive metals, which were dissolved according to the modelling, was predominantly <1%. Depending on soil properties, especially pH and contents of SOM and minerals of the clay fraction, the modelled concentrations partially exceeded the trigger values for the soil–groundwater pathway of the German soil legislation. This differentiation by soil properties was given for Ni, Pb and Zn. On the other hand, Cd was more mobile, i.e., the trigger values were mostly exceeded. Copper represented the opposite, as the modelling did not predict exceeding the trigger values in any horizon. Except for Pb and partially Zn (where oxides were more important), SOM was the most important adsorbent for metals. However, given the special composition and dynamics of SOM in mollic horizons, we suggest further quantitative and qualitative investigations on SOM and on its interaction with metals to improve the prediction of contaminant dynamics.  相似文献   

17.
The objective of this research was to investigate the effects of biosolids on the competitive sorption and lability of the sorbed Cd, Cu, Ni, Pb, and Zn in fluvial and calcareous soils. Competitive sorption isotherms were developed, and the lability of these metals was estimated by DTPA extraction following their sorption. Sorption of all metals was higher in the fluvial than in the calcareous soil. Sorption of Cu and Pb was stronger than that of Cd, Ni, and Zn in all soils. Biosolids application (2.5%) reduced the sorption of all metals especially Cu and Pb (28–43%) in both soils (especially the calcareous soil) at the lower added metal concentrations (50 and 100 mg L?1). However, it increased the sorption of all metals especially Pb and Cu in both soils (especially the calcareous soil; 15.5-fold for Cu) at the higher added concentrations (250 and 300 mg L?1). Nickel showed the highest lability followed by Cd, Zn, and Pb in both soils. Biosolids increased the lability of the sorbed Ni in the fluvial soils at all added concentrations and the lability of Cd, Pb, and Zn at 50 mg L?1, but decreased the lability of Cd, Pb, and Zn at 250 and 300 mg L?1 in both soils. We conclude that at low loading rate (e.g., 50 mg L?1) biosolids treatment might increase the lability and environmental risk of Cd, Cu, Pb, and Zn. However, at high loading rate (e.g., 300 mg L?1) biosolids may be used as an immobilizing agent for Cd, Cu, Pb, Zn and mobilizing agent for Ni.  相似文献   

18.
Stabilization of metals with amendments and red fescue (Festuca rubra, cv. Keszthelyi 2) growth was studied on an acidic and phytotoxic mine spoil (pHKCl 3.20–3.26; Cd 7.1 mg kg?1, Cu 120 mg kg?1, Pb 2154 mg kg?1 and Zn 605 mg kg?1) from Gyöngyösoroszi, Hungary in a pot experiment. Raising the pH above 5.0 by lime (CaCO3), and supplementing with 40 mg kg?1nitrogen (NH4NO3) made this material suitable for plant growth. All cultures were limed with 0.5% (m/m) CaCO3 (treatment 1), which was combined with 5% (m/m) municipal sewage sludge compost (treatment 2), 5% (m/m) peat (treatment 3), 7.5% (m/m) natural zeolite (clinoptilolite) (treatment 4), and 0.5 (m/m) KH2PO4 (treatment 5). Treatments 1–5 were combined with each other (treatment 6). After 60 days of red fescue growth, pH of the limed mine spoil decreased in all cultures units. Application of peat caused the highest pH decrease (1.15), while decrease of pH was less than 0.23 in treatments 2, 5 or 6. Application of lime significantly reduced concentrations of metals in the ‘plant available’ fraction of mine spoil compared to non-limed mine spoil. Amendments added to limed mine spoil changed variously the ratio of Cd, Cu, Pb and Zn in exchangeable or ‘plant available’ fractions, differently influencing the phytoavailability of these metals. Most of the metals were captured in the roots of test plants. Treatment 2 caused the appearance of less Cd in shoots (<0.1 μg g?1) or roots (3.11 μg g?1), while treatment 5 resulted in the highest Cd concentration (2.13 μg g?1) in shoots. Treatments did not influence significantly the Cu accumulation in shoots. The Pb accumulation of roots (44.7 μg g?1) was most effectively inhibited by combined treatment, while the highest value (136 μg g?1) was found in the culture treated with potassium phosphate. Pb concentration in shoots was below the detection limit, except for treatments 5 and 6. Peat application resulted in higher Zn concentration (448 μg g?1) in shoots than other amendments, where these values were around 100 μg g?1. All amendments influenced positively the dry matter yield of red fescue grown in limed mine spoil, however the application of 0.5 phosphate was less favourable. Liming, application of amendments and growth of red fescue can stabilize metals in acidic and phytotoxic mine spoil, and by phytostabilization they can reduce the risk of metal contamination of the food chain.  相似文献   

19.
The seasonal variation and partition of trace metals (Fe, Cu, Zn, Mn, Cd, Cr and Pb) in the surface sediments of the Calabar River are reported. Chemical partition of the metals in the sediments reveals that 2–30% of the total metal load was contributed by the non-detrital (acid-soluble) fraction, while fine-grained host minerals/compounds are the main carriers of the detrital (acid-insoluble) fraction (70–98%). Using multivariate statistical analysis, the seasonal fluctuations in the distribution of some of the metals show significant influence by physio-chemical changes (dissolved oxygen, pH, salinity and conductivity) in the water column. Fe–Mn oxide grain coatings and sulphide materials have been identified as scavengers of some of the non-detrital and detrital trace metals in the sediments. On the basis of index of geoaccumulation (I-geo) and comparison with previous studies, the Calabar River surface sediments have been classified as unpolluted.  相似文献   

20.
We studied distribution of heavy metals [lead (Pb), copper (Cu) and zinc (Zn)] in surface soil at an electronic-waste (e-waste) recycling workshop near Metro Manila in the Philippines to evaluate the pollution size (spot size, small area or the entire workshop), as well as to assess heavy metal transport into the surrounding soil environment. On-site length-of-stride-scale (~70 cm) measurements were performed at each surface soil point using field-portable X-ray fluorescence (FP-XRF). The surface soil at the e-waste recycling workshop was polluted with Cu, Zn and Pb, which were distributed discretely in surface soil. The site was divided into five areas based on the distance from an entrance gate (y-axis) of the e-waste recycling workshop. The three heavy metals showed similar concentration gradients in the y-axis direction. Zn, Pb and Cu concentrations were estimated to decrease to half of their maximum concentrations at ~3, 7 and 7 m from the pollution spot, respectively, inside the informal e-waste recycling workshop. Distance from an entrance may play an important role in heavy metal transport at the soil surface. Using on-site FP-XRF, we evaluated the metal ratio to characterise pollution features of the solid surface. Variability analysis of heavy metals revealed vanishing surficial autocorrelation over metre ranges. Also, the possibility of concentration prediction at unmeasured points using geostatistical kriging was evaluated, and heavy metals had a relative “small” pollution scales and remained inside the original workshop compared with toxic organohalogen compounds. Thus, exposure to heavy metals may directly influence the health of e-waste workers at the original site rather than the surrounding habitat and environmental media.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号